Skip to main content

Proteasome Inhibition: Potential for Sensitization of Immune Effector Mechanisms in Cancer

  • Chapter
Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1082 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams J. Development of the proteasome inhibitor PS-341. Oncologist 2002, 7:9–16.

    Article  CAS  PubMed  Google Scholar 

  2. Adams J. Proteasome inhibition in cancer: development of PS-341. Semin Oncol 2001, 28:613–619.

    Article  CAS  PubMed  Google Scholar 

  3. Adams J. Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 2002, 14:628–634.

    Article  CAS  PubMed  Google Scholar 

  4. Ciechanover A. The ubiquitin-proteasome proteo-lytic pathway. Cell 1994, 79:13–21.

    Article  CAS  PubMed  Google Scholar 

  5. Adams J, Palombella VJ, Sausville EA, et al. Protea-some inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999, 59:2615–2622.

    CAS  PubMed  Google Scholar 

  6. Montagut C, Rovira A, Albanell J. The proteasome: a novel target for anticancer therapy. Clin Transl Oncol 2006, 8:313–317.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 2006, 3:255–261.

    CAS  PubMed  Google Scholar 

  8. Adams J. Preclinical and clinical evaluation of pro-teasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol 2002, 6:493–500.

    Article  CAS  PubMed  Google Scholar 

  9. Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs 2000, 18:109–121.

    Article  CAS  PubMed  Google Scholar 

  10. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998, 67:425–479.

    Article  CAS  PubMed  Google Scholar 

  11. Palombella VJ, Conner EM, Fuseler JW, et al. Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci U S A 1998, 95:15671–15676.

    Article  CAS  PubMed  Google Scholar 

  12. Palombella VJ, Rando OJ, Goldberg AL, et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994, 78:773–785.

    Article  CAS  PubMed  Google Scholar 

  13. Varshavsky A. The ubiquitin system. Trends Biochem Sci 1997, 22:383–387.

    Article  CAS  PubMed  Google Scholar 

  14. Cheson BD. Hematologic malignancies: new developments and future treatments. Semin Oncol 2002, 29:33–45.

    Article  PubMed  Google Scholar 

  15. Anonymous. FDA approves Velcade for multiple myeloma treatment. FDA News 2003.

    Google Scholar 

  16. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003, 348:2609–2617.

    Article  CAS  PubMed  Google Scholar 

  17. Almond JB, Cohen GM. The proteasome: a novel target for cancer chemotherapy. Leukemia 2002, 16:433–443.

    Article  CAS  PubMed  Google Scholar 

  18. Kloetzel PM. Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2001, 2:179–187.

    Article  CAS  PubMed  Google Scholar 

  19. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996, 65:801–847.

    Article  CAS  PubMed  Google Scholar 

  20. Craiu A, Gaczynska M, Akopian T, et al. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 1997, 272:13437–13445.

    Article  CAS  PubMed  Google Scholar 

  21. Orlowski M. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 1990, 29:10289–10297.

    Article  CAS  PubMed  Google Scholar 

  22. Shringarpure R, Grune T, Mehlhase J, et al. Ubiquitin conjugation is not required for the degradation of 0oxidized proteins by proteasome. J Biol Chem 2003, 278:311–318.

    Article  CAS  PubMed  Google Scholar 

  23. Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994, 78:761–771.

    Article  CAS  PubMed  Google Scholar 

  24. Anton LC, Snyder HL, Bennink JR, et al. Dissociation of proteasomal degradation of biosynthesized viral proteins from generation of MHC class I-associated antigenic peptides. J Immunol 1998, 160:4859–4868.

    CAS  PubMed  Google Scholar 

  25. Luckey CJ, King GM, Marto JA, et al. Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. J Immunol 1998, 161:112–121.

    CAS  PubMed  Google Scholar 

  26. Vinitsky A, Anton LC, Snyder HL, et al. The generation of MHC class I-associated peptides is only partially inhibited by proteasome inhibitors: involvement of nonproteasomal cytosolic proteases in antigen processing? J Immunol 1997, 159:554–564.

    CAS  PubMed  Google Scholar 

  27. Yellen-Shaw AJ, Wherry EJ, Dubois GC, et al. Point mutation flanking a CTL epitope ablates in vitro and in vivo recognition of a full-length viral protein. J Immunol 1997, 158:3227–3234.

    CAS  PubMed  Google Scholar 

  28. Wherry EJ, Golovina TN, Morrison SE, et al. Re-evaluating the generation of a “proteasome-inde-pendent” MHC class I-restricted CD8 T cell epitope. J Immunol 2006, 176:2249–2261.

    CAS  PubMed  Google Scholar 

  29. Dutta J, Fan Y, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kap-paB. Oncogene 2006, 25:6800–6816.

    Article  CAS  PubMed  Google Scholar 

  30. Gilmore TD, Koedood M, Piffat KA, et al. Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene 1996, 13:1367–1378.

    CAS  PubMed  Google Scholar 

  31. Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002, 277:16639–16647.

    Article  CAS  PubMed  Google Scholar 

  32. Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 1999, 18:6867–6874.

    Article  CAS  PubMed  Google Scholar 

  33. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000, 18:621–663.

    Article  CAS  PubMed  Google Scholar 

  34. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 2000, 12:85–98.

    Article  CAS  PubMed  Google Scholar 

  35. Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002, 99:4079–4086.

    Article  CAS  PubMed  Google Scholar 

  36. Luo H, Wu Y, Qi S, et al. A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation 2001, 72:196–202.

    Article  CAS  PubMed  Google Scholar 

  37. Sun K, Welniak LA, Panoskaltsis-Mortari A, et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the protea-some inhibitor bortezomib. Proc Natl Acad Sci USA 2004, 101:8120–8125.

    Article  CAS  PubMed  Google Scholar 

  38. Vanderlugt CL, Rahbe SM, Elliott PJ, et al. Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun 2000, 14:205–211.

    Article  CAS  PubMed  Google Scholar 

  39. Wu T, Sozen H, Luo B, et al. Rapamycin and T cell costimulatory blockade as post-transplant treatment promote fully MHC-mismatched allogeneic bone marrow engraftment under irradiation-free conditioning therapy. Bone Marrow Transplant 2002, 29:949–956.

    Article  CAS  PubMed  Google Scholar 

  40. Zollner TM, Podda M, Pien C, et al. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest 2002, 109:671–679.

    CAS  PubMed  Google Scholar 

  41. Sun K, Wilkins DE, Anver MR, et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood 2005, 106:3293–3299.

    Article  CAS  PubMed  Google Scholar 

  42. Vodanovic-Jankovic S, Hari P, Jacobs P, et al. NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 2006, 107:827–834.

    Article  CAS  PubMed  Google Scholar 

  43. Kaufmann SH, Vaux DL. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene 2003, 22:7414–7430.

    Article  CAS  PubMed  Google Scholar 

  44. Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res 2002, 4(Suppl 3):S127–132.

    Article  PubMed  Google Scholar 

  45. Kukreja A, Hutchinson A, Dhodapkar K, et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 2006, 203:1859–1865.

    Article  CAS  PubMed  Google Scholar 

  46. LanzavecchiaA, Sallusto F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2001, 2:487–492.

    Article  CAS  PubMed  Google Scholar 

  47. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001, 106:263–266.

    Article  CAS  PubMed  Google Scholar 

  48. Chen L, Arora M, Yarlagadda M, et al. Distinct responses of lung and spleen dendritic cells to the TLR9 agonist CpG oligodeoxynucleotide. J Immunol 2006, 177:2373–2383.

    CAS  PubMed  Google Scholar 

  49. Chen X, Reed-Loisel LM, Karlsson L, et al. H2-O expression in primary dendritic cells. J Immunol 2006, 176:3548–3556.

    CAS  PubMed  Google Scholar 

  50. Spisek R, Charalambous A, Mazumder A, et al. Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007, 109(11):4839–4845.

    Article  CAS  PubMed  Google Scholar 

  51. Dai J, Liu B, Caudill MM, et al. Cell surface expression of heat shock protein gp96 enhances cross-presentation of cellular antigens and the generation of tumor-specific T cell memory. Cancer Immunol 2003, 3:1.

    Google Scholar 

  52. Liu B, Dai J, Zheng H, et al. Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A 2003, 100:15824–15829.

    Article  CAS  PubMed  Google Scholar 

  53. Aghajanian C, Soignet S, Dizon DS, et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 2002, 8:2505–2511.

    CAS  PubMed  Google Scholar 

  54. Ludwig H, Khayat D, Giaccone G, et al. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 2005, 104:1794–1807.

    Article  CAS  PubMed  Google Scholar 

  55. Weber CN, Cerniglia CJ, Maity A, et al. Bortezomib sensitizes human head and neck carcinoma cells SQ20B to radiation. Cancer Biol Ther 2007, 6.

    Google Scholar 

  56. Anai S, Goodison S, Shiverick K, et al. Combination of PTEN gene therapy and radiation inhibits the growth of human prostate cancer xenografts. Hum Gene Ther 2006, 17:975–984.

    Article  CAS  PubMed  Google Scholar 

  57. Ng KT, Man K, Ho JW, et al. Marked suppression of tumor growth by FTY720 in a rat liver tumor model: the significance of down-regulation of cell survival Akt pathway. Int J Oncol 2007, 30:375–380.

    CAS  PubMed  Google Scholar 

  58. Wajant H, Gerspach J, Pfizenmaier K. Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev 2005, 16:55–76.

    Article  CAS  PubMed  Google Scholar 

  59. Sayers TJ, Murphy WJ. Combining proteasome inhibition with TNF-related apoptosis-inducing lig-and (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 2006, 55:76–84.

    Article  CAS  PubMed  Google Scholar 

  60. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999, 5:157–163.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005, 12:228–237.

    Article  CAS  PubMed  Google Scholar 

  62. Khanbolooki S, Nawrocki ST, Arumugam T, et al. Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther 2006, 5:2251–2260.

    Article  CAS  PubMed  Google Scholar 

  63. Kamat AM, Sethi G, Aggarwal BB. Curcumin potentiates the apoptotic effects of chemotherapeu-tic agents and cytokines through down-regulation of nuclear factor-{kappa}B and nuclear factor-{kappa}B-regulated gene products in IFN-{alpha}-sensitive and IFN-{alpha}-resistant human bladder cancer cells. Mol Cancer Ther 2007, 6:1022–1030.

    Article  CAS  PubMed  Google Scholar 

  64. Brooks AD, Ramirez T, Toh U, et al. The protea-some inhibitor bortezomib (Velcade) sensitizes some human tumor cells to Apo2L/TRAIL-mediated apop-tosis. Ann N Y Acad Sci 2005, 1059:160–167.

    Article  CAS  PubMed  Google Scholar 

  65. Sayers TJ, Brooks AD, Koh CY, et al. The protea-some inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 2003, 102:303–310.

    Article  CAS  PubMed  Google Scholar 

  66. Clarke P, Tyler KL. Down-regulation of cFLIP following reovirus infection sensitizes human ovarian cancer cells to TRAIL-induced apoptosis. Apoptosis 2007, 12:211–223.

    Article  CAS  PubMed  Google Scholar 

  67. Brody J, Advani R. Treatment of mantle cell lym-phoma: current approach and future directions. Crit Rev Oncol/Hematol 2006, 58:257–265.

    Article  Google Scholar 

  68. Ogura M. [Recent progress in the therapeutic strategy for follicular lymphoma and mantle cell lym-phoma]. [Rinsho ketsueki] Japanese J Clin Hematol 2006, 47:495–512.

    Google Scholar 

  69. Roue G, Perez-Galan P, Lopez-Guerra M, et al. Selective inhibition of I{kappa}B kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol 2007, 178:1923–1930.

    CAS  PubMed  Google Scholar 

  70. An J, Sun YP, Adams J, et al. Drug interactions between the proteasome inhibitor bortezomib and cytotoxic chemotherapy, tumor necrosis factor (TNF) alpha, and TNF-related apoptosis-inducing ligand in prostate cancer. Clin Cancer Res 2003, 9:4537–4545.

    CAS  PubMed  Google Scholar 

  71. Pham LV, Tamayo AT, Yoshimura LC, et al. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 2003, 171:88–95.

    CAS  PubMed  Google Scholar 

  72. Kelley RF, Totpal K, Lindstrom SH, et al. Receptor-selective mutants of apoptosis-inducing ligand 2/ tumor necrosis factor-related apoptosis-inducing lig-and reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem 2005, 280:2205–2212.

    Article  CAS  PubMed  Google Scholar 

  73. Nagy K, Szekely-Szuts K, Izeradjene K, et al. Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of Smac/DIABLO from the mitochondria. Pathol Oncol Res 2006, 12:133–142.

    Article  CAS  PubMed  Google Scholar 

  74. Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996, 86:147–157.

    Article  CAS  PubMed  Google Scholar 

  75. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000, 102:43–53.

    Article  CAS  PubMed  Google Scholar 

  76. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent cas-pase activation by eliminating IAP inhibition. Cell 2000, 102:33–42.

    Article  CAS  PubMed  Google Scholar 

  77. Petak I, Vernes R, Szucs KS, et al. A caspase-8-inde-pendent component in TRAIL/Apo-2L-induced cell death in human rhabdomyosarcoma cells. Cell Death Diff 2003, 10:729–739.

    Article  CAS  Google Scholar 

  78. Johnson TR, Stone K, Nikrad M, et al. The protea-some inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL overex-pressing cells. Oncogene 2003, 22:4953–4963.

    Article  CAS  PubMed  Google Scholar 

  79. Nikrad M, Johnson T, Puthalalath H, et al. The protea-some inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 2005, 4:443–449.

    CAS  PubMed  Google Scholar 

  80. Zhu H, Guo W, Zhang L, et al. Proteasome inhibitors-mediated TRAIL resensitization and Bik accumulation. Cancer Biol Ther 2005, 4:781–786.

    Article  CAS  PubMed  Google Scholar 

  81. Zhu H, Zhang L, Dong F, et al. Bik/NBK accumulation correlates with apoptosis-induction by bort-ezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene 2005, 24:4993–4999.

    Article  CAS  PubMed  Google Scholar 

  82. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by cas-pase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94:491–501.

    Article  CAS  PubMed  Google Scholar 

  83. Adrain C, Creagh EM, Martin SJ. Apoptosis-associ-ated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 2001, 20:6627–6636.

    Article  CAS  PubMed  Google Scholar 

  84. Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med 1971, 134:1513–1528.

    Article  CAS  PubMed  Google Scholar 

  85. Hallett WH, Murphy WJ. Positive and negative regulation of Natural Killer cells: therapeutic implications. Sem Cancer Biol 2006, 16:367–382.

    Article  CAS  Google Scholar 

  86. Murphy WJ, Keller JR, Harrison CL, et al. Interleukin-2-activated natural killer cells can support hemat-opoiesis in vitro and promote marrow engraftment in vivo. Blood 1992, 80:670–677.

    CAS  PubMed  Google Scholar 

  87. Chintharlapalli S, Papineni S, Konopleva M, et al. 2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid and related compounds inhibit growth of colon cancer cells through peroxisome proliferator-activated receptor gamma-dependent and -independent pathways. Mol Pharmacol 2005, 68:119–128.

    CAS  PubMed  Google Scholar 

  88. Couch RD, Ganem NJ, Zhou M, et al. 2-cyano-3,12-dioxooleana-1,9(11)-diene-28-oic acid disrupts microtubule polymerization: a possible mechanism contributing to apoptosis. Mol Pharmacol 2006, 69:1158–1165.

    Article  CAS  PubMed  Google Scholar 

  89. Konopleva M, Contractor R, Kurinna SM, et al. The novel triterpenoid CDDO-Me suppresses MAPK pathways and promotes p38 activation in acute mye-loid leukemia cells. Leukemia 2005, 19:1350–1354.

    Article  CAS  PubMed  Google Scholar 

  90. Konopleva M, Zhang W, Shi YX, et al. Synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest in HER2-overex-pressing breast cancer cells. Mol Cancer Ther 2006, 5:317–328.

    Article  CAS  PubMed  Google Scholar 

  91. Lapillonne H, Konopleva M, Tsao T, et al. Activation of peroxisome proliferator-activated receptor gamma by a novel synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Cancer Res 2003, 63:5926–5939.

    CAS  PubMed  Google Scholar 

  92. Pedersen IM, Kitada S, Schimmer A, et al. The trit-erpenoid CDDO induces apoptosis in refractory CLL B cells. Blood 2002, 100:2965–2972.

    Article  CAS  PubMed  Google Scholar 

  93. Samudio I, Konopleva M, Pelicano H, et al. A novel mechanism of action of methyl-2-cyano-3,12 dioxoolean-1,9 diene-28-oate: direct permeabili-zation of the inner mitochondrial membrane to inhibit electron transport and induce apoptosis. Mol Pharmacol 2006, 69:1182–1193.

    Article  CAS  PubMed  Google Scholar 

  94. Shishodia S, Sethi G, Konopleva M, et al. A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells. Clin Cancer Res 2006, 12:1828–1838.

    Article  CAS  PubMed  Google Scholar 

  95. Chauhan D, Li G, Podar K, et al. The borte-zomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood 2004, 103:3158–3166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was funded all or in part by National Institutes of Health grant R01CA95327-02 and American Cancer Society grant RSG-020169.

The authors would like to thank Lisbeth Welniak for critically reviewing the manuscript and Ruth Gault for creating the figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Motarjemi, M., Hallett, W.H.D., Li, M., Murphy, W.J. (2008). Proteasome Inhibition: Potential for Sensitization of Immune Effector Mechanisms in Cancer. In: Bonavida, B. (eds) Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-474-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-474-2_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-29-9

  • Online ISBN: 978-1-59745-474-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics