Skip to main content

Targeting the Transferrin Receptor to Overcome Resistance to Anti-Cancer Agents

  • Chapter
Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1118 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniels TR, Delgado T, Rodriguez JA, et al. The transferrin receptor part I. Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006, 121:144–158.

    Article  CAS  PubMed  Google Scholar 

  2. Daniels TR, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006, 121:159–176.

    Article  CAS  PubMed  Google Scholar 

  3. Myers CE, Chabner BA. Anthracyclins. In: Frogg MH. Goodman M, et al. (eds.) Cancer chemotherapy: principles and practice. Philadelphia: Lippincott, 1990.

    Google Scholar 

  4. Takakura Y, Hashida M. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular pro-drugs. Crit Rev Oncol Hematol 1994, 18:207–231.

    Article  Google Scholar 

  5. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993, 62:385–427.

    Article  CAS  PubMed  Google Scholar 

  6. Bellamy WT. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 1996, 36:161–183.

    Article  CAS  PubMed  Google Scholar 

  7. Schuurhuis GJ, Broxterman HJ, Cervantes A, et al. Quantitative determination of factors contributing to doxorubicin resistance in multidrug-resistant cells. J Natl Cancer Inst 1989, 81:1887–1892.

    Article  CAS  PubMed  Google Scholar 

  8. Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anti-cancer agents. Pharmacol Ther 2000, 85:217–229.

    Article  CAS  PubMed  Google Scholar 

  9. Coley HM, Amos WB, Twentyman PR, et al. Examination by laser scanning confocal fluorescence imaging microscopy of the subcellular localisation of anthracyclines in parent and multidrug resistant cell lines. Br J Cancer 1993, 67:1316–1323.

    Article  CAS  PubMed  Google Scholar 

  10. Weaver JL, Pine PS, Aszalos A, et al. Laser scanning and confocal microscopy of daunorubicin, doxorubicin, and rhodamine 123 in multidrug-resistant cells Exp Cell Res 1991, 196:323–329.

    Article  CAS  PubMed  Google Scholar 

  11. Fritzer M, Barabas K, Szuts V, et al. Cytotoxicity of a transferrin-Adriamycin conjugate to anthracycline-resistant cells. Int J Cancer 1992, 52:619–623.

    Article  CAS  PubMed  Google Scholar 

  12. Hatano T, Ohkawa K, Matsuda M. Cytotoxic effect of the protein-doxorubicin conjugates on the multidrug-resistant human myelogenous leukemia cell line, K562, in vitro. Tumour Biol 1993, 14:288–294.

    Article  CAS  PubMed  Google Scholar 

  13. Singh M, Atwal H, Micetich R. Transferrin directed delivery of Adriamycin to human cells. Anti-cancer Res 1998, 18:1423–1427.

    CAS  Google Scholar 

  14. Fritzer M, Szekeres T, Szuts V, Het al. Cytotoxic effects of a doxorubicin-transferrin conjugate in multidrug-resistant KB cells. Biochem Pharmacol 1996, 51:489–493.

    Article  CAS  PubMed  Google Scholar 

  15. Chitambar CR. Gallium compounds as antineoplastic agents. Curr Opin Oncol 2004, 16:547–552.

    Article  CAS  PubMed  Google Scholar 

  16. Chitambar CR, Wereley JP, Matsuyama S. Gallium-induced cell death in lymphoma: role of transferrin receptor cycling, involvement of Bax and the mitochondria, and effects of proteasome inhibition. Mol Cancer Ther 2006, 5:2834–2843.

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, Jiang X, Yang DC, et al. Doxorubicin-gallium-transferrin conjugate overcomes multidrug resistance: evidence for drug accumulation in the nucleus of drug resistant MCF-7/ADR cells. Anti-cancer Res 2000, 20:799–808.

    CAS  Google Scholar 

  18. Lopez-Barcons LA, Polo D, Llorens A, et al. Targeted Adriamycin delivery to MXT-B2 metastatic mammary carcinoma cells by transferrin liposomes: effect of Adriamycin ADR-to-lipid ratio. Oncol Rep 2005, 14:1337–1343.

    PubMed  Google Scholar 

  19. Suzuki S, Inoue K, Hongoh A, et al. Modulation of doxorubicin resistance in a doxorubicin-resist-ant human leukaemia cell by an immunoliposome targeting transferring receptor. Br J Cancer 1997, 76:83–89.

    Article  CAS  PubMed  Google Scholar 

  20. Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated trans-ferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 2002, 99:130–137.

    Article  CAS  PubMed  Google Scholar 

  21. Jhaveri MS, Rait AS, Chung KN, et al. Antisense oligonucleotides targeted to the human alpha folate receptor inhibit breast cancer cell growth and sensitize the cells to doxorubicin treatment. Mol Cancer Ther 2004, 3:1505–1512.

    CAS  PubMed  Google Scholar 

  22. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 1994, 73:2432–2443.

    Article  CAS  PubMed  Google Scholar 

  23. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007, 26:1324–1337.

    Article  CAS  PubMed  Google Scholar 

  24. Kostanova-Poliakova D, Sabova L. Anti-apoptotic proteins-targets for chemosensitization of tumor cells and cancer treatment. Neoplasma 2005, 52:441–449.

    CAS  PubMed  Google Scholar 

  25. Chiu SJ, Liu S, Perrotti D, et al. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J Control Rel 2006, 112:199–207.

    Article  CAS  Google Scholar 

  26. Basma H, El-Refaey H, Sgagias MK, et al. BCL-2 antisense and cisplatin combination treatment of MCF-7 breast cancer cells with or without functional p53. J Biomed Sci 2005, 12:999–1011.

    Article  CAS  PubMed  Google Scholar 

  27. Smith ND, Rubenstein JN, Eggener SE, et al. The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol 2003, 169:1219–1228.

    Article  CAS  PubMed  Google Scholar 

  28. Xu L, Tang WH, Huang CC, et al. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 2001, 7:723–734.

    CAS  PubMed  Google Scholar 

  29. Xu L, Pirollo KF, Tang WH, et al. Transferrin-lipo-some-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 1999, 10:2941–2952.

    Article  CAS  PubMed  Google Scholar 

  30. Moura IC, Lepelletier Y, Arnulf B, et al. A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood 2004, 103:1838–1845.

    Article  CAS  PubMed  Google Scholar 

  31. Moura IC, Centelles MN, Arcos-Fajardo M, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 2001, 194:417–425.

    Article  CAS  PubMed  Google Scholar 

  32. Frankel AE. Increased sophistication of immunotoxins. Clin Cancer Res 2002, 8:942–924.

    CAS  PubMed  Google Scholar 

  33. Griffin TW, Stocl M, Collins J, et al. Combined antitumor therapy with the chemotherapeutic drug doxorubicin and an anti-transferrin receptor immu-notoxin: in vitro and in vivo studies. J Immunother 1992, 11:12–18.

    Article  CAS  PubMed  Google Scholar 

  34. Stirpe F, Barbieri L, Battelli MG, et al. Ribosome-inac-tivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992, 10:405–412.

    Article  CAS  Google Scholar 

  35. Pearson JW, Hedrick E, Fogler WE, et al. Enhanced therapeutic efficacy against an ovarian tumor xenograft of immunotoxins used in conjunction with recombinant alpha-interferon. Cancer Res 1990, 50:6379–6388.

    CAS  PubMed  Google Scholar 

  36. Ng PP, Dela Cruz JS, Sorour DN, et al. An anti-trans-ferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells. Proc Natl Acad Sci U S A 2002, 99:10706–10711.

    Article  CAS  PubMed  Google Scholar 

  37. Ng PP, Helguera G, Daniels TR, et al. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor. Blood 2006, 108:2745–2754.

    Article  CAS  PubMed  Google Scholar 

  38. Kett WC, Osmond RI, Moe L, et al. Avidin is a heparin-binding protein. Affinity, specificity and structural analysis. Biochim Biophys Acta 2003, 1620:225–234.

    CAS  PubMed  Google Scholar 

  39. Phillips ML, Tao MH, Morrison SL, et al. Human/ mouse chimeric monoclonal antibodies with human IgG1, IgG2, IgG3 and IgG4 constant domains: electron microscopic and hydrodynamic characterization. Mol Immunol 1994, 31:1201–1210.

    Article  CAS  PubMed  Google Scholar 

  40. Asai T, Trinh R, Ng P P, et al. A human biotin acceptor domain allows site-specific conjugation of an enzyme to an antibody-avidin fusion protein for targeted drug delivery. Biomol Eng 2005, 21:145–155.

    CAS  PubMed  Google Scholar 

  41. Greene BT, Thorburn J, Willingham MC, Aet al. Activation of caspase pathways during iron chela-tor-mediated apoptosis. J Biol Chem 2002, 277: 25568–25575.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Daniels, T.R., Neacato, I.I., Helguera, G., Penichet, M.L. (2008). Targeting the Transferrin Receptor to Overcome Resistance to Anti-Cancer Agents. In: Bonavida, B. (eds) Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-474-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-474-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-29-9

  • Online ISBN: 978-1-59745-474-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics