Skip to main content

Targeting Transcription Factors with Decoy Oligonucleotides: Modulation of the Expression of Genes Involved in Chemotherapy Resistance of Tumor Cells

  • Chapter
Book cover Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah AN, Gallick GE. Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anticancer Drugs 2007, 18:371–375.

    CAS  PubMed  Google Scholar 

  2. Aggarwal BB, Sethi G, Ahn KS, et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci U S A 2006, 1091:151–169.

    CAS  Google Scholar 

  3. Wilson TR, Longley DB, Johnston PG. Chemoresistance in solid tumours. Ann Oncol 2006, 17:315–324.

    Google Scholar 

  4. Teodoridis JM, Strathdee G, Plumb JA, et al. CpG-island methylation and epigenetic control of resistance to chemotherapy. Biochem Soc Trans 2004, 32:916–917.

    CAS  PubMed  Google Scholar 

  5. La Porta CA. Drug resistance in melanoma: new perspectives. Curr Med Chem 2007, 14:387–391.

    PubMed  Google Scholar 

  6. Efstathiou E, Logothetis CJ. Review of late complications of treatment and late relapse in testicular cancer. J Natl Compr Canc Netw 2006, 4:1059–1070.

    CAS  PubMed  Google Scholar 

  7. Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther 2006, 6:1075–1085.

    CAS  PubMed  Google Scholar 

  8. Gatti L, Zunino F. Overview of tumor cell chemoresistance mechanisms. Methods Mol Med 2005, 111:127–148.

    CAS  PubMed  Google Scholar 

  9. Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 2005, 14:35–48.

    PubMed  Google Scholar 

  10. Modok S, Mellor HR, Callaghan R. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 2006, 6:350–354.

    CAS  PubMed  Google Scholar 

  11. Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1—mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 2006, 12:273–286.

    CAS  PubMed  Google Scholar 

  12. Garg AK, Buchholz TA, Aggarwal BB. Chemosen sitization and radiosensitization of tumors by plant polyphenols. Antiox Redox Signal 2005, 7:1630–1647.

    CAS  Google Scholar 

  13. Cheng JQ, Lindsley CW, Cheng GZ, et al. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 2005, 24:7482–7492.

    CAS  PubMed  Google Scholar 

  14. Boehrer S, Nowak D, Hoelzer D, et al. Novel agents aiming at specific molecular targets increase chemosensitivity and overcome chemoresistance in hematopoietic malignancies. Curr Pharm Des 2006, 12:111–128.

    CAS  PubMed  Google Scholar 

  15. Campioni M, Santini D, Tonini G, et al. Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol 2005, 14:811–818.

    CAS  PubMed  Google Scholar 

  16. Fraser M, Leung B, Jahani-Asl A, et al. Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod Biol Endocrinol 2003, 1:66.

    PubMed  Google Scholar 

  17. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene 2003, 22:3138–3151.

    CAS  PubMed  Google Scholar 

  18. Cheng JQ, Jiang X, Fraser M, et al. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosph-oinositide-3 kinase/Akt pathway. Drug Resist Update 2002, 5:131–146.

    CAS  Google Scholar 

  19. Schmitt CA, Lowe SW. Apoptosis and chemoresistance in transgenic cancer models. J Mol Med 2002, 80:137–146.

    CAS  PubMed  Google Scholar 

  20. Deng X, Kornblau SM, Ruvolo PP, et al. Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. J Natl Cancer Inst Monogr 2001, 28:30–37.

    PubMed  Google Scholar 

  21. Krajewski S, Krajewska M, Turner BC, et al. Prognostic significance of apoptosis regulators in breast cancer. Endocr Relat Cancer 1999, 6:29–40.

    CAS  PubMed  Google Scholar 

  22. Devarajan E, Sahin AA, Chen JS, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 2002, 21:8843–8851.

    CAS  PubMed  Google Scholar 

  23. Bacher S, Schmitz ML. The NF-kappaB pathway as a potential target for autoimmune disease therapy. Curr Pharm Des 2004, 10:2827–2837.

    CAS  PubMed  Google Scholar 

  24. Schmitz ML, Bacher S, Dienz O. NF-kappaB activation pathways induced by T cell costimulation. FASEB J 2003, 17:2187–2193.

    CAS  PubMed  Google Scholar 

  25. Chen F, Demers LM, Shi X. Upstream signal transduction of NF-kappaB activation. Curr Drug Targets Inflamm Allergy 2002, 1:137–149.

    CAS  PubMed  Google Scholar 

  26. Liou HC. Regulation of the immune system by NF-kappaB and IkappaB. J Biochem Mol Biol 2002, 35:537–546.

    CAS  PubMed  Google Scholar 

  27. Tian B, Brasier AR. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog Horm Res 2003, 58:95–130.

    CAS  PubMed  Google Scholar 

  28. Storz P, Toker A. NF-kappaB signaling—an alternate pathway for oxidative stress responses. Cell Cycle 2003, 2:9–10.

    CAS  PubMed  Google Scholar 

  29. Moscat J, Diaz-Meco MT, Rennert P. NF-kappaB activation by protein kinase C isoforms and B-cell function. EMBO Rep 2003, 4:31–36.

    CAS  PubMed  Google Scholar 

  30. Hassa PO, Covic M, Hasan S, et al. The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 2001, 276:45588–45597.

    CAS  PubMed  Google Scholar 

  31. Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 2002, 59:1534–1553.

    CAS  PubMed  Google Scholar 

  32. Wang T, Zhang X, Li JJ. The role of NF-kappaB in the regulation of cell stress responses. Int Immuno pharmacol 2002, 2:1509–1520.

    CAS  Google Scholar 

  33. Aggarwal BB, Takada Y, Shishodia S, et al. Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 2004, 42:341–353.

    CAS  PubMed  Google Scholar 

  34. Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF super-family. Biochem Pharmacol 2003, 66:1403–1408.

    CAS  PubMed  Google Scholar 

  35. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2:725–734.

    CAS  PubMed  Google Scholar 

  36. Panwalkar A, Verstovsek S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer 2004, 100:1578–1589.

    CAS  PubMed  Google Scholar 

  37. Arlt A, Schafer H. NFkappaB-dependent chemoresistance in solid tumors. Int J Clin Pharmacol Ther 2002, 40:336–347.

    CAS  PubMed  Google Scholar 

  38. Camp ER, Li J, Minnich DJ, et al. Inducible nuclear factor-kappaB activation contributes to chemotherapy resistance in gastric cancer. J Am Coll Surg 2004, 199:249–258.

    PubMed  Google Scholar 

  39. Muerkoster S, Arlt A, Sipos B, et al. Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 2005, 65:1316–1324.

    PubMed  Google Scholar 

  40. Andela VB, Siddiqui F, Groman A, et al. An immunohistochemical analysis to evaluate an inverse correlation between Runx2/Cbfa1 and NF kappa B in human osteosarcoma. J Clin Pathol 2005, 58:328–330.

    CAS  PubMed  Google Scholar 

  41. Salvatore C, Camarda G, Maggi CA, et al. NF-kapp a B activation contributes to anthracycline resistance pathway in human ovarian carcinoma cell line A2780. Int J Oncol 2005, 27:799–806.

    CAS  PubMed  Google Scholar 

  42. Montagut C, Tusquets I, Ferrer B. Activation of nuclear factor-kappa B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 2003, 13:607–616.

    Google Scholar 

  43. Grandage VL, Gale RE, Linch DC, et al. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005, 19:586–594.

    CAS  PubMed  Google Scholar 

  44. Bharti AC, Shishodia S, Reuben JM. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004, 103:3175–3184.

    CAS  PubMed  Google Scholar 

  45. Kim DS, Park SS, Nam BH, et al. Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 2006, 66:10936–10943.

    CAS  PubMed  Google Scholar 

  46. Bhardwaj A, Sethi G, Vadhan-Raj S, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007, 109:2293–2302.

    CAS  PubMed  Google Scholar 

  47. Singh RP, Mallikarjuna GU, Sharma G. Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance. Clin Cancer Res 2004, 10:8641–8647.

    CAS  PubMed  Google Scholar 

  48. Tamatani T, Azuma M, Ashida Y. Enhanced radio-sensitization and chemosensitization in NF-kappaB-suppressed human oral cancer cells via the inhibition of gamma-irradiation- and 5-FU-induced production of IL-6 and IL-8. Int J Cancer 2004, 108:912–921.

    CAS  PubMed  Google Scholar 

  49. Holloway JN, Murthy S, El-Ashry D. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells: the role of nuclear factor-kappaB. Mol Endocrinol 2004, 18:1396–1410.

    CAS  PubMed  Google Scholar 

  50. Simstein R, Burow M, Parker A, et al. Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood) 2003, 228:995–1003.

    CAS  Google Scholar 

  51. Real PJ, Sierra A, De Juan A, et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 2002, 21:7611–7618.

    CAS  PubMed  Google Scholar 

  52. Zhou Y, Yau C, Gray JW, et al. Enhanced NF kappa B and AP—1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 2007, 7:59.

    PubMed  Google Scholar 

  53. De Bosscher K, Vanden Berghe W, Haegeman G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 2006, 25:6868–6886.

    PubMed  Google Scholar 

  54. Keith JC Jr, Albert LM, Leathurby Y, et al. The utility of pathway selective estrogen receptor ligands that inhibit nuclear factor-kappa B transcriptional activity in models of rheumatoid arthritis. Arthritis Res Ther 2005, 7:427–438.

    Google Scholar 

  55. Ghisletti S, Meda C, Maggi A, et al. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 2005, 25:2957–2968.

    CAS  PubMed  Google Scholar 

  56. Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 2005, 16:46–52.

    CAS  PubMed  Google Scholar 

  57. Chadwick CC, Chippari S, Matelan E, et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc Natl Acad Sci U S A 2005, 102:2543– 2548.

    CAS  PubMed  Google Scholar 

  58. Pratt MA, Bishop TE, White D, et al. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol 2003, 23:6887–900.

    CAS  PubMed  Google Scholar 

  59. Stein B, Yang MX. Repression of the interleukin—6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 1995, 15:4971–4979.

    CAS  PubMed  Google Scholar 

  60. Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 1994, 269:12940– 12946.

    CAS  PubMed  Google Scholar 

  61. Ray P, Ghosh SK, Zhang DH, et al. Repression of interleukin-6 gene expression by 17 beta-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kappa B by the estrogen receptor. FEBS Lett 1997, 409:79–85

    CAS  PubMed  Google Scholar 

  62. Deshpande R, Khalili H, Pergolizzi RG, et al. Estradiol down-regulates LPS-induced cytokine production and NFκB activation in murine macrophages. Am J Reprod Immunol 1997, 38:46–54.

    CAS  PubMed  Google Scholar 

  63. Sun WH, Keller ET, Stebler BS, et al. Estrogen inhibits phorbol ester—induced I kappa B alpha transcription and protein degradation. Biochem Biophys Res Commun 1998, 244:691–695.

    CAS  PubMed  Google Scholar 

  64. Harnish DC, Scicchitano MS, Adelman SJ, et al. The role of CBP in estrogen receptor cross-talk with nuclear factor-kappaB in HepG2 cells. Endocrinology 2000, 141:3403–3411.

    CAS  PubMed  Google Scholar 

  65. Speir E, Yu ZX, Takeda K, et al. Competition for p300 regulates transcription by estrogen receptors and nuclear factor-kappa B in human coronary smooth muscle cells. Circ Res 2000, 87:1006–1011.

    CAS  PubMed  Google Scholar 

  66. Tyree CM, Zou A, Allegretto EA. 17beta-Estradiol inhibits cytokine induction of the human E-selectin promoter. J Steroid Biochem Mol Biol 2002, 8:291–297.

    Google Scholar 

  67. Valentine JE, Kalkhoven E, White R, et al. Mutations in the estrogen receptor ligand binding domain discriminate between hormone-dependent trans-activation and transrepression. J Biol Chem 2000, 275:25322–25329.

    CAS  PubMed  Google Scholar 

  68. Prochownik EV. c-Myc as a therapeutic target in cancer. Expert Rev Anticancer Ther 2004, 4:289–302.

    CAS  PubMed  Google Scholar 

  69. Biroccio A, Leonetti C, Zupi G. The future of antisense therapy: combination with anticancer treatments. Oncogene 2003, 22:6579–6588.

    CAS  PubMed  Google Scholar 

  70. Cho-Chung YS. Antisense DNAs as targeted genetic medicine to treat cancer. Arch Pharm Res 2003, 26:183–191.

    CAS  PubMed  Google Scholar 

  71. Milhavet O, Gary DS, Mattson MP. RNA interference in biology and medicine. Pharmacol Rev 2003, 55:629–648.

    PubMed  Google Scholar 

  72. Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets 2007, 8:469–482.

    CAS  PubMed  Google Scholar 

  73. Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell 2007, 128:763–776.

    CAS  PubMed  Google Scholar 

  74. Rogers FA, Lloyd JA, Glazer PM. Triplex-forming oligonucleotides as potential tools for modulation of gene expression. Curr Med Chem Anticancer Agents 2005, 5:319–326.

    CAS  PubMed  Google Scholar 

  75. Giovannangeli C, Helene C. Progress in developments of triplex-based strategies. Antisense Nucleic Acid Drug Dev 1997, 7:413–421.

    CAS  PubMed  Google Scholar 

  76. Besch R, Giovannangeli C, Degitz K. Triplex-forming oligonucleotides—sequence-specific DNA ligands as tools for gene inhibition and for modulation of DNA-associated functions. Curr Drug Targets 2004, 5:691–703.

    CAS  PubMed  Google Scholar 

  77. Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element “decoy” against nuclear factor-kB binding site prevents myocardial infarction. Nat Med 1997, 3:894–899.

    CAS  PubMed  Google Scholar 

  78. Mann MJ, Dzau VJ. Therapeutic application of transcriptional factor decoy oligonucleotides. J Clin Invest 2000, 106:1071–1075.

    CAS  PubMed  Google Scholar 

  79. Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat 2002, 1:405–416.

    CAS  PubMed  Google Scholar 

  80. Bartholomeusz C, Itamochi H, Yuan LX, et al. Bcl-2 antisense oligonucleotide overcomes resistance to E1A gene therapy in a low HER2-—expressing ovarian cancer xenograft model. Cancer Res 2005, 65:8406–8413.

    CAS  PubMed  Google Scholar 

  81. Hopkins-Donaldson S, Cathomas R, Simoes-Wust A P, et al. Induction of apoptosis and chemosensitization of mesothelioma cells by Bcl-2 and Bcl-xL antisense treatment. Int J Cancer 2003, 106:160–166.

    CAS  PubMed  Google Scholar 

  82. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411:494–498.

    CAS  PubMed  Google Scholar 

  83. Leong CT, Ong CK, et al. Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro. Oncogene 2007, 26:870–880.

    CAS  PubMed  Google Scholar 

  84. Guo J, Verma UN, Gaynor RB, et al. Enhanced chemosensitivity to irinotecan by RNA interference-mediated down-regulation of the nuclear factor-kap-paB p65 subunit. Clin Cancer Res 2004, 10:3333– 3341.

    CAS  PubMed  Google Scholar 

  85. Veiby OP, Read MA. Chemoresistance: impact of nuclear factor (NF)-kappaB inhibition by small interfering RNA. Clin Cancer Res 2004, 10:3333–3341.

    Google Scholar 

  86. Piva R, Penolazzi L, Zennaro M, et al. Induction of apoptosis of osteoclasts by targeting transcription factors with decoy molecules. Ann NY Acad Sci 2006, 1091:509–516.

    CAS  PubMed  Google Scholar 

  87. Piva R, Penolazzi L, Lambertini E, et al. Induction of apoptosis of human primary osteoclasts treated with a transcription factor decoy mimicking a promoter region of estrogen receptor alpha. Apoptosis 2005, 10:1079–1094.

    CAS  PubMed  Google Scholar 

  88. Borgatti M, Finotti A, Romanelli A, et al. Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Curr Drug Targets 2004, 5:735–744.

    CAS  PubMed  Google Scholar 

  89. Tomita N, Azuma H, Kaneda Y, et al. Application of decoy oligodeoxynucleotides-based approach to renal diseases. Curr Drug Targets 2004, 5:717–733.

    CAS  PubMed  Google Scholar 

  90. Crinelli R, Bianchi M, Gentilini L, et al. Locked nucleic acids (LNA): versatile tools for designing oligonucleotide decoys with high stability and affinity. Curr Drug Targets 2004, 5:745–752.

    CAS  PubMed  Google Scholar 

  91. Shibuya T, Takei Y, Hirose M, et al. A double-strand decoy DNA oligomer for NF-kappaB inhibits TNFalpha-induced ICAM-1 expression in sinusoidal endothelial cells. Biochem Biophys Res Commun 2002, 298:10–16.

    CAS  PubMed  Google Scholar 

  92. Tomita N, Morishita R, Yamamoto K, et al. Targeted gene therapy for rat glomerulonephritis using HVJ-immunoliposomes. J Gene Med 2002, 4:527–535.

    CAS  PubMed  Google Scholar 

  93. Gill JS, Zhu X, Moore MJ, et al. Effects of NFkappaB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line. Biomaterials 2002, 23:2773–2781.

    CAS  PubMed  Google Scholar 

  94. Penolazzi L, Lambertini E, Borgatti M, et al. Decoy oligodeoxynucleotides targeting NF-kappaB transcription factors: induction of apoptosis in human primary osteoclasts. Biochem Pharmacol 2003, 66:1189–1198.

    CAS  PubMed  Google Scholar 

  95. Yamasaki K, Asai T, Shimizu M, et al. Inhibition of NFkappaB activation using cis-element ‘decoy’ of NFkappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther 2003, 10:356–364.

    CAS  PubMed  Google Scholar 

  96. Kupatt C, Wichels R, Deiss M, et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Ther 2002, 9:518–526.

    CAS  PubMed  Google Scholar 

  97. Nakamura H, Aoki M, Tamai K, et al. Prevention and regression of atopic dermatitis by ointment containing NF-kB decoy oligodeoxynucleotides in NC/Nga atopic mouse model. Gene Ther 2002, 9:1221–1229.

    CAS  PubMed  Google Scholar 

  98. Yoshimura S, Morishita R, Hayashi K, et al. Inhibition of intimal hyperplasia after balloon injury in rat carotid artery model using cis-element ‘decoy’ of nuclear factor-kappaB binding site as a novel molecular strategy. Gene Ther 2001, 8(31):1635–1642.

    CAS  PubMed  Google Scholar 

  99. Ueno T, Sawa Y, Kitagawa-Sakakida S, et al. Nuclear factor-kappa B decoy attenuates neuronal damage after global brain ischemia: a future strategy for brain protection during circulatory arrest. J Thorac Cardiovasc Surg 2001, 122:720–727.

    CAS  PubMed  Google Scholar 

  100. Romano MF, Lamberti A, Bisogni R, et al. Enhancement of cytosine arabinoside—induced apoptosis in human myeloblastic leukemia cells by NF-kappa B/Rel-specific decoy oligodeoxynucleotides. Gene Ther 2000, 7:1234–1237.

    CAS  PubMed  Google Scholar 

  101. Uetsuka H, Haisa M, Kimura M, et al. Inhibition of inducible NF-kappaB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res 2003, 289:27–35.

    CAS  PubMed  Google Scholar 

  102. Penolazzi L, Zennaro M, Lambertini E, et al. Induction of estrogen receptor {alpha} expression with decoy oligonucleotide targeted to NFATc1 binding sites in osteoblasts. Mol Pharmacol 2007, 71:1457–1462.

    CAS  PubMed  Google Scholar 

  103. Lambertini E, Lampronti I, Penolazzi L, et al. Expression of estrogen receptor alpha gene in breast cancer cells treated with transcription factor decoy is modulated by Bangladeshi natural plant extracts. Oncol Res 2005, 15:69–79.

    CAS  PubMed  Google Scholar 

  104. Lambertini E, Penolazzi L, Magaldi S, et al. Transcription factor decoy against promoter C of estrogen receptor alpha gene induces a functional ER alpha protein in breast cancer cells. Breast Cancer Res Treat 2005, 92:125–132.

    CAS  PubMed  Google Scholar 

  105. Lambertini E, Penolazzi L, Aguiari G, et al. Osteoblastic differentiation induced by transcription factor decoy against estrogen receptor alpha gene. Biochem Biophys Res Commun 2002, 292:761–770.

    CAS  PubMed  Google Scholar 

  106. Lambertini E, Penolazzi L, Sollazzo V, et al. Modulation of gene expression in human osteoblasts by targeting a distal promoter region of human estrogen receptor-alpha gene. J Endocrinol 2002, 172:683–693.

    CAS  PubMed  Google Scholar 

  107. Piva R, del Senno L, Lambertini E, et al. Modulation of estrogen receptor gene transcription in breast cancer cells by liposome delivered decoy molecules. J Steroid Biochem Mol Biol 2000, 75:121–128.

    CAS  PubMed  Google Scholar 

  108. Penolazzi L, Lambertini E, Aguiari G, et al. Cis element ‘decoy’ against the upstream promoter of the human estrogen receptor gene. Biochim Biophys Acta 200, 1492:560–567.

    Google Scholar 

  109. Gambari R. Biological activity and delivery of peptide nucleic acids (PNA)-DNA chimeras for transcription factor decoy (TFD) pharmacotherapy. Curr Med Chem 2004, 11:1253–1263.

    CAS  PubMed  Google Scholar 

  110. Gambari R. New trends in the development of transcription factor decoy (TFD) pharmacotherapy. Curr Drug Targets 2004, 5:419–430.

    CAS  PubMed  Google Scholar 

  111. Nielsen PE, Egholm M, Berg RH, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991, 254:1497–1500.

    CAS  PubMed  Google Scholar 

  112. Nielsen PE, Egholm M. An introduction to peptide nucleic acid. Curr Issues Mol Biol 1999, 1:89–104.

    CAS  PubMed  Google Scholar 

  113. Egholm M, Buchardt O, Christensen L, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993, 365:566–568.

    CAS  PubMed  Google Scholar 

  114. Borgatti M, Boyd DD, Lampronti I, et al. Decoy molecules based on PNA—DNA chimeras and targeting Sp1 transcription factors inhibit the activity of urokinase-type plasminogen activator receptor (uPAR) promoter. Oncol Res 2005, 15:373–383.

    CAS  PubMed  Google Scholar 

  115. Mischiati C, Borgatti M, Bianchi N, et al. Interaction of the human NF-kappaB p52 transcription factor with DNA-PNA hybrids mimicking the NF-kappaB binding sites of the human immunodeficiency virus type 1 promoter. J Biol Chem 1999, 274:33114–33122.

    CAS  PubMed  Google Scholar 

  116. Romanelli A, Pedone C, Saviano M, et al. Molecular interactions with nuclear factor kappaB (NF-kap-paB) transcription factors of a PNA-DNA chimera mimicking NF-kappaB binding sites. Eur J Biochem 2001, 268:6066–6075.

    CAS  PubMed  Google Scholar 

  117. Borgatti M, Lampronti I, Romanelli A, et al. Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 2003, 278:7500– 7509.

    CAS  PubMed  Google Scholar 

  118. Borgatti M, Breda L, Cortesi R, et al. Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-kappaB transcription factors. Biochem Pharmacol 2002, 64:609–616.

    CAS  PubMed  Google Scholar 

  119. Borgatti M, Romanelli A, Saviano M, et al. Resistance of decoy PNA-DNA chimeras to enzymatic degradation in cellular extracts and serum. Oncol Res 2003, 13:279–287.

    PubMed  Google Scholar 

  120. Righetti PG, Castagna A, Antonioli P, et al. Proteomic approaches for studying chemoresistance in cancer. Expert Rev Proteomics 2005, 2:215–228.

    CAS  PubMed  Google Scholar 

  121. Hutter G, Sinha P. Proteomics for studying cancer cells and the development of chemoresistance. Proteomics 2001, 1:1233–1248.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by MIUR COFIN-2005, by AIRC, by Associazione Italiana per la Lotta alla Talassemia, by the Italian Cystic Fibrosis Research Foundation and by Fondazione CARIPARO.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gambari, R. (2008). Targeting Transcription Factors with Decoy Oligonucleotides: Modulation of the Expression of Genes Involved in Chemotherapy Resistance of Tumor Cells. In: Bonavida, B. (eds) Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-474-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-474-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-29-9

  • Online ISBN: 978-1-59745-474-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics