Skip to main content

Harnessing the Power of Immunity to Battle Cancer: Much Ado about Nothing or All's Well That Ends Well?

  • Chapter
Principles of Molecular Oncology
  • 1196 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. 1. Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol. 2001;2:293–299.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–148.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Thomas L. On immunosurveillance in human cancer. Yale J Biol Med. 1982;55:329–333.

    PubMed  CAS  Google Scholar 

  5. 5. Burnet FM. Immunological surveillance in neoplasia. Transpl Rev 1971;7:3–25.

    CAS  Google Scholar 

  6. 6. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–360.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Cardoso AA. Antitumor immunity as therapy for human cancer. In: Bronchud MH, Foote MA, Peters WP, Robinson MO, eds. Principles of Molecular Oncology. Totowa, NJ: Humana; 2000:359–394.

    Chapter  Google Scholar 

  8. 8. Cardoso AA, Haining WN, Leite M, Maia S. Immunotherapy for human cancer: Evidence and obstacles. In: Bronchud MH, Foote MA, Giaccone G, Olopade O, Workman P, eds. Principles of Molecular Medicine II. Totowa, NJ: Humana; 2003:505–528.

    Google Scholar 

  9. 9. Blattman JN, Greenberg PD. Cancer immunotherapy: A treatment for the masses. Science. 2004;305:200–205.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD. Adoptive immunotherapy: Engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell. 2003;3:431–437.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Leen AM, Rooney CM, Foster AE. Improving T Cell therapy for cancer. Annu Rev Immunol. 2007;25:243–265.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Riddell SR, Reusser P, Greenberg PD. Cytotoxic T cells specific for cytomegalovirus: A potential therapy for immunocompromised patients. Rev Infect Dis. 1991;13:S966–S973.

    PubMed  Google Scholar 

  13. 13. Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: Pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78:1373–1380.

    PubMed  CAS  Google Scholar 

  14. 14. Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2:551–555.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362:1375–1377.

    Article  PubMed  Google Scholar 

  16. 16. Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995; 345:9–13.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12:1160–1166.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Straathof KC, Bollard CM, Popat U, et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood. 2005;105:1898–1904.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Comoli P, Pedrazzoli P, Maccario R, et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol. 2005;23:8942–8949.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Comoli P, De Palma R, Siena S, et al. Adoptive transfer of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T cells with in vitro antitumor activity boosts LMP2-specific immune response in a patient with EBV-related nasopharyngeal carcinoma. Ann Oncol. 2004;15:113–117.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Gustafsson A, Levitsky V, Zou JZ, et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: Prophylactic infusion of EBV-specific cytotoxic T cells. Blood. 2000;95:807–814.

    PubMed  CAS  Google Scholar 

  22. 22. Roskrow MA, Rooney CM, Heslop HE, et al. Administration of neomycin resistance gene marked EBV specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive Hodgkin disease. Hum Gene Ther. 1998;9:1237–1250.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Roskrow MA, Suzuki N, Gan Y, et al. Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood. 1998; 91:2925–2934.

    PubMed  CAS  Google Scholar 

  24. 24. Bollard CM, Aguilar L, Straathof KC, et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin's disease. J Exp Med. 2004;200:1623–1633.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Cho HI, Hong YS, Lee MA, et al. Adoptive transfer of Epstein-Barr virus-specific cytotoxic T-lymphocytes for the treatment of angiocentric lymphomas. Int J Hematol. 2006;83:66–73.

    Article  PubMed  Google Scholar 

  26. 26. Porter DL, Antin JH. Donor leukocyte infusions in myeloid malignancies: New strategies. Best Pract Res Clin Haematol. 2006;19:737–755.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Porter DL, Antin JH. The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med. 1999;50:369–386.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Porter D, Levine JE. Graft-versus-host disease and graft-versus-leukemia after donor leukocyte infusion. Semin Hematol. 2006;43:53–61.

    Article  PubMed  Google Scholar 

  29. 29. Bellucci R, Ritz J. Allogeneic stem cell transplantation for multiple myeloma. Rev Clin Exp Hematol. 2002;6:205–224.

    Article  PubMed  Google Scholar 

  30. 30. Orsini E, Bellucci R, Alyea EP, et al. Expansion of tumor-specific CD8+ T cell clones in patients with relapsed myeloma after donor lymphocyte infusion. Cancer Res 2003;63:2561–2568.

    PubMed  CAS  Google Scholar 

  31. 31. Zeiser R, Finke J. Allogeneic haematopoietic cell transplantation for multiple myeloma: Reducing transplant-related mortality while harnessing the graft-versus-myeloma effect. Eur J Cancer. 2006;42:1601–1611.

    Article  PubMed  Google Scholar 

  32. 32. Zeiser R, Bertz H, Spyridonidis A, Houet L, Finke J. Donor lymphocyte infusions for multiple myeloma: Clinical results and novel perspectives. Bone Marrow Transplant. 2004;34:923–928.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Dudley ME, Wunderlich J, Nishimura MI, et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother. 2001;24:363–373.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Robbins PF, Dudley ME, Wunderlich J, et al. Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173:7125–7130.

    PubMed  CAS  Google Scholar 

  36. 36. Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF. T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J Immunol. 2004;172:6057–6064.

    PubMed  CAS  Google Scholar 

  37. 37. Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108:1571–1579.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Scheffold A, Huhn J, Hofer T. Regulation of CD4+CD25+ regulatory T cell activity: It takes (IL-)two to tango. Eur J Immunol. 2005;35:1336–1341.

    Article  PubMed  CAS  Google Scholar 

  39. 39. de la Rosa M, Rutz S, Dorninger H, Scheffold A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol. 2004;34:2480–2488.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Gattinoni L, Powell DJ, Jr., Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: Building on success. Nat Rev Immunol. 2006;6:383–393.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Hinrichs CS, Gattinoni L, Restifo NP. Programming CD8+ T cells for effective immunotherapy. Curr Opin Immunol. 2006;18:363–370.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Tey SK, Bollard CM, Heslop HE. Adoptive T-cell transfer in cancer immunotherapy. Immunol Cell Biol. 2006;84:281–289.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Liu S, Riley J, Rosenberg S, Parkhurst M. Comparison of common gamma-chain cytokines, interleukin-2, interleukin-7, and interleukin-15 for the in vitro generation of human tumor-reactive T lymphocytes for adoptive cell transfer therapy. J Immunother. 2006;29:284–293.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Teague RM, Sather BD, Sacks JA, et al. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med. 2006;12:335–341.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Barata JT, Keenan TD, Silva A, Nadler LM, Boussiotis VA, Cardoso AA. Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica. 2004;89:1459–1467.

    PubMed  CAS  Google Scholar 

  46. 46. Rich BE, Campos-Torres J, Tepper RI, Moreadith RW, Leder P. Cutaneous lymphoproliferation and lymphomas in interleukin seven transgenic mice. J Exp Med. 1993;177:305–316.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Charo J, Finkelstein SE, Grewal N, Restifo NP, Robbins PF, Rosenberg SA. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. 2005;65:2001–2008.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Eaton D, Gilham DE, O'Neill A, Hawkins RE. Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 2002;9:527–535.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Liu K, Rosenberg SA. Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol. 2001;167:6356–6365.

    PubMed  CAS  Google Scholar 

  50. 50. Liu K, Rosenberg SA. Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J Immunother. 2003;26:190–201.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA. Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol. 2005;175:7226–7234.

    PubMed  CAS  Google Scholar 

  52. 52. Hooijberg E, Ruizendaal JJ, Snijders PJ, Kueter EW, Walboomers JM, Spits H. Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol. 2000;165:4239–4245.

    PubMed  CAS  Google Scholar 

  53. 53. Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM. Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood. 2001;98:597–603.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Dembic Z, Haas W, Weiss S, et al. Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature. 1986; 320:232–238.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Gabert J, Langlet C, Zamoyska R, Parnes JR, Schmitt-Verhulst AM, Malissen B. Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell. 1987;50:545–554.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Clay TM, Custer MC, Spiess PJ, Nishimura MI. Potential use of T cell receptor genes to modify hematopoietic stem cells for the gene therapy of cancer. Pathol Oncol Res. 1999;5:3–15.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Morgan RA, Dudley ME, Yu YY, et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol. 2003;171:3287–3295.

    PubMed  CAS  Google Scholar 

  58. 58. Schaft N, Willemsen RA, de Vries J, et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol. 2003;170:2186–2194.

    PubMed  CAS  Google Scholar 

  59. 59. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med. 2004;199:885–894.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Cohen CJ, Zheng Z, Bray R, et al. Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J Immunol. 2005;175:5799–5808.

    PubMed  CAS  Google Scholar 

  61. 61. Johnson LA, Heemskerk B, Powell DJ, Jr., et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol. 2006;177:6548–6559.

    PubMed  CAS  Google Scholar 

  62. 62. Moeller M, Haynes NM, Trapani JA, et al. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Ther. 2004;11:371–379.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Moeller M, Haynes NM, Kershaw MH, et al. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood. 2005;106:2995–3003.

    Article  PubMed  CAS  Google Scholar 

  64. 64. Westwood JA, Smyth MJ, Teng MW, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci USA. 2005;102:19051–19056.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc. 1989;21:127–130.

    PubMed  CAS  Google Scholar 

  66. 66. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86:10024–10028.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Murphy A, Westwood JA, Teng MW, Moeller M, Darcy PK, Kershaw MH. Gene modification strategies to induce tumor immunity. Immunity. 2005;22:403–414.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Trapani JA. The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell. 2005;8:349–350.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Bodmer S, Strommer K, Frei K, et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol. 1989;143:3222–3229.

    PubMed  CAS  Google Scholar 

  71. 71. Fontana A, Frei K, Bodmer S, et al. Transforming growth factor-beta inhibits the generation of cytotoxic T cells in virus-infected mice. J Immunol. 1989;143:3230–3234.

    PubMed  CAS  Google Scholar 

  72. 72. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369–380.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25:455–471.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer. 2002;101:151–155.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  76. 76. Gajewski TF, Meng Y, Blank C, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–145.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature. 1995;378:736–739.

    Article  PubMed  CAS  Google Scholar 

  78. 78. Rabinovich GA, Ramhorst RE, Rubinstein N, et al. Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ. 2002;9:661–670.

    Article  PubMed  CAS  Google Scholar 

  79. 79. Rabinovich GA, Iglesias MM, Modesti NM, et al. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: Biochemical and functional characterization. J Immunol. 1998;160:4831–4840.

    PubMed  CAS  Google Scholar 

  80. 80. Rabinovich GA, Baum LG, Tinari N, et al. Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002;23:313–320.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007;109:2058–2065.

    Article  PubMed  CAS  Google Scholar 

  82. 82. Sotomayor CE, Rabinovich GA. “Galectin-1 induces central and peripheral cell death: Implications in T-cell physiopathology”. Dev Immunol. 2000;7:117–129.

    Article  PubMed  CAS  Google Scholar 

  83. 83. Le QT, Shi G, Cao H, et al. Galectin-1: A link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005;23:8932–8941.

    Article  PubMed  CAS  Google Scholar 

  84. 84. Daroqui CM, Ilarregui JM, Rubinstein N, et al. Regulation of galectin-1 expression by transforming growth factor beta1 in metastatic mammary adenocarcinoma cells: Implications for tumor-immune escape. Cancer Immunol Immunother. 2007;56: 491–499.

    Article  PubMed  CAS  Google Scholar 

  85. 85. Rubinstein N, Alvarez M, Zwirner NW, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell. 2004;5:241–251.

    Article  PubMed  CAS  Google Scholar 

  86. 86. Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pflucker JC. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 2004;5: 410–417.

    Article  PubMed  CAS  Google Scholar 

  87. 87. Poznansky MC, Evans RH, Foxall RB, et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol. 2000;18:729–734.

    Article  PubMed  CAS  Google Scholar 

  88. 88. Rosenzweig M, Marks DF, Zhu H, et al. In vitro T lymphopoiesis of human and rhesus CD34+ progenitor cells. Blood. 1996;87:4040–4048.

    PubMed  CAS  Google Scholar 

  89. 89. Schmitt TM, Zuniga-Pflucker JC. T-cell development, doing it in a dish. Immunol Rev. 2006;209:95–102.

    Article  PubMed  Google Scholar 

  90. 90. Zuniga-Pflucker JC. T-cell development made simple. Nat Rev Immunol. 2004;4:67–72.

    Article  PubMed  CAS  Google Scholar 

  91. 91. Almeida AR, Rocha B, Freitas AA, Tanchot C. Homeostasis of T cell numbers: From thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Semin Immunol. 2005;17:239–249.

    Article  PubMed  CAS  Google Scholar 

  92. 92. Almeida AR, Legrand N, Papiernik M, Freitas AA. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol. 2002;169:4850–4860.

    PubMed  Google Scholar 

  93. 93. Rosenberg SA. Shedding light on immunotherapy for cancer. N Engl J Med. 2004;350:1461–1463.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–274.

    Article  PubMed  CAS  Google Scholar 

  95. 95. Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood. 2006;107:628–636.

    Article  PubMed  CAS  Google Scholar 

  96. 96. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5:296–306.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Dubsky P, Ueno H, Piqueras B, Connolly J, Banchereau J, Palucka AK. Human dendritic cell subsets for vaccination. J Clin Immunol. 2005;25:551–572.

    Article  PubMed  Google Scholar 

  98. 98. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat Rev Immunol. 2006;6:715–727.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer. 2006;6:613–625.

    Article  PubMed  CAS  Google Scholar 

  100. 100. Slingluff CL, Jr., Chianese-Bullock KA, Bullock TN, et al. Immunity to melanoma antigens: From self-tolerance to immunotherapy. Adv Immunol. 2006;90:243–295.

    Article  PubMed  CAS  Google Scholar 

  101. 101. Taams LS, Akbar AN. Peripheral generation and function of CD4+CD25+ regulatory T cells. Curr Top Microbiol Immunol. 2005;293:115–131.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Otten GR, Germain RN. Split anergy in a CD8+ T cell: Receptor-dependent cytolysis in the absence of interleukin-2 production. Science. 1991;251:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  103. 103. Mescher MF, Curtsinger JM, Agarwal P, et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev. 2006;211:81–92.

    Article  PubMed  CAS  Google Scholar 

  104. 104. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999;11:483–493.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol. 1996;8:271–280.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Sotomayor EM, Borrello I, Tubb E, et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med. 1999;5:780–787.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Diehl L, den Boer AT, Schoenberger SP, et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med. 1999;5:774–779.

    Article  PubMed  CAS  Google Scholar 

  109. 109. Kabelitz D, Wesch D, Oberg HH. Regulation of regulatory T cells: Role of dendritic cells and toll-like receptors. Crit Rev Immunol. 2006;26:291–306.

    PubMed  CAS  Google Scholar 

  110. 110. Wang RF, Peng G, Wang HY. Regulatory T cells and Toll-like receptors in tumor immunity. Semin Immunol. 2006;18:136–142.

    Article  PubMed  CAS  Google Scholar 

  111. 111. Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10:48–54.

    Article  PubMed  CAS  Google Scholar 

  112. 112. Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005; 11:1314–1321.

    Article  PubMed  CAS  Google Scholar 

  113. 113. Cheng F, Wang HW, Cuenca A, et al. A critical role for Stat3 signaling in immune tolerance. Immunity. 2003;19:425–436.

    Article  PubMed  CAS  Google Scholar 

  114. 114. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–548.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity. 1997;6:411–417.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Dranoff G. CTLA-4 blockade: Unveiling immune regulation. J Clin Oncol. 2005;23:662–664.

    Article  PubMed  CAS  Google Scholar 

  118. 118. Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA. 2003;100:4712–4717.

    Article  PubMed  CAS  Google Scholar 

  119. 119. Alegre ML, Fallarino F. Mechanisms of CTLA-4-Ig in tolerance induction. Curr Pharm Des. 2006;12:149–160.

    Article  PubMed  CAS  Google Scholar 

  120. 120. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–268.

    Article  PubMed  CAS  Google Scholar 

  121. 121. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: Implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54:307–314.

    Article  PubMed  CAS  Google Scholar 

  122. 122. Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203:883–895.

    Article  PubMed  CAS  Google Scholar 

  123. 123. Steinman RM, Hawiger D, Liu K, et al. Dendritic cell function in vivo during the steady state: A role in peripheral tolerance. Ann N Y Acad Sci. 2003;987:15–25.

    Article  PubMed  CAS  Google Scholar 

  124. 124. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6:295–307.

    Article  PubMed  CAS  Google Scholar 

  125. 125. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3:253–257.

    Article  PubMed  CAS  Google Scholar 

  126. 126. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005;115:3623–3633.

    Article  PubMed  CAS  Google Scholar 

  127. 127. Steitz J, Bruck J, Lenz J, Knop J, Tuting T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res. 2001;61:8643–8646.

    PubMed  CAS  Google Scholar 

  128. 128. Awwad M, North RJ. Immunologically mediated regression of a murine lymphoma after treatment with anti-L3T4 antibody. A consequence of removing L3T4+ suppressor T cells from a host generating predominantly Lyt-2+ T cell-mediated immunity. J Exp Med. 1988;168:2193–2206.

    Article  PubMed  CAS  Google Scholar 

  129. 129. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res. 2007;67:371–380.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–949.

    Article  PubMed  CAS  Google Scholar 

  131. 131. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: A common basis between tumor immunity and autoimmunity. J Immunol. 1999;163:5211–5218.

    PubMed  CAS  Google Scholar 

  132. 132. van Elsas A, Sutmuller RP, Hurwitz AA, et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: Comparison of prophylaxis and therapy. J Exp Med. 20 2001;194:481–489.

    Article  PubMed  Google Scholar 

  133. 133. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996; 271: 1734–1736.

    Article  PubMed  CAS  Google Scholar 

  134. 134. Jovasevic VM, Gorelik L, Bluestone JA, Mokyr MB. Importance of IL-10 for CTLA-4-mediated inhibition of tumor-eradicating immunity. J Immunol. 2004;172:1449–1454.

    PubMed  CAS  Google Scholar 

  135. 135. Terabe M, Matsui S, Noben-Trauth N, et al. NK T-cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol. 2000;1:515–520.

    Article  PubMed  CAS  Google Scholar 

  136. 136. Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther. 2005;4:924–933.

    Article  PubMed  CAS  Google Scholar 

  137. 137. Zou L, Barnett B, Safah H, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64:8451–8455.

    Article  PubMed  CAS  Google Scholar 

  138. 138. Li B, Lalani AS, Harding TC, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res. 2006;12:6808–6816.

    Article  PubMed  CAS  Google Scholar 

  139. 139. Lopez MV, Adris SK, Bravo AI, Chernajovsky Y, Podhajcer OL. IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis. J Immunol. 2005;175:5885–5894.

    PubMed  CAS  Google Scholar 

  140. 140. Dorsey R, Kundu N, Yang Q, et al. Immunotherapy with interleukin-10 depends on the CXC chemokines inducible protein-10 and monokine induced by IFN-gamma. Cancer Res. 2002;62:2606–2610.

    PubMed  CAS  Google Scholar 

  141. 141. Bromberg J, Darnell JE, Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19:2468–2473.

    Article  PubMed  CAS  Google Scholar 

  142. 142. O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell. 2002;109:S121–S131.

    Article  PubMed  Google Scholar 

  143. 143. Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002;296:1653–1655.

    Article  PubMed  CAS  Google Scholar 

  144. 144. Grad JM, Zeng XR, Boise LH. Regulation of Bcl-xL: A little bit of this and a little bit of STAT. Curr Opin Oncol. 2000;12:543–549.

    Article  PubMed  CAS  Google Scholar 

  145. 145. Suzuki M, Yamamoto M, Sugimoto A, Nakamura S, Motoda R, Orita K. Delta-4 expression on a stromal cell line is augmented by interleukin-6 via STAT3 activation. Exp Hematol. 2006;34:1143–1150.

    Article  PubMed  CAS  Google Scholar 

  146. 146. Calo V, Migliavacca M, Bazan V, et al. STAT proteins: From normal control of cellular events to tumorigenesis. J Cell Physiol. 2003;197:157–168.

    Article  PubMed  CAS  Google Scholar 

  147. 147. Dalwadi H, Krysan K, Heuze-Vourc'h N, et al. Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin Cancer Res. 2005;11:7674–7682.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Turkson J, Zhang S, Palmer J, et al. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol Cancer Ther. 2004;3:1533–1542.

    PubMed  CAS  Google Scholar 

  149. 149. Kitamura H, Kamon H, Sawa S, et al. IL-6-STAT3 controls intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. Immunity. 2005;23:491–502.

    Article  PubMed  CAS  Google Scholar 

  150. 150. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 2005;65:9525–9535.

    Article  PubMed  CAS  Google Scholar 

  151. 151. Nefedova Y, Huang M, Kusmartsev S, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol. 2004;172:464–474.

    PubMed  CAS  Google Scholar 

  152. 152. Nefedova Y, Cheng P, Gilkes D, et al. Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J Immunol. 2005; 175:4338–4346.

    PubMed  CAS  Google Scholar 

  153. 153. Barton BE. STAT3: A potential therapeutic target in dendritic cells for the induction of transplant tolerance. Expert Opin Ther Targets. 2006;10:459–470.

    Article  PubMed  CAS  Google Scholar 

  154. 154. Burdelya L, Kujawski M, Niu G, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol. 2005;174: 3925–3931.

    PubMed  CAS  Google Scholar 

  155. 155. Park SJ, Nakagawa T, Kitamura H, et al. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol. 2004;173:3844–3854.

    PubMed  CAS  Google Scholar 

  156. 156. Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY. SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest. 2006;116:90–100.

    Article  PubMed  CAS  Google Scholar 

  157. 157. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  158. 158. Tzachanis D, Freeman GJ, Hirano N, et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol. 2001;2:1174–1182.

    Article  PubMed  CAS  Google Scholar 

  159. 159. Wong PK, Egan PJ, Croker BA, et al. SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J Clin Invest. 2006;116:1571–1581.

    Article  PubMed  CAS  Google Scholar 

  160. 160. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–436.

    Article  PubMed  CAS  Google Scholar 

  161. 161. Wang H, Cheng F, Cuenca A, et al. Imatinib mesylate (STI-571) enhances antigen-presenting cell function and overcomes tumor-induced CD4+ T-cell tolerance. Blood. 2005;105:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  162. 162. Kawakami Y, Inagaki N, Salek-Ardakani S, et al. Regulation of dendritic cell maturation and function by Bruton's tyrosine kinase via IL-10 and Stat3. Proc Natl Acad Sci USA. 2006;103:153–158.

    Article  PubMed  CAS  Google Scholar 

  163. 163. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell. 2004;6:297–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Cardoso, A.A. (2008). Harnessing the Power of Immunity to Battle Cancer: Much Ado about Nothing or All's Well That Ends Well?. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics