Skip to main content

Trafficking of Postsynaptic GABAA Receptors by Receptor-Associated Proteins

  • Chapter
The GABA Receptors

Part of the book series: The Receptors ((REC))

  • 1815 Accesses

Abstract

γ-Aminobutyric acid receptors (GABAA Rs) are the principal receptors that mediate neural inhibition in the brain. Changes in the function of GABAergic transmission are implicated in activity-dependent adaptation of neural excitability. Of particular interest are mechanisms that control the size of the postsynaptic GABAA-receptor pool, a major determinant of synaptic strength. Mechanisms of trafficking of postsynaptic GABAA Rs contribute to regulation of inhibitory synaptic transmission in response to changes in neural activity and extracellular stimuli. This review summarizes current information available on the receptor structures relevant for trafficking of GABAA Rs, the molecular composition of the submembrane cytoskeleton of inhibitory synapses, and the receptor interacting proteins that regulate the localization and trafficking of postsynaptic GABAA Rs during exocytosis, lateral diffusion and endocytic recycling, and degradative pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nusser, Z., Hajos, N., Somogyi, P., and Mody, I. (1998) Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177.

    Article  PubMed  CAS  Google Scholar 

  2. Kittler, J. T., Delmas, P., Jovanovic, J. N., Brown, D. A., Smart, T. G., and Moss, S. J. (2000) Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20(21), 7972–7977.

    PubMed  CAS  Google Scholar 

  3. Kapur, J., Stringer, J. L., and Lothman, E. W. (1989) Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. J. Neurophysiol. 61(2), 417–426.

    PubMed  CAS  Google Scholar 

  4. Kapur, J. and Lothman, E. W. (1989) Loss of inhibition precedes delayed spontaneous seizures in the hippocampus after tetanic electrical stimulation. J. Neurophysiol. 61(2), 427–434.

    PubMed  CAS  Google Scholar 

  5. Naylor, D. E. and Wasterlain, C. G. (2005) GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation. Epilepsia 46(Suppl. 5), 142–147.

    Article  PubMed  CAS  Google Scholar 

  6. Meier, J., Akyeli, J., Kirischuk, S., and Grantyn, R. (2003) GABA(A) receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Mol. Cell. Neurosci. 23(4), 600–613.

    Article  PubMed  CAS  Google Scholar 

  7. Crestani, F., Lorez, M., Baer, K., et al. (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2, 833–839.

    Article  PubMed  CAS  Google Scholar 

  8. Brambilla, P., Perez, J., Barale, F., Schettini, G., and Soares, J. C. (2003) GABAergic dysfunction in mood disorders. Mol. Psychiatry 8(8), 721–737.

    Article  PubMed  CAS  Google Scholar 

  9. Tunnicliff, G. and Malatynska, E. (2003) Central GABAergic systems and depressive illness. Neurochem. Res. 28(6), 965–976.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshikawa, T., Watanabe, A., Ishitsuka, Y., Nakaya, A., and Nakatani, N. (2002) Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome. Res. 12(3), 357–366.

    Article  PubMed  CAS  Google Scholar 

  11. Yamada, K., Watanabe, A., Iwayama-Shigeno, Y., and Yoshikawa, T. (2003) Evidence of association between gamma-aminobutyric acid type A receptor genes located on 5q34 and female patients with mood disorders. Neurosci. Lett. 349(1), 9–12.

    Article  PubMed  CAS  Google Scholar 

  12. N-Wihlback, A. C., Sundstrom-Poromaa, I., and Backstrom, T. (2005) Action by and sensitivity to neuroactive steroids in menstrual cycle related CNS disorders. Psychopharmacology (Berl.) 1–14.

    Google Scholar 

  13. Sundstrom Poromaa, I., Smith, S., and Gulinello, M. (2003) GABA receptors, progesterone and premenstrual dysphoric disorder. Arch. Women Ment. Health 6(1), 23–41.

    Article  CAS  Google Scholar 

  14. Grobin, A. C., Matthews, D. B., Devaud, L. L., and Morrow, A. L. (1998) The role of GABA(A) receptors in the acute and chronic effects of ethanol. Psychopharmacology (Berl). 139(1–2), 2–19.

    Article  CAS  Google Scholar 

  15. Kumar, S., Kralic, J. E., O’Buckley, T. K., Grobin, A. C., and Morrow, A. L. (2003) Chronic ethanol consumption enhances internalization of alpha1 subunit-containing GABA(A) receptors in cerebral cortex. J. Neurochem. 86(3), 700–708.

    Article  PubMed  CAS  Google Scholar 

  16. Seil, F. J. and Drake-Baumann, R. (2000) TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20(14), 5367–5373.

    PubMed  CAS  Google Scholar 

  17. Seil, F. J. (2003) TrkB receptor signaling and activity-dependent inhibitory synaptogenesis. Histol. Histopathol. 18(2), 635–646.

    PubMed  CAS  Google Scholar 

  18. Marty, S., Wehrle, R., Fritschy, J. M., and Sotelo, C. (2004) Quantitative effects produced by modifications of neuronal activity on the size of GABA(A) receptor clusters in hippocampal slice cultures. Eur. J. Neurosci. 20(2), 427–440.

    Article  PubMed  Google Scholar 

  19. Goodkin, H. P., Yeh, J. L., and Kapur, J. (2005) Status epilepticus increases the intracellular accumulation of GABA(A) receptors. J. Neurosci. 25(23), 5511–5520.

    Article  PubMed  CAS  Google Scholar 

  20. Goodkin, H. P., Liu, X., and Holmes, G. L. (2003) Diazepam terminates brief but not prolonged seizures in young, naive rats. Epilepsia 44(8), 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  21. Brunig, I., Penschuck, S., Berninger, B., Benson, J., and Fritschy, J. M. (2001) BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur. J. Neurosci. 13(7), 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  22. Mizoguchi, Y., Kanematsu, T., Hirata, M., and Nabekura, J. (2003) A rapid increase in the total number of cell surface functional GABAA receptors induced by brain-derived neurotrophic factor in rat visual cortex. J. Biol. Chem. 278(45), 44,097–44,102.

    Article  CAS  Google Scholar 

  23. Wan, G., Xiong, Z. G., Man. H. Y., et al. (1997) Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388, 686–690.

    Article  PubMed  CAS  Google Scholar 

  24. Stellwagen, D., Beattie, E. C., Seo, J. Y., and Malenka, R. C. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J. Neurosci. 25(12), 3219–3228.

    Google Scholar 

  25. Tehrani, M. H. and Barnes, E. M. Jr. (1991) Agonist-dependent internalization of gamma-aminobutyric acidA/benzodiazepine receptors in chick cortical neurons. J. Neurochem. 57(4), 1307–1312.

    Article  PubMed  CAS  Google Scholar 

  26. Tehrani, M. H. and Barnes, E. M. Jr. (1997) Sequestration of gamma-aminobutyric acidA receptors on clathrin-coated vesicles during chronic benzodiazepine administration in vivo. J. Pharmacol. Exp. Ther. 283(1), 384–390.

    PubMed  CAS  Google Scholar 

  27. Barnard, E. A., Darlison, M. G., Fujita, N., et al. Molecular biology of the GABA(A) receptor. Adv. Exp. Med. Biol. 236, 31–45.

    Google Scholar 

  28. Sieghart, W. and Sperk, G. (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr. Top. Med. Chem. 2(8), 795–816.

    Article  PubMed  CAS  Google Scholar 

  29. Mody, I. and Pearce, R. A. (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends. Neurosci. 27(9), 569–575.

    Article  PubMed  CAS  Google Scholar 

  30. Luscher, B. and Keller, C. A. (2004) Regulation of GABAA receptor trafficking and channel activity in functional plasticity of inhibitory synapses. Pharmacol. Ther. 102(3), 195–221.

    Article  PubMed  CAS  Google Scholar 

  31. Ke, Y., Cohen, B. M., Bang, J. Y., Yang, M., and Renshaw, P. F. (2000) Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatry. Res. 100(3), 169–178.

    Article  PubMed  CAS  Google Scholar 

  32. Terpstra, M., Ugurbil, K., and Gruetter, R. (2002) Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn. Reson. Med. 47(5), 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  33. Brown, N., Kerby, J., Bonnert, T. P., Whiting, P. J., and Wafford, K. A. Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br. J. Pharmacol. 136(7), 965–974.

    Google Scholar 

  34. Haas, K. F. and Macdonald, R. L. (1999) GABA(A) receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABA(A) receptor currents in mouse fibroblasts. J. Physiol. 514(Pt. 1), 27–45.

    Article  PubMed  CAS  Google Scholar 

  35. Saxena, N. C. and Macdonald, R. L. (1996) Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol. Pharmacol. 49(3), 567–579.

    PubMed  CAS  Google Scholar 

  36. Bianchi, M. T., Haas, K. F., and Macdonald, R. L. (2001) Structural determinants of fast desensitization and desensitization-deactivation coupling in GABAa receptors. J. Neurosci. 21(4), 1127–1136.

    PubMed  CAS  Google Scholar 

  37. Perrais, D. and Ropert, N. (1999) Effect of zolpidem on miniature IPSCs and occupancy of postsynaptic GABAA receptors in central synapses. J. Neurosci. 19(2), 578–588.

    PubMed  CAS  Google Scholar 

  38. Essrich, C., Lorez, M., Benson, J., Fritschy, J. M., and Luscher, B. (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1(7), 563–571.

    Article  PubMed  CAS  Google Scholar 

  39. Rao, A., Cha, E. M., and Craig, A. M. (2000) Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. J. Neurosci. 20(22), 8344–8353.

    PubMed  CAS  Google Scholar 

  40. Sassoe-Pognetto, M., Panzanelli, P., Sieghart, W., and Fritschy, J. M. (2000) Colocalization of multiple GABA(A) receptor subtypes with gephyrin at postsynaptic sites. J. Comp. Neurol. 420(4), 481–498.

    Article  PubMed  CAS  Google Scholar 

  41. Brunig, I., Scotti, E., Sidler, C., and Fritschy, J. M. (2002) Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J. Comp. Neurol. 443(1), 43–55.

    Article  PubMed  CAS  Google Scholar 

  42. Brunig, I., Suter, A., Knuesel, I., Luscher, B., and Fritschy, J-M. GABAergic terminals are required for postsynaptic clustering of dystrophin but not GABA(A) receptors and gephyrin. J. Neurosci. 22(2), 4805–4813.

    Google Scholar 

  43. Christie, S. B., Miralles, C. P., and De Blas, A. L. (2002) GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons. J. Neurosci. 22(3), 684–697.

    PubMed  CAS  Google Scholar 

  44. Baer, K., Essrich, C., Benson, J. A., et al. (1999) Postsynaptic clustering of GABAA receptors by the γ3 subunit in vivo. Proc. Natl. Acad. Sci. USA 96(22), 12,860–12,865.

    Article  CAS  Google Scholar 

  45. Schweizer, C., Balsiger, S., Bluethmann, H., et al. (2003) The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol. Cell. Neurosci. 24, 442–450.

    Article  PubMed  CAS  Google Scholar 

  46. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J-M., and Somogyi, P. (1996) Differential synaptic localization of two major γ-aminobutyric acid type A receptor a subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11,939–11,944.

    Article  CAS  Google Scholar 

  47. Li, R. W., Yu, W., Christie, S., et al. (2005) Disruption of postsynaptic GABA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons. J. Neurochem. 95(3), 756–770.

    Article  PubMed  CAS  Google Scholar 

  48. Thomas, P., Mortensen, M., Hosie, A. M., and Smart, T. G. (2005) Dynamic mobility of functional GABA(A) receptors at inhibitory synapses. Nat. Neurosci. 8(7), 889–897.

    PubMed  CAS  Google Scholar 

  49. Jacob, T. C., Bogdanov, Y. D., Magnus, C., et al. (2005) Gephyrin regulates the cell surface dynamics of synaptic GABA(A) receptors. J. Neurosci. 25(45), 10,469–10,478.

    Article  CAS  Google Scholar 

  50. Fritschy, J. M., Johnson, D. K., Mohler, H., and Rudolph, U. (1998) Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett. 249(2–3), 99–102.

    Article  PubMed  CAS  Google Scholar 

  51. Crestani, F., Keist, R., Fritschy, J. M., et al. (2002) Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc. Natl. Acad. Sci. USA 99(13), 8980–8985.

    Article  PubMed  CAS  Google Scholar 

  52. Caraiscos, V. B., Elliott, E. M., You-Ten, K. E., et al. (2004) Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. USA 101(10), 3662–3667.

    Article  PubMed  CAS  Google Scholar 

  53. Christie, S. B. and de Blas, A. L. (2002) alpha5 Subunit-containing GABA(A) receptors form clusters at GABAergic synapses in hippocampal cultures. Neuroreport 13(17), 2355–2358.

    Article  PubMed  CAS  Google Scholar 

  54. Devor, A., Fritschy, J. M., and Yarom, Y. (2000) Non-homogeneous distribution of GABAA receptors in the inferior olivary nucleus revealed by electrophysiology and immunocytochemistry. Eur. J. Neurosci. 12(11), 141.

    Google Scholar 

  55. Devor, A., Fritschy, J. M., and Yarom, Y. (2001) Spatial distribution and subunit composition of GABA(A) receptors in the inferior olivary nucleus. J. Neurophysiol. 85(4), 1686–1696.

    PubMed  CAS  Google Scholar 

  56. Alldred, M. J., Mulder-Rosi, J., Lingenfelter, S. E., Chen, G., and Luscher, B. (2005) Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABA(A) receptors and gephyrin. J. Neurosci. 25(3), 594–603.

    Article  PubMed  CAS  Google Scholar 

  57. van Rijnsoever, C., Sidler, C., and Fritschy, J. M. (2005) Internalized GABA-receptor subunits are transferred to an intracellular pool associated with the postsynaptic density. Eur. J. Neurosci. 21(2), 327–338.

    Article  PubMed  Google Scholar 

  58. Christie, S. B., Li, R. W., Miralles, C. P., Yang, B. Y., and De Blas, A. L. (2005) Clustered and non-clustered GABA(A) receptors in cultured hippocampal neurons. Mol. Cell. Neurosci. 31(1), 1–14.

    Article  PubMed  CAS  Google Scholar 

  59. Nymann-Andersen, J., Sawyer, G. W., and Olsen, R. W. (2002) Interaction between GABAA receptor subunit intracellular loops: implications for higher order complex formation. J. Neurochem. 83(5), 1164–1171.

    Article  PubMed  CAS  Google Scholar 

  60. Sassoè-Pognetto, M. and Fritschy, J. M. (2000) Gephyrin, a major postsynaptic protein of GABAergic synapses. Eur. J. Neurosci. 12(7), 2205–2210.

    Article  PubMed  Google Scholar 

  61. Kneussel, M. and Betz, H. (2000) Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J. Physiol. 525(Pt. 1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  62. Meyer, G., Kirsch, J., Betz, H., and Langosch, D. (1995) Identification of a gephyrin binding motif on the glycine receptor b subunit. Neuron 15, 563–572.

    Article  PubMed  CAS  Google Scholar 

  63. Kannenberg, K., Baur, R., and Sigel, E. (1997) Proteins associated with a1-subunit-containing GABAA receptors from bovine brain. J. Neurochem. 68, 1352–1360.

    Article  PubMed  CAS  Google Scholar 

  64. Baer, K., Essrich, C., Balsiger, S., et al. (2000) Rescue of γ2 subunit-deficient mice by transgenic overexpression of the GABAA receptor γ2S or γ2L subunit isoforms. Eur. J. Neurosci. 12(7), 2639–2643.

    Article  PubMed  CAS  Google Scholar 

  65. Kneussel, M., Brandstätter, J. H., Laube, B., Stahl, S., Müller, U., and Betz, H. Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci. 19(21), 9289–9297.

    Google Scholar 

  66. Fischer, F., Kneussel, M., Tintrup, H., et al. (2000) Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. J. Comp. Neurol. 427(4), 634–648.

    Article  PubMed  CAS  Google Scholar 

  67. Kneussel, M., Brandstätter, J. H., Gasnier, B., Feng, G., Sanes, J. R., and Betz, H. Gephyrin-independent clustering of postsynaptic GABAA receptor subtypes. Mol. Cell. Neurosci. 17, 973–982.

    Google Scholar 

  68. Levi, S., Logan, S. M., Tovar, K. R., and Craig, A. M. (2004) Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J. Neurosci. 24(1), 207–217.

    Article  PubMed  CAS  Google Scholar 

  69. Kirsch, J., Langosch, D., Prior, P., Litauer, U. Z., and Betz, H. (1991) The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem. 266, 22,242–22,245.

    CAS  Google Scholar 

  70. Mammoto, A., Sasaki, T., Asakura, T., et al. (1998) Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Commun. 243(1), 86–89.

    Article  PubMed  CAS  Google Scholar 

  71. Giesemann, T., Schwarz, G., Nawrotzki, R., et al. (2003) Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J. Neurosci. 23(23), 8330–8339.

    PubMed  CAS  Google Scholar 

  72. Allison, D. W., Chervin, A. S., Gelfand, V. I., and Craig, A. M. (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci. 20(12), 4545–4554.

    PubMed  CAS  Google Scholar 

  73. Sabatini, D. M., Barrow, R. K., Blackshaw, S., et al. (1999) Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284(5417), 1161–1164.

    Article  PubMed  CAS  Google Scholar 

  74. Fuhrmann, J. C., Kins, S., Rostaing, P., et al. (2002) Gephyrin interacts with dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci. 22(13), 5393–5402.

    PubMed  CAS  Google Scholar 

  75. Kins, S., Heinrich Betz, H., and Kirsch, J. (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nature Neurosci. 3, 22–29.

    Article  PubMed  CAS  Google Scholar 

  76. Grosskreutz, Y., Hermann, A., Kins, S., Fuhrmann, J. C., Betz, H., and Kneussel, M. (2001) Identification of a gephyrin-binding motif in the GDP/GTP exchage factor collybistin. Biol. Chem. 382(10), 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  77. Wherlock, M. and Mellor, H. (2002) The Rho GTPase family: a Racs to Wrchs story. J. Cell. Sci. 115(Pt. 2), 239–240.

    PubMed  CAS  Google Scholar 

  78. Harvey, K., Duguid, I. C., Alldred, M. J., et al. (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J. Neurosci. 24(25), 5816–5826.

    Article  PubMed  CAS  Google Scholar 

  79. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., and Triller, A. (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644), 442–445.

    Article  PubMed  CAS  Google Scholar 

  80. Dumoulin, A., Levi, S., Riveau, B., Gasnier, B., and Triller, A. (2000) Formation of mixed glycine and GaBAergic synapses in cultured spinal cord neurons. Eur. J. Neurosci. 12(11), 3883–3892.

    Article  PubMed  CAS  Google Scholar 

  81. Studler, B., Sidler, C., and Fritschy, J. M. (2005) Differential regulation of GABA(A) receptor and gephyrin postsynaptic clustering in immature hippocampal neuronal cultures. J. Comp. Neurol. 484(3), 344–355.

    Article  PubMed  CAS  Google Scholar 

  82. Prior, P., Schmitt, B., Grenningloh, G., et al. (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170.

    Article  PubMed  CAS  Google Scholar 

  83. Ramming, M., Kins, S., Werner, N., Hermann, A., Betz, H., and Kirsch, J. (2000) Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins. Proc. Natl. Acad. Sci. USA 97(18), 10,266–10,271.

    Article  CAS  Google Scholar 

  84. Meier, J., De Chaldee, M., Triller, A., and Vannier, C. (2000) Functional heterogeneity of gephyrins. Mol. Cell. Neurosci. 16(5), 566–577.

    Article  PubMed  CAS  Google Scholar 

  85. Hermann, A., Kneussel, M., and Betz, H. (2001) Identification of multiple gephyrin variants in different organs of the adult rat. Biochem. Biophys. Res. Commun. 282(1), 67–70.

    Article  PubMed  CAS  Google Scholar 

  86. Meier, J. and Grantyn, R. (2004) A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J. Neurosci. 24(6), 1398–1405.

    Article  PubMed  CAS  Google Scholar 

  87. Graf, E. R., Zhang, X. Z., Jin, S-X., Linhoff, M. W., and Craig, A. M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7), 1013–1026.

    Google Scholar 

  88. Prange, O., Wong, T. P., Gerrow, K., Wang, Y. T., and El-Husseini, A. (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl. Acad. Sci. USA 101(38), 13,915–13,920.

    Article  CAS  Google Scholar 

  89. Chih, B., Engelman, H., and Scheiffele, P. (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713), 1324–1328.

    Article  PubMed  CAS  Google Scholar 

  90. Levinson, J. N., Chery, N., Huang, K., et al. (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1 beta in neuroligin-induced synaptic specificity. J. Biol. Chem. 280(17), 17,312–17,319.

    Article  CAS  Google Scholar 

  91. Waites, C. L., Craig, A. M., and Garner, C. C. (2005) Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274.

    Article  PubMed  CAS  Google Scholar 

  92. Craig, A. M., Graf, E. R., and Linhoff, M. W. (2006) How to build a central synapse: clues from cell culture. Trends Neurosci. 29(1), 8–20.

    Article  PubMed  CAS  Google Scholar 

  93. Scheiffele, P., Fan, J., Choih, J., Fetter, R., and Serafini, T. (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6), 657–669.

    Article  PubMed  CAS  Google Scholar 

  94. Varoqueaux, F., Jamain, S., and Brose, N. (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur. J. Cell. Biol. 83(9), 449–456.

    Article  PubMed  CAS  Google Scholar 

  95. Knuesel, I., Mastrocola, M., Zuellig, R. A., Bornhauser, B., Schaub, M. C, and Fritschy, J. M. (1999) Altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci. 11(12), 4457–4462.

    Article  PubMed  CAS  Google Scholar 

  96. Knuesel, I., Zuellig, R. A., Schaub, M. C., and Fritschy, J-M. (2000) Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur. J. Neurosci. 13, 1113–1124.

    Article  Google Scholar 

  97. Levi, S., Grady, R. M., Henry, M. D., Campbell, K. P., Sanes, J. R., and Craig, A. M. (2002) Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J. Neurosci. 22(11), 4274–4285.

    PubMed  CAS  Google Scholar 

  98. Winder, S. J. (2001) The complexities of dystroglycan. Trends Biochem. Sci. 26(2), 118–124.

    Article  PubMed  CAS  Google Scholar 

  99. Sugita, S., Saito, F., Tang, J., Satz, J., Campbell, K., and Sudhof, T. C. (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell. Biol. 154(2), 435–445.

    Article  PubMed  CAS  Google Scholar 

  100. Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., and Olsen, R. W. (1999) GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397, 69–72.

    Article  PubMed  CAS  Google Scholar 

  101. Nymann-Andersen, J., Wang, H., Chen, L., Kittler, J. T., Moss, S. J., and Olsen, R. W. (2002) Subunit specificity and interaction domain between GABA(A) receptor-associated protein (GABARAP) and GABA(A) receptors. J. Neurochem. 80(5), 815–823.

    Article  PubMed  CAS  Google Scholar 

  102. Hemelaar, J., Lelyveld, V. S., Kessler, B. M., and Ploegh, H. L. (2003) A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MA1-LC3, GABARAP, and Apg8L. J. Biol. Chem. 278(51), 51,841–51,850.

    Article  CAS  Google Scholar 

  103. Tanida, I., Komatsu, M., Ueno, T., and Kominami E. (2003) GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem. Biophys. Res. Commun. 300(3), 637–644.

    Article  PubMed  CAS  Google Scholar 

  104. Kneussel, M. (2002) Dynamic regulation of GABAA receptors at synaptic sites. Brain. Res. Rev. 39(1), 74–83.

    Article  PubMed  CAS  Google Scholar 

  105. Tanida, I., Ueno, T., and Kominami, E. (2004) LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell. Biol. 36(12), 2503–2518.

    Article  PubMed  CAS  Google Scholar 

  106. Kittler, J. T., Rostaing, P., and Schiavo, G., et al. (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors. Mol. Cell. Neurosci. 18(1), 13–25.

    Article  PubMed  CAS  Google Scholar 

  107. Wang, H. and Olsen, R. W. (2000) Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAP-GABA(A) receptor interaction. J. Neurochem. 75(2), 644–655.

    Article  PubMed  CAS  Google Scholar 

  108. Chen, L., Wang, H. B., Vicini, S., and Olsen, R. W. (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl. Acad. Sci. USA 97, 11,557–11,562.

    CAS  Google Scholar 

  109. Kneussel, M., Haverkamp, S., Fuhrmann, J. C., et al. (2000) The γ-aminobutyric acid type A receptor (GABAA R)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc. Natl. Acad. Sci. USA. 97(15), 8594–8599.

    Article  PubMed  CAS  Google Scholar 

  110. Sagiv, Y., Legesse-Miller, A., Porat, A., and Elazar, Z. (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO. J. 19(7), 1494–1504.

    Article  PubMed  CAS  Google Scholar 

  111. Leil, T. A., Chen, Z. W., Chang, C. S., and Olsen, R. W. (2004) GABA(A) receptor-associated protein traffics GABA(A) receptors to the plasma membrane in neurons. J. Neurosci. 24(50), 11,429–11,438.

    Article  CAS  Google Scholar 

  112. O’Sullivan, G. A., Kneussel, M., Elazar, Z., Betz, H. (2005) GABARAP is not essential for GABA receptor targeting to the synapse. Eur. J. Neurosci. 22(10), 2644–2648.

    Article  PubMed  Google Scholar 

  113. Kanematsu, T., Jang, I. S., Yamaguchi, T., et al. (2002) Role of the PLC-related, catalytically inactive protein p130 in GABAA receptor function. EMBO. J. 21(5), 1004–1011.

    Article  PubMed  CAS  Google Scholar 

  114. Terunuma, M., Jang, I. S., Ha, S. H., et al. (2004) GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J. Neurosci. 24(32), 7074–7084.

    Article  PubMed  CAS  Google Scholar 

  115. Yoshimura, K., Takeuchi, H., Sato, O., et al. (2001) Interaction of p130 with, and consequent inhibition of, the catalytic subunit of protein phosphatase 1alpha. J. Biol. Chem. 276(21), 17,908–17,913.

    Article  CAS  Google Scholar 

  116. Kittler, J. T., Chen, G., Honing, S., et al. (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABA(A) receptors regulates the efficacy of inhibitory synaptic transmission. Proc. Natl. Acad. Sci. USA 102(41), 14,871–14,876.

    Article  CAS  Google Scholar 

  117. Li, R. W., Serwanski, D. R., Miralles, C. P, et al. (2005) GRIP1 in GABAergic synapses. J. Comp. Neurol. 488(1), 11–27.

    Article  PubMed  CAS  Google Scholar 

  118. Kittler, J. T., Arancibia-Carcamo, I. L., and Moss, S. J. (2004) Association of GRIP1 with a GABA(A) receptor associated protein suggests a role for GRIP1 at inhibitory synapses. Biochem. Pharmacol. 68(8), 1649–1654.

    Article  PubMed  CAS  Google Scholar 

  119. Charych, E. I., Yu, W., Li, R., et al. (2004) A four PDZ domain-containing solice variant form of GRIP is localized in GABAergic and glutamatergic synapses in brain. J. Biol. Chem. 279(37), 38,978–38,990.

    Article  CAS  Google Scholar 

  120. Song, I. and Huganir, R. L. (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25(11), 578–588.

    Article  PubMed  CAS  Google Scholar 

  121. Kim, E. and Sheng, M. (2004) PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5(10), 771–781.

    Article  PubMed  CAS  Google Scholar 

  122. Morgan, A. and Burgoyne, R. D. (2004) Membrane traffic: controlling membrane fusion by modifying NSF. Curr. Biol. 14(22), R968–R970.

    Article  PubMed  CAS  Google Scholar 

  123. Goto, H., Terunuma, M., Kanematsu, T., Misumi, Y., Moss, S. J., and Hirata, M. (2005) Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits. Mol. Cell. Neurosci. 30(2), 197–206.

    Article  PubMed  CAS  Google Scholar 

  124. Wojcikiewicz, R. J. (2004) Regulated ubiquitination of proteins in GPCR-initiated signaling pathways. Trends Pharmacol. Sci. 25(1), 35–41.

    Article  PubMed  CAS  Google Scholar 

  125. Cremona, O., Collesi, C., and Raiteri, E. (2003) Protein ubiquitylation and synaptic function. Ann. NY. Acad. Sci. 998, 33–40.

    Article  PubMed  CAS  Google Scholar 

  126. DiAntonio, A. and Hicke, L. (2004) Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223–246.

    Article  PubMed  CAS  Google Scholar 

  127. Bedford, F. K., Kittler, J. T., Muller, E., et al. (2001) GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat. Neurosci. 4, 908–916.

    Article  PubMed  CAS  Google Scholar 

  128. Luscher, B. and Keller, C. A. (2001) Ubiquitination, proteasomes and GABA(A) receptors. Nat. Cell. Biol. 3(10), E232–E233.

    Article  PubMed  CAS  Google Scholar 

  129. Wu, A. L., Wang, J., Zheleznyak, A., and Brown, E. J. (1999) Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol. Cell. 4(4), 619–625.

    Article  PubMed  CAS  Google Scholar 

  130. Kleijnen, M. F., Shih, A. H., Zhou, P., et al. (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell. 6(2), 409–419.

    Article  PubMed  CAS  Google Scholar 

  131. Kleijnen, M. F., Alarcon, R. M., and Howley, P. M. (2003) The ubiquitin-associated domain of hPLIC-2 interacts with the proteasome. Mol. Biol. Cell. 14(9), 3868–3875.

    Article  PubMed  CAS  Google Scholar 

  132. Saliba, R. S. and Moss, S. J. (2003) Plic-1 regulates ubiquitination of GABA-A receptors, in 13th Neuropharmacology Conference, Posttranslational modifications of protein structure and synaptic function, New Orleans, LA, Elsevier, pp. 103.

    Google Scholar 

  133. Charych, E. I., Yu, W., Miralles, C. P., et al. (2004) The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. J. Neurochem. 90(1), 173–189.

    Article  PubMed  CAS  Google Scholar 

  134. Togawa, A., Morinaga, N., Ogasawara, M., Moss, J., and Vaughan, M. (1999) Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. J. Biol. Chem. 274(18), 12,308–12,315.

    Article  CAS  Google Scholar 

  135. Morinaga, N., Moss, J., and Vaughan, M. (1997) Cloning and expression of a cDNA encoding a bovine brain brefeldin A-sensitive guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. USA 94(24), 12,926–12,931.

    Article  CAS  Google Scholar 

  136. Shin, H. W. and Nakayama, K. (2004) Guanine nucleotide-exchange factors for arf GTPases: their diverse functions in membrane traffic. J. Biochem. (Tokyo). 136(6), 761–767.

    CAS  Google Scholar 

  137. Shin, H. W., Morinaga, N., Noda, M., and Nakayama, K. (2004) BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. Mol. Biol. Cell. 15(12), 5283–5294.

    Article  PubMed  CAS  Google Scholar 

  138. Qanbar, R. and Bouvier, M. (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97(1), 1–33.

    Article  PubMed  CAS  Google Scholar 

  139. El-Husseini, A. D. and Bredt, D. S. (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat. Rev. Neurosci. 3(10), 791–802.

    Article  CAS  Google Scholar 

  140. Putilina, T., Wong, P., and Gentleman, S. (1999) The DHHC domain: a new highly conserved cysteine-rich motif. Mol. Cell. Biochem. 195(1–2), 219–226.

    Article  PubMed  CAS  Google Scholar 

  141. Bartels, D. J., Mitchell, D. A., Dong, X., and Deschenes, R. J. (1999) Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19(10), 6775–6787.

    PubMed  CAS  Google Scholar 

  142. Keller, C. A., Yuan, X., and Panzanelli, P., et al. (2004) The γ2 subunit of GABAA receptors is a substrate for palmitoylation by GODZ. J. Neurosci. 24(26), 5881–5891.

    Article  PubMed  CAS  Google Scholar 

  143. Rathenberg, J., Kittler, J. T., and Moss, S. J. (2004) Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell. Neurosci. 26, 251–257.

    Article  PubMed  CAS  Google Scholar 

  144. Fang, C., Deng, L., Keller, C. A., et al. (2006) GODZ mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses. J. Neurosci. 26(49), 12,758–12,768.

    Article  CAS  Google Scholar 

  145. Fukata, M., Fukata, Y., Adesnik, H., Nicoll, R. A., and Bredt D. S. Identification of PSD-95 palmitoylating enzymes. Neuron 44(6), 987–996.

    Google Scholar 

  146. Hayashi, T., Rumbaugh, G., and Huganir, R. L. (2005) Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 47(5), 709–723.

    Article  PubMed  CAS  Google Scholar 

  147. Chaudhary, J. and Skinner, M. K. (2002) Identification of a novel gene product, Sertoli cell gene with a zinc finger domain, that is important for FSH activation of testicular Sertoli cells. Endocrinology 143(2), 426–435.

    Article  PubMed  CAS  Google Scholar 

  148. Connolly, C. N., Kittler, J. T., Thomas, P., et al. (1999) Cell surface stability of g-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem. 274(51), 36,565–36,572.

    Article  CAS  Google Scholar 

  149. Herring, D., Huang, R., Singh, M., Dillon, G. H., and Leidenheimer, N. J. PKC modulation of GABA(A) receptor endocytosis and function is inhibited by mutation of a dileucine motif within the receptor beta 2 subunit. Neuropharmacology 48(2), 181–194.

    Google Scholar 

  150. Cinar, H. and Barnes, E. M. Jr. (2001) Clathrin-independent endocytosis of GABA(A) receptors in HEK 293 cells. Biochemistry 40(46), 14,030–14,036.

    Article  CAS  Google Scholar 

  151. Tehrani, M. H., Baumgartner, B. J., and Barnes, E. M. Jr. (1997) Clathrin-coated vesicles from bovine brain contain uncoupled GABAA receptors. Brain. Res. 776(1–2), 195–203.

    Article  PubMed  CAS  Google Scholar 

  152. Kittler, J. T., Thomas, P., Tretter, V., et al. (2004) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc. Natl. Acad. Sci. USA 101(34), 12,736–12,741.

    Article  CAS  Google Scholar 

  153. Li, X. J., Li, S. H., Sharp, A. H., et al. (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378(6555), 398–402.

    Article  PubMed  CAS  Google Scholar 

  154. Li, Y., Chin, L. S., Levey, A. I., and Li, L. (2002) Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J. Biol. Chem. 277(31), 28,212–28,221.

    CAS  Google Scholar 

  155. Kins, S., Kuhse, J., Laube, B., Betz, H., and Kirsch, J. (1999) Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci. 11(2), 740–744.

    Article  PubMed  CAS  Google Scholar 

  156. Harvey, R. J., Depner, U. B., Wassle, H., et al. (2004) GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304(5672), 884–887.

    Article  PubMed  CAS  Google Scholar 

  157. Beck, M., Brickley, K., Wilkinson, H. L., et al. (2002) Identification, molecular cloning, and characterization of a novel GABA(A) receptor-associated protein, GRIF-1. J. Biol. Chem. 277, 30,079–30,090.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yuan, X., Lüscher, B. (2007). Trafficking of Postsynaptic GABAA Receptors by Receptor-Associated Proteins. In: Enna, S.J., Möhler, H. (eds) The GABA Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-465-0_3

Download citation

Publish with us

Policies and ethics