Skip to main content
Book cover

Osteoporosis pp 385–422Cite as

Androgen Actions on Bone: Clinical Aspects

Androgen and Bone

  • Chapter
  • First Online:
  • 869 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Summary

Androgen actions in target tissues depend on plasma concentration of bio-available androgen, on local androgen metabolism and on the presence and activity of sex steroids receptors (AR and partially ER) in association with regulatory co-factors, as well as on non-genomic pathways. As evidenced by androgen receptor insensitivity syndromes, androgens appear to play an important role in the development of the male skeletal phenotype, especially bone size. It is also probable that androgens participate in the later maintenance of adult bone remodelling/mass/structure. The old concept that androgens are responsible for skeletal abnormalities in hypogonadism is only partially erroneous. The declining sex steroid levels in the elderly may adversely affect the preservation of skeletal integrity and indicates that aromatisation of testosterone to estradiol is an important mediator of bone metabolism in the elderly. Androgens and estrogens have actions in bone development and maintenance and the complex interplay between both has only partially elucidated.

Clinical studies on the skeletal effects of hypogonadism and testosterone and non-aromatizable androgen therapy confirm the indisputable evidence of androgen action in bone. The interventional studies indicate only favorable effects in those men with pre-treatment serum testosterone levels clearly below the range of young men. Substitutive or pharmacologic treatment with androgens for the prevention or reversion of bone loss or increased fracture risk in aging men can only be considered if there is convincing evidence for androgen deficiency, although there is no precise definition of the “physiological” androgen requirements in elderly men. Avoiding side-effects and improving the dosing regimens of the presently available androgen treatments provide options for further developments. Selective androgen receptor modulators may present novel opportunities in the prevention or treatment of metabolic bone disorders.

This is a preview of subscription content, log in via an institution.

References

  1. Hammond GL, Ruokonen A, Kontturi M, Koskela E, Vihko R. Simultaneous radioimmunoassay of 7 steroids in human spermatic and peripheral venous-blood. J Clin Endocrinol Metab 1977;45:16–24.

    Article  PubMed  CAS  Google Scholar 

  2. Horton R, Tait J. Androstenedione production, and conversion rates in peripheral blood and studies on the possible site of its interconversion to testosterone. J Clin Invest 1966;45:301–307.

    Article  PubMed  CAS  Google Scholar 

  3. Horton R, Tait J. The in vivo conversion of dehydroisoandrosterone to plasma androstenedione and testosterone. J Clin Endocrinol Metab 1967;27:79–82.

    Article  PubMed  CAS  Google Scholar 

  4. Vermeulen A, Verdonck L. Studies on the binding of testosterone to human plasma. Steroids 1968;11:609–635.

    Article  PubMed  CAS  Google Scholar 

  5. Dunn JF, Nisula BC, Rodbard D. Transport of Steroid-Hormones – Binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human-plasma. J Clin Endocrinol Metab 1981;53:58–68.

    Article  PubMed  CAS  Google Scholar 

  6. Rosner W, Hryb DJ, Khan MS, Nakhla AM, Romas NA. Sex hormone-binding globulin – binding to cell-membranes and generation of a 2nd messenger. J Androl 1992;13:101–106.

    PubMed  CAS  Google Scholar 

  7. Porto CS, Abreu LC, Gunsalus GL, Bardin CW. Binding of sex-hormone-binding globulin (SHBG) to testicular membranes and solubilized receptors. Mol Cell Endocrinol 1992;89:33–38.

    Article  PubMed  CAS  Google Scholar 

  8. Benten WPM, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F. Functional testosterone receptors in plasma membranes of T cells. FASEB J 1999;13:123–133.

    PubMed  CAS  Google Scholar 

  9. Vermeulen A. Androgens in the aging male. J Clin Endocrinol Metab 1991;713:221–224.

    Article  Google Scholar 

  10. Morley JE, Kaiser FE, Perry HM, Patrick P, Morley PMK, Stauber PM, Vellas B, Baumgartner RN, Garry PJ. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metab Clin Exp 1997;46:410–413.

    PubMed  CAS  Google Scholar 

  11. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 2001;86:724–731.

    Article  PubMed  CAS  Google Scholar 

  12. Zmuda JM, Cauley JA, Kriska A, Glynn NW, Gutai JP, Kuller LH. Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men – a 13-year follow-up of former multiple risk factor intervention trial participants. Am J Epidemiol 1997;146:609–617.

    PubMed  CAS  Google Scholar 

  13. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, Mckinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 2002;87:589–598.

    Article  PubMed  CAS  Google Scholar 

  14. Lapauw B, Goemaere S, Crabbe P, Kaufman JM, Ruige JB. Is the effect of testosterone on body composition modulated by the androgen receptor gene CAG repeat polymorphism in elderly men? Eur J Endocrinol 2007;159:459–468.

    Article  PubMed  CAS  Google Scholar 

  15. Deslypere JP, Vermeulen A. Leydig-cell function in normal men – effect of age, life-style, residence, diet, and activity. J Clin Endocrinol Metab 1984;59:955–962.

    Article  PubMed  CAS  Google Scholar 

  16. Vermeulen A, Kaufman JM, Giagulli VA. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J Clin Endocrinol Metab 1996;81:1821–1826.

    Article  PubMed  CAS  Google Scholar 

  17. Ferrini RL, Barrett-Connor E. Sex hormones and age: A cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol 1998;147:750–754.

    PubMed  CAS  Google Scholar 

  18. Simon D, Preziosi P, Barrett-Connor E, Roger M, Saintpaul M, Nahoul K, Papoz L. The influence of aging on plasma sex-hormones in men – the Telecom-Study. Am J Epidemiol 1992;135:783–791.

    PubMed  CAS  Google Scholar 

  19. Kaufman JM, Vermeulen A. Declining gonadal function in elderly men. Bailliere Clin Endocrinol Metab 1997;11:289–309.

    Article  CAS  Google Scholar 

  20. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 1999;84:3666–3672.

    Article  PubMed  CAS  Google Scholar 

  21. Gray A, Feldman HA, Mckinlay JB, Longcope C. Age, disease, and changing sex-hormone levels in middle-aged men – results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 1991;73:1016–1025.

    Article  PubMed  CAS  Google Scholar 

  22. Vermeulen A. Dehydroepiandrosteronesulfate and aging. Ann NY Acad Sci 1995;774:121–127.

    Article  PubMed  CAS  Google Scholar 

  23. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab 1986;15:213–228.

    Article  PubMed  CAS  Google Scholar 

  24. Labrie F, Belanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab 2003;82:2403–2409.

    Article  Google Scholar 

  25. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002;23:279–302.

    Article  PubMed  CAS  Google Scholar 

  26. Colvard D, Eriksen E, Keeting P, Wilsone EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC. Evidence of steroid receptors in human osteoblast-like cells. Proc Natl Acad Sci USA 1989;86:854–857.

    Article  PubMed  CAS  Google Scholar 

  27. Benz DJ, Haussler MR, Thomas MA, Speelman B, Komm BS. High-affinity androgen binding, and androgenic regulation for α1(1) procollagen and transforming growth factor-β steady state messenger ribonucleic acid levels in human osteoblast-like osteosarcoma cells. Endocrinology 1991;128:2723–2730.

    Article  PubMed  CAS  Google Scholar 

  28. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE. The localization of androgen receptors in human bone. J Clin Endocrinol Metab 1997;82:3493–3497.

    Article  PubMed  CAS  Google Scholar 

  29. Orwoll ES, Stribrska L, Ramsay EE, Keenan EJ. Androgen receptors in osteoblast-like cells lines. Calcif Tissue Int 1991;49:182–187.

    Article  Google Scholar 

  30. Benz DJ, Haussler MR, Thomas MA, Speelman B, Komm BS. High-affinity androgen binding and androgenic regulation of α1(I)-procollagen and transforming growth factor-β steady state messenger ribonucleic acid levels in human osteoblast-like osteosarcoma cells. Endocrinology 1991;128:2723–2730.

    Article  PubMed  CAS  Google Scholar 

  31. Kasperk C, Helmboldt A. Borcsok I, Heuthe S, Cloos O, Niethard F, Ziegler R. Skeletal site dependent expression of the androgen receptor in human osteoblastic populations. Calcif Tissue Int 1997;61:464–473.

    Article  PubMed  CAS  Google Scholar 

  32. Carrascosa A, Audi L, Ferrandez AM, Ballabriga A. Biological effects of androgens and identification of specific dihydrotestosterone-binding sites in cultured human fetal epiphyseal chondrocytes. J Clin Endocrinol Metab 1990;70:134–140.

    Article  PubMed  CAS  Google Scholar 

  33. Bellido T, Jilka RJ, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, Murray R, Manolagas SC. Regulation of interleukin-6, osteoclastogenesis and bone mass by androgens: the role of the androgen receptor. J Clin Invest 1995;95:2886–2895.

    Article  PubMed  CAS  Google Scholar 

  34. Deslypere JP, Vermeulen A. Influence of age on steroid concentrations in skin and striated muscle in women and in cardiac muscle and lung tissue in men. J Clin Endocrinol Metab 1985;61:648–653.

    Article  PubMed  CAS  Google Scholar 

  35. Rajfer J, Namkung PC, Petra PH. Identification, partial characterization and age-related changes of a cytoplasmic androgen receptor in the rat penis. J Steroid Biochem 1980;13:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  36. Roehrborn CG, Lange JL, George FW, Wilson JD. Changes in amount and intracellular distribution of androgen receptor in human foreskin as a function of age. J Clin Invest 1987;79:44–47.

    Article  PubMed  CAS  Google Scholar 

  37. Roth GS, Hess GD. Changes in the mechanisms of hormone and neurotransmitter action during aging: current status of the role of receptor and post-receptor alterations. A review. Mech Ageing Dev 1982;20:175–194.

    Article  CAS  Google Scholar 

  38. Irvine RA, Ma H, Yu MC, Ross RK, Stallcup MR, Coetzee GA. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum Mol Genet 2000;9:267–274.

    Article  PubMed  CAS  Google Scholar 

  39. Kazemiesfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor – possible pathogenetic relevance for the (CAG)(n)-expanded neuronopathies. Hum Mol Genet 1995;4:523–527.

    Article  CAS  Google Scholar 

  40. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997;94:8272.

    Article  CAS  Google Scholar 

  41. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med 2003;349:366–381.

    Article  PubMed  Google Scholar 

  42. Eisman J, Kelly P, Morrison N, Pocock N, Yeoman R, Birmingham J, Sambrook P. Peak bone mass and osteoporosis prevention. Osteoporos Int 1993;3:56–60.

    Article  PubMed  Google Scholar 

  43. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int 2000;11:985–1009.

    Article  PubMed  CAS  Google Scholar 

  44. Martin A, Bailey D, McKay H, Whiting S. Bone Mineral and calcium accretion during puberty. Am J Clin Nutr 1997;66:611–615.

    PubMed  CAS  Google Scholar 

  45. Bailey D, Martin A, McKay H, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 2000;15:2245–2250.

    Article  PubMed  CAS  Google Scholar 

  46. Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men: positive associations with androgens. J Clin Invest 1997;100:755–759.

    Article  Google Scholar 

  47. Greendale GA, Edelstein S, Barret-Connor E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo study. J Bone Miner Res 1997;12:1833–1843.

    Article  PubMed  CAS  Google Scholar 

  48. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogens. J Clin Endocrinol Metab 1998;83:2266–2274.

    Article  PubMed  CAS  Google Scholar 

  49. Ongphiphadhanakul B, Rajatanavin R, Chaprasertyothin S, Piaseu N, Chailurkit L. Serum oestradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin Endocrinol (Oxford) 1998;19:803–809.

    Article  Google Scholar 

  50. Gilberg P, Johansson AG, Ljunghall S. Decreased estradiol levels and free androgen index and elevated sex hormone-binding globulin in male idiopathic osteoporosis. Calcif Tissue Int 1999;64:209–213.

    Article  Google Scholar 

  51. Center JR, Nguyen TV, Sambrook PN, Eisman JA. Hormonal and biochemical para- meters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab 1999;84:3626–3635.

    Article  PubMed  CAS  Google Scholar 

  52. Amin S, Zhang Y, Sawin CT, Evens SR, Hannan MT, Kiel DP, Wilson PWF, Felson DT. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Intern Med 2000;133:951–963.

    PubMed  CAS  Google Scholar 

  53. Szulc P, Munoz F, Claustrat B, Garnero P, Marchand F, Duboeuf F, Delmas PD. Bioavailable estradiol may be an important determinant of osteoporosis in men. the MINOS study. J Clin Endocrinol Metab 2001;86:192–199.

    Article  PubMed  CAS  Google Scholar 

  54. Scopacasa F, Horowitz M, Wishart JM, Morris HA, Chatterton BE, Need AG. The relation between bone density, free androgen index, and estradiol in men 60 to 70 years old. Bone 2000;27:145–149.

    Article  PubMed  CAS  Google Scholar 

  55. Martinez Diaz Guerra G, Hawkins F, Rapado A, Ruiz diaz MA, Diaz. Hormonal and anthropometric predictors of bone mass in healthy elderly men: major effect of sex hormone binding globulin, parathyroid hormone and body weight. Osteoporosis Int 2001;12:178–184.

    Article  Google Scholar 

  56. Khosla S, Melton LJ III, Riggs BL. Estrogens and bone health in men. Calcif Tissue Int 2001;69:189–192.

    Article  PubMed  CAS  Google Scholar 

  57. Goemaere S, Zmierczak H, Van Pottelbergh I, Toye K, Daems M, Kaufman JM. Free or bioavailable estradiol is a determinant of bone loss in community-dwelling elderly men: a longitudinal study. J Bone Miner Res 2001;10:Abstract S355.

    Google Scholar 

  58. Legrand E, Hedde C, Gallois Y, Degasne I, Boux De Casson F, Mathieu E, Basle MF, Chappard D, Audran M. Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone 2001;29:90–95.

    Article  PubMed  CAS  Google Scholar 

  59. Van Den Beld AW, De Jong FH, Grobbee DE, Pols HAP, Lamberts SWJ. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab 2000;85:3275–3282.

    Google Scholar 

  60. Lormeau C, Soudan B, D’Herbomez M, Pigny P, Duquesnoy B, Cortet B. Sex hormone-binding globulin, estradiol, and bone turnover markers in male osteoporosis. Bone 2004;34:933–939.

    Article  PubMed  CAS  Google Scholar 

  61. Center JR, Nguyen TV, Sambrook PN, Eisman JA. Hormonal and biochemical parameters and osteoporotic fractures in elderly men. J Bone Miner Res 2000;15:1405–1411.

    Article  PubMed  CAS  Google Scholar 

  62. Evans SF, Davie MW. Low body size and elevated sex hormone binding globulin distinguish men with idiopathic vertebral fracture. Calcif Tissue Int 2002;70:9–15.

    Article  PubMed  CAS  Google Scholar 

  63. Rubenstein HS, Salomon ML, The growth depressing effect of large doses of testosterone propionate in the castrate albino rat. Endocrinology 1941;28:112–114.

    Article  Google Scholar 

  64. Clein LJ, Kowalewski K. Some effects of cortisone and an anabolic steroid on healing of experimental fractures. Can J Surg 1962;5:108–117.

    PubMed  CAS  Google Scholar 

  65. Wiancko KB, Kowalewski K. Strength of callus in fractured humerus rat treated with anti-anabolic and anabolic compounds. Acta Endocrinol (Copenh) 1961;36:310–318.

    CAS  Google Scholar 

  66. Chesnut CH, Ivey, Gruber HE, Matthews M, Nelp WB, Sisom K, Baylink DJ. Stanozolol in postmenopausal osteoporosis: therapeutic efficacy and possible mechanism of action. Metabolism 1983;32:571–580.

    Article  PubMed  Google Scholar 

  67. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000;21:115–137.

    Article  PubMed  CAS  Google Scholar 

  68. Kousteni S, Bellido T, Plotkin LI, O’Brien Ca, Bodenner DL, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC. Nongenotropic, sex-nonspecific signaling through the estrogen and androgen receptors: dissociation of transcriptional activity. Cell 2001;104:719–730.

    PubMed  CAS  Google Scholar 

  69. Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 2002;298:843–846.

    Article  PubMed  CAS  Google Scholar 

  70. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell E, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000;106:1533–1560.

    Article  Google Scholar 

  71. Finkelstein JA, Klibanski A, Neer RM, Doppelt SH, Rosenthal DI, Serge GV, Crowley WF Jr. Increases in bone density during treatment of mean with idiopathic hypogonadism hypogonadism. J Clin Endocrinol Metab 1989;69:776–783.

    Article  PubMed  CAS  Google Scholar 

  72. Guo CY, Jones TH, Eastell R. Treatment of isolated hypogonadotropic hypogonadism effect on bone mineral density and bone turnover. J Clin Endocrinol Metab 1997;82:658–665.

    Article  PubMed  CAS  Google Scholar 

  73. Foresta C, Ruzza G, Mioni R, Meneghello A, Baccichetti C. Testosterone and bone loss in Klinefelter. Horm Metabol Rex 1983;15:56–57.

    Article  CAS  Google Scholar 

  74. Stepan JJ, Lachman M, Zverina J, Pacovsky V, Baylink DJ. Castrated men exhibit bone loss: effect of calcitonin treatment of biochemical indices of bone remodelling. J Clin Endocrinol Metab 1989;69:523–527.

    Article  PubMed  CAS  Google Scholar 

  75. Greenspan SL, Oppenheim DS, Klibanski A. Importance of gonadal steroids to bone mass in men with hyperprolactemic hypogonadism. Ann Intern Med 1989;110:526–531.

    PubMed  CAS  Google Scholar 

  76. Rigotti NA, Neer RM, Jameson L. Osteopenia and bone fractures in a man with anorexia nervosa and hypogonadism. JAMA 1986;256:385–388.

    Article  PubMed  CAS  Google Scholar 

  77. Goldray D, Weisman Y, Jaccard N, Merdler C, Chen J, Matzkin H. Decreased bone density in elderly men treated with gonadotropin-releasing hormone agonist decapeptyl (D-Trp6-GnRH). J Clin Endocrinol Metab 1993;76:288–290.

    Article  PubMed  CAS  Google Scholar 

  78. Stoch SA, Parker RA, Chen L, Bubley G, Ko YJ, Vincelette A, Greenspan SL. Bone loss in men with prostate cancer treated with gonadotropin-releasing hormone agonists. J Clin Endocrinol Metab 2001;2787–2791.

    Google Scholar 

  79. Diamond TH, Higano CS, Smith MR, Guise TA, Singer FR. Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy: recommendations for diagnosis and therapies. Cancer 2004;100:892–899.

    Article  PubMed  Google Scholar 

  80. Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF Jr. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Int Med 1987;106:354–361.

    PubMed  CAS  Google Scholar 

  81. Finkelstein JS, Neer RM, Biller BMK, Crawford JD, Klibanski A. Osteopenia in men with a history of delayed puberty. N Engl J Med 1992;326:600–604.

    Article  PubMed  CAS  Google Scholar 

  82. Katznelson L, Finkelstein JA, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996;81:4358–4365.

    Article  PubMed  CAS  Google Scholar 

  83. Behre HM, Kliesch S, Leifke E, Link TM, Neischlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997;82:2386–2390.

    Article  PubMed  CAS  Google Scholar 

  84. Snyder PJ, Peachey H, Berlin JA, Hannoush P, Haddad G, Dlewati A, Santanna J, Loh L, Lenrow DA, Holmes JH, Kapoor SC, Atkinson LE, Strom BL. Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab 2000;85:2670–2677.

    Article  PubMed  CAS  Google Scholar 

  85. Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D. Relative impact of androgen and estrogen receptor in the effects of androgens on trabecular and cortical bone in growing mice: a study in the androgen receptor knock-out mouse model. J Bone Miner Res 2006;21:576–585.

    Article  PubMed  CAS  Google Scholar 

  86. Turner RT, Hannon KS, Demers LM, Buchaman J, Bell NH. Differential effects of gonadal function in bone histomorphometry in male and female rats. J Bone Miner Res 1989;4:557–563.

    Article  PubMed  CAS  Google Scholar 

  87. Vanderschueren D, Van Herck E, Nijs J, Ederveen AG, De Coster R, Bouillon R. Aromatase inhibition impairs skeletal modelling and decreases bone mineral density in growing male rats. Endocrinology 1997;6:2301–2307.

    Article  Google Scholar 

  88. Martin RB. Aging and changes in cortical mass and structure. In: Orwoll ES, ed. Osteoporosis in men: the effects of gender on skeletal health. San Diego: Academic Press, 1999:111–128.

    Google Scholar 

  89. Rogol AD. Androgens and puberty. Mol Cell Endocrinol 2002;198:25–29.

    Article  PubMed  CAS  Google Scholar 

  90. Vanderschueren D, Vandeput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C. Androgen and bone. Endocr Rev 2004;25:389–425.

    Article  PubMed  CAS  Google Scholar 

  91. Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 1990;8:612–617.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang XZ, Kaly DN, Erbas B, Hopper JL, Seeman E. The effects of gonadectomy on bone size, mass and volumetric density in growing rats are gender-, site- and growth hormone-specific. J Bone Miner Res 1999;14:802–809.

    Article  PubMed  CAS  Google Scholar 

  93. Lorentson M, Swanson C, Andersson N, Mellströ m D, Ohlsson C. Free testosterone is a positive, whereas free estradiol is a negative predictor of corticol bone size in young Swedish men: The GOOD study. J Bone Miner Res 2005;20:1334–1341.

    Article  CAS  Google Scholar 

  94. Vanderschueren D, Van Herck E, Suiker AM, Visser WJ, Schot LP, Chung K, Lucas RS, Einhorn RA, Bouillon R. Bone and mineral metabolism in the androgen-resistant (testicular feminized) male rat. J Bone Miner Res 1993;8:801–809.

    Article  PubMed  CAS  Google Scholar 

  95. Vandeput L. Swinnen JV, Boonen S. Van Herck E, Erben RG, Bouillon R, Vanderschueren D. Role of the androgen receptor in skeletal homeostasis: the androgen-resistant testicular feminized male mouse model. J Bone Miner Res 2004;19:1462–1470.

    Article  CAS  Google Scholar 

  96. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara K, Yamamoto Y, Nakamichi Y, Metzger D, Chambon P, Nakamura K, Kawaguchi H, Kato S. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci USA 2003;100:9416–9421.

    Article  PubMed  CAS  Google Scholar 

  97. Marcus R, Leary D, Schneider DL, Shane E, Favus M, Quigley CA. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J Clin Endocrinol Metab 2000;85:1032–1037.

    Article  PubMed  CAS  Google Scholar 

  98. Munoz-Torres M, Jodar E, Quesada M, Escobar-Jemenez F. Bone mass in androgen-insensitivity syndrome: response to hormonal replacement therapy. Calcif Tissue Int 1995;57:94–96.

    Article  PubMed  CAS  Google Scholar 

  99. Soule SG, Conway G, Prelevic GM, Prentice M, Ginsburg J, Jacobs HS. Osteopenia as a feature of the androgen insensitivity syndrome. Clin Endocrinol (Oxf) 1995;43:671–675.

    Article  CAS  Google Scholar 

  100. Bertelloni S, Baroncelli GI, Federico G, Cappa M, Lala R, Saggese G. Altered bone mineral density in patients with complete androgen insensitivity syndrome. Horm Res 1998;50:309–314.

    Article  PubMed  CAS  Google Scholar 

  101. Schwartz BD, Zhy Y-S, Cordero J, Imperato-McGinley J. 5α-reductase deficiency and complete androgen insensitivity: natural models to suggest a direct role for androgens on bone density in men (Abstract OR23-1). Proc of the 81th annual Meeting of the Endocrine Society (1999).

    Google Scholar 

  102. Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002;23:279–302.

    Article  PubMed  CAS  Google Scholar 

  103. Tabensky A, Duan Y, Edmonds J, Seeman E. The contribution of reduced peak accrual of bone and age-related bone loss to osteoporosis at the spine and hip: insights from the daughters of women with vertebral and hip fractures. J Bone Miner Res 2001;16:1101–1107.

    Article  PubMed  CAS  Google Scholar 

  104. Hui SL, Slemenda C, Johnston CC Jr. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1990;1:30–34.

    Article  PubMed  CAS  Google Scholar 

  105. Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA. Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol 1995;133:265–271.

    Article  PubMed  CAS  Google Scholar 

  106. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis: inference from a cross-sectional model. J Clin Invest 1999;93:788–808.

    Google Scholar 

  107. Parsons TJ, Prentice A, Smith EA, Cole TJ, Compston JE. Bone mineral mass consolidation in young British adults. J Bone Miner Res 1992;11:264–274.

    Article  Google Scholar 

  108. Recker R, Davies M, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA 1992;268:2403–2408.

    Article  PubMed  CAS  Google Scholar 

  109. Slosman DO, Rizzoli R, Pichard C, Donath A, Bonjour JP. Longitudinal measurement of regional and whole body bone mass in young healthy adults. Osteoporos Int 1994;4:185–190.

    Article  PubMed  CAS  Google Scholar 

  110. Kroger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 1992, 17:75–85.

    Article  PubMed  CAS  Google Scholar 

  111. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, Korenman SG. Differential effect of race on the axial and appendicular skeleton of children. J Clin Endocrinol Metab 1994;83:1420–1427.

    Article  Google Scholar 

  112. Gilsanz V, Boechat MI, Roe RF, Loro ML, Sayre JW, Goodman WG. Gender differences in vertebral body size in children and adolescents. Radiology 1999;190:673–677.

    Google Scholar 

  113. Mora S, Pitukcheewanont P, Kaufman FR, Nelson JC, Gilsanz V. Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 1997;14:1664–1671.

    Article  Google Scholar 

  114. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 1996;73:1332–1339.

    Article  Google Scholar 

  115. Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howmen-Giles R. Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 2000;81:1586–1590.

    Article  Google Scholar 

  116. Boot AM, de Ridder MAJ, Pols HAP, Krenning EP, de Muinck Keizer-Schrama SMPF. Bone mineral density in children and adolescents: relation to puberty, calcium intake and physical activity. J Clin Endocrinol Metab 1997;82:57–62.

    Article  PubMed  CAS  Google Scholar 

  117. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E. The differing tempo of growth in bone size, mass and density in girls is region-specific. J Clin Invest 1988;104:795–804.

    Article  Google Scholar 

  118. Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int 2004;15:263–273.

    Article  PubMed  Google Scholar 

  119. Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F. Differential effect of gender on the sizes of the bones in the axial and appendicular skeleton. J Clin Endocrinol Metab 1984;82:1603–1607.

    Article  Google Scholar 

  120. Taylor J, Twomey LT. Sexual dimorphism in human vertebral body shape? J Anat 1986;138:281–286.

    Google Scholar 

  121. Veldhuizen AG, Baas P, Webb PJ. Observations on the growth of the adolescent spine. J Bone Joint 1999;68B:724–728.

    Google Scholar 

  122. Vega E, Ghiringhelli G, Mautalen C, Valzacchie GR, et al. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 1995;62:465–469.

    Article  Google Scholar 

  123. Gilsanz V, Luiza Loro M, Roe TF, Sayre J, Gilsanz R, Schulz EE. Vertebral size in elderly women with osteoporosis. J Clin Invest 1996;95:2332–2337.

    Article  Google Scholar 

  124. Seeman E, Duan Y, Fong C, Edmonds J. Fracture site-specific deficits in bone size and volumetric density in men with spine and hip fractures. J Bone Miner Res 2001;16:120–127.

    Article  PubMed  CAS  Google Scholar 

  125. Duan Y, Parfitt AM, Seeman E. Vertebral bone mass, size and volumetric density in women with spinal fractures. J Bone Mineral Res 1999;14:1796–1802.

    Article  CAS  Google Scholar 

  126. Hangartner T, Gilsanz V. Evaluation of cortical bone by computed tomography. J Bone Miner Res 1996;11:1518–1525.

    Article  PubMed  CAS  Google Scholar 

  127. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 1991;59:344–351.

    Article  Google Scholar 

  128. Beck TJ, Ruff CB, Scott WW Jr, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 1998;50:24–29.

    Article  Google Scholar 

  129. Peacock M, Carey GLM, Ambrosius W, Turner Ch, Hui S, Johnston CC Jr. Bone mass and structure at the hip in men and women over the age of 60 years. Osteoporos Int 1996;8:231–239.

    Article  Google Scholar 

  130. Zamberlan N, Radetti G, Paganini C, Rossini M, Braga V, Adami S. Evaluation of the cortical thickness and bone density by roentgen microdensitometry in growing males and females. Eur J Pediatr 1996;155:377–382.

    Article  PubMed  CAS  Google Scholar 

  131. Garn SM. Changes at the subperiosteal surface. In: The earlier gain and later loss of cortical bone. Springfield: CC Thomas, 1992.

    Google Scholar 

  132. Rauch F, Neu C, Manz F, Schoenau E. The development of metaphyseal cortex – implications for distal radius fractures during growth. J Bone Miner Res 2001;16:1547–1555.

    Article  PubMed  CAS  Google Scholar 

  133. Schoenau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 2001;86:613–618.

    Article  PubMed  CAS  Google Scholar 

  134. Israel H. Progressive enlargement of the vertebral body as part of the process of human skeletal aging. Age Aging 1990;2:71–79.

    Article  Google Scholar 

  135. Mosekilde L, Mosekilde L. Sex difference in age related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 1992;11:67–73.

    Article  Google Scholar 

  136. Garn SM, Sullivan TV, Decker SA, Larkin FA, Hawthorne VM. Continuing bone expansion and increasing bone loss over a two-decade period in men and women from a total community sample. Am J Hum Biol 1988;4:57–67.

    Article  Google Scholar 

  137. Ruff CD, Hayes WC. Sex differences in age-related remodeling of the femur and tibia. J Orthoped Res 1999;6:886–896.

    Article  Google Scholar 

  138. Libanati C, Baylink DJ, Lois-Wenzel E, Srinivasan N, Mohan S. Studies on the potential mediators of skeletal changes occurring during puberty in girls. J Clin Endocrinol Metab 1995;84:2807–2814.

    Article  Google Scholar 

  139. Garn SM, Rhomann CG, Nolan P Jr. The developmental nature of bone changes during aging. In: Birren JE, ed. Relations of development and aging. N.H.: Ayer North Stratford, 1980:41–61.

    Google Scholar 

  140. Haapasalo H, Kannus P, Sievanen H, Pasanen M, UusiRasi K, Heinonen A, Oja P, Vuori I. Development of mass, density, and estimated mechanical characteristics of bones in Caucasian females. J Bone Miner Res 1996;11:1751–1760.

    Article  PubMed  CAS  Google Scholar 

  141. Bonjour JP, Thientz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1992;73:555–556.

    Article  Google Scholar 

  142. Geusens P, Cantatore F, Nijs J, Proesmans W, Emma F, Dequeker J. Heterogeneity of growth of bone in children at the spine, radius and total skeleton. Growth Dev Aging 1999;55:249–256.

    Google Scholar 

  143. Hui SL, Zhou L, Evans R, Slemenda CW, Peacock M, Weaver CM, McClintock C, Johnston CC. Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteoporos Int 1992;9:200–205.

    Article  Google Scholar 

  144. Parfitt AM. The physiology and clinical significance of bone histomorphometric data. In: Recker RR, ed. Bone histomorphometry: techniques and interpretation, Boca Raton: CRC Press, 143–223.

    Google Scholar 

  145. Bradney M, Karlson MK, Duan Y, Stuckey S, Bass S, Seeman E. Heterogeneity in the growth of the axial and appendicular skeleton in boys: implications for the pathogenesis of bone fragility in men. J Bone Miner Res 1996;15:1871–1878.

    Article  Google Scholar 

  146. Mann T, Oviatt SK, Wilson D, Nelson D, Orwoll ES. Vertebral deformity in men. J Bone Miner Res 1992;7:1259–1265.

    Article  PubMed  CAS  Google Scholar 

  147. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 1996;312:1254–1259.

    CAS  Google Scholar 

  148. Kleerekoper M,Villanueva AR,Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 1985;37:594–597.

    Article  PubMed  CAS  Google Scholar 

  149. Recker RR. Architecture and vertebral fracture. Calcif Tissue Int 1993;53:S139–S142.

    Article  PubMed  Google Scholar 

  150. Legrand E, Chappard D, Basle MF, Audran M. Evaluation of trabecular microarchitecture. Prospects for predicting the risk of osteoporosis and fracture. Rev Rhum Engl Ed 1999;66:543–547.

    PubMed  CAS  Google Scholar 

  151. Benito M, Gomberg B, Wehrli FW, Weening RH, Zemel B, Wright AC, Song HK, Cucchiara A, Snyder PJ. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 2003;88:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  152. Ito M, Nakamura T, Tsurusaki K, Uetani M, Hayashi K. Effects of menopause on age-dependent bone loss in the axial and appendicular skeletons in healthy Japanese women. Osteoporos Int 1999;10:377–383.

    Article  PubMed  CAS  Google Scholar 

  153. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 1998;22:445–454.

    Article  PubMed  CAS  Google Scholar 

  154. Gordon CL, Webber CE, Nicholson PS. Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J 1998;49:390–397.

    PubMed  CAS  Google Scholar 

  155. Oden ZM, Selvitelli DM, Hayes WC, Myers ER. The effect of trabecular structure on DXA-based predictions of bone failure. Calcif Tissue Int 1998;63:67–73.

    Article  PubMed  CAS  Google Scholar 

  156. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999;25:55–60.

    Article  PubMed  CAS  Google Scholar 

  157. Devogelaer JP, Crabbé J, Deuxchaisnes CN de. Bone mineral density in Addison’s disease: evidence of an effect on adrenal androgens on bone mass. Br Med J 1987;294:798–800.

    Article  CAS  Google Scholar 

  158. Florkowski CM, Holmes SJ, Elliot JR, Donald RA, Espiner EA. Bone mineral density is reduced in female but not male subjects with Addison’s disease. NZ Med J 1994;107:52–53.

    CAS  Google Scholar 

  159. Zelissen PMJ, Croughs RJM, Van Rijk JK, Raymakers JA. Effects of glucocorticoids replacement therapy on bone mineral density in patients with Addison’s disease. Ann Intern Med 1994;120:207–210.

    PubMed  CAS  Google Scholar 

  160. Valero Ma, Leon M, Ruiz Valdepenas MPR, Larrodera L, Lopez MB, Papapietro K, Jara A, Hawkins F. Bone density and turnover in Addison’s disease: effect of glucocorticoid treatment. Bone Miner 1994;26:9–17.

    Article  PubMed  CAS  Google Scholar 

  161. Braatvedt GD, Joyce M, Evans M, Clearwater J, Reid IR. Bone mineral density in patients with Addison’s disease. Osteoporos Int 1999;10:435–440.

    Article  PubMed  CAS  Google Scholar 

  162. Buchanan JR, Myers C, Lloyd T, Leuenberger P, Demers LM. Determinants of peak trabecular bone density in women: the role of androgens, estrogen, and exercise. J Bone Miner Res 1988;3:673–680.

    Article  PubMed  CAS  Google Scholar 

  163. Deutsch S, Benjamin F, Seltzer V, Tafreshi M, Kocheril G, Frank A. The correlation of serum estrogen and androgens with bone density in the late menopause. Int J Gynaecol Obstet 1987;25:217–222.

    Article  PubMed  CAS  Google Scholar 

  164. Haden ST, Glowacki J, Hurwitz S, Rosen C, LeBoff MS. Effects of age and serum dehydroepiandro- sterone sulphate, IGF-I and IL-6 levels in women. Calcif Tissue 2000;66:414–418.

    Article  CAS  Google Scholar 

  165. Miller KK, Biller BMK, Hier J, Arena E, Klibansky A. Androgens and bone density in women with hypopituitarism. J Clin Endocrinol Metab 2002;87:2770–2776.

    Article  PubMed  CAS  Google Scholar 

  166. Dixon JE, Rodin A, Murby B, Chapman MG, Fogelman I. Bone mass in hirsute women with androgen excess. Clin Endocrinol 1989;30:271–277.

    Article  CAS  Google Scholar 

  167. Dagogo-Jack S, Al-Ali N, Qurttom M. Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab 1997;82:2821–2825.

    Article  PubMed  CAS  Google Scholar 

  168. Good C, Tulchinsky M, Mauger D, Derners LM, Legro RS. Bone mineral density and body composition in lean women with polycystic ovary syndrome. Fertil Steril 1990;72:21–25.

    Article  Google Scholar 

  169. Slemenda C, Longcope C, Peacock M, Hui S, Johnston C. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri- and postmenopausal women. J Clin Invest 1996;97:14–21.

    Article  PubMed  CAS  Google Scholar 

  170. Greendale G, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women: the Rancho Bernardo Study. J Bone Miner Res 1997;12:1833–1843.

    Article  PubMed  CAS  Google Scholar 

  171. Need GA, Horowitz M, Bridges A, Diprad A, Morris HA, Nordin CN. Effects of nandrolone decanoate and anti-resorptive therapy on vertebral density in osteoporotic women. Arch Intern Med 1989;149:57–60.

    Article  PubMed  CAS  Google Scholar 

  172. Christiansen C, Riis BJ. 17β-estradiol and continuous norethisterone: a unique treatment for established osteoporosis in elderly women. J Clin Endocrinol Metab 1990;71:836–841.

    Article  PubMed  CAS  Google Scholar 

  173. Raisz LG, Wiita B, Artis A, Bowen A, Schwartz S, Trahiotis M, Shoukri K, Smith J. Comparison of the effects of estrogen alone and estrogen plus androgen on biochemical markers of bone formation and resorption in postmenopausal women. J Clin Endocrinol Metab 1996;81:37–43.

    Article  PubMed  CAS  Google Scholar 

  174. Cann CE, Martin MC, Genant HK, Jaffe RB. Decreased spinal mineral content in amenorrheic women. JAMA 1994;251:626–629.

    Article  Google Scholar 

  175. Guleki B, Davies MC, Jacobs HS. Effects of treatment on established osteoporosis in young women with amenorrhea. Clin Endocrinol 1994;41:275–281.

    Article  Google Scholar 

  176. Davies MC, Guleki B, Jacobs HS. Osteoporosis in Turner’s syndrome and other forms of primary amenorrhea. Clin Endocrinol 1995;43:741–746.

    Article  CAS  Google Scholar 

  177. Bonjour JP, Theintz G, Buchs B, Slosmans D, Rizzoli. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991;73:555–563.

    Article  PubMed  CAS  Google Scholar 

  178. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP. Longitudinal monitoring of bone mass accumulation in healthy adolescents; evidence for a marked reduction after 16 year of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992 75:1060–1065.

    Article  PubMed  CAS  Google Scholar 

  179. Takahaski Y, Minamitani K, Kobayashi Y, Minagawa M, Yasuda T, Niimi H. Spinal and femoral bone mass accumulation during normal adolescence: comparison with female patients with sexual precocity and with hypogonadism. J Clin Endocrinol Metab 1996;81:1248–1253.

    Article  Google Scholar 

  180. Bradney M, Karlsson MK, Duan Y, Stuckey S, Bass S, Seeman E. Heterogeneity in the growth of the axial and appendicular skeleton in boys: Implications for the pathogenesis of bone fragility in men. J Bone Miner Res 2000;15:1871–1878.

    Article  PubMed  CAS  Google Scholar 

  181. Sigurjonsdottir TJ, Hayles AB. Precocious puberty: a report of 96 cases. Am J Dis Child 1968, 115:309.

    PubMed  CAS  Google Scholar 

  182. Jones-Klingensmith G, Carcia SC, Jones HW, Migeon CJ, Blizzard RM. Glucocorticoid treatment of girls with congenital adrenal hyperplasia: effect on height, sexual maturation and fertility. J Pediatr 1977,90:996.

    Article  Google Scholar 

  183. Urban MD, Lee PA, Migeon CJ. Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N Engl J Med 1978;299:1392.

    Article  PubMed  CAS  Google Scholar 

  184. Di Martino-Nardi J, Stoner E, O’Connell A, New MI The effect of treatment on final height in classical congenital adrenal hyperplasia. Acta Endocrinol (Copenh) (Suppl) 1986;279:305.

    Google Scholar 

  185. Cooper C, Dennison EM, Leufkens HG, Bishop NJ, van Staa TP. Epidemiology of childhood fractures in Britain. A study using the general practice research database. J Bone Miner Res 2004;19:1976–1981.

    Article  PubMed  Google Scholar 

  186. Seeman E, Karlsson M, Duan Y. On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeleton development predisposes to site-specific deficits in bone size and density: a cross-sectional study. J Bone Miner Res 2000;15:2259–2265.

    Article  PubMed  CAS  Google Scholar 

  187. Bass S, Bradney M, Pearce G, Hendrich E, Stuckey S, Seeman E. Short stature and delayed puberty: influence of selection bias on leg length and reduced energy intake on trunk length in gymnasts. J Pediatr 2000;136:149–155.

    Article  PubMed  CAS  Google Scholar 

  188. Ristevski S, Yeung S, Poon C, Wark J, Ebeling P. Osteopenia is common in young first-degree male relatives of men with osteoporosis. ANZBMS, Australia: Annual Scientific Meeting, 7:65.

    Google Scholar 

  189. Van Pottelbergh I, Goemaere S, Zmierczak H, De Bacquer D, Kaufman JM. Deficient acquisition of bone during maturation underlies idiopathic osteoporosis in men: evidence from a three-generation family study. J Bone Miner Res 2003;18:303–311.

    Article  PubMed  Google Scholar 

  190. Gilsanz V, Gibbens DT, Roe TF, Carloson M, Senac MO, Boechat MI, Huang HK, Schulz EE, Libanati CR, Cann CC. Vertebral bone density in children: effect of puberty. Radiology 1988;166:847–850.

    PubMed  CAS  Google Scholar 

  191. Krabbe S. Christiansen C, RØ dbro P, TransbØ l I. Effect of puberty on rates of bone growth and mineralization: with observations in male delayed puberty. Arch Dis Child 1979;54:950–953.

    Article  PubMed  CAS  Google Scholar 

  192. Krabbe S, Christiansen C. Longitudinal study of calcium metabolism in male puberty. I. Bone mineral content and serum levels of alkaline phosphatase, phosphate and calcium. Acta Pediatr Scan 1984;73:745–749.

    Article  CAS  Google Scholar 

  193. Rosenfield RL. Diagnosis and management of delayed puberty. J Clin Endocrinol Metab 1990;70:559–562.

    Article  PubMed  CAS  Google Scholar 

  194. Seeman E. From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 1997;12:509–521.

    Article  PubMed  CAS  Google Scholar 

  195. Tanner JM, Davies PSW. Clinical longitudinal standards for height and height velocity for North American children. J Pediatr 1985;107:317–329.

    Article  PubMed  CAS  Google Scholar 

  196. Bertolloni S, Baroncelli GI, Ferdeghini M, Perri G, Saggese G. Normal volumetric bone mineral density an bone turnover in young men with histories of constitutional delay of puberty. J Clin Endocrinol Metab 1998;83:4280–4283.

    Article  Google Scholar 

  197. Finkelstein JS, Klibanski A, Neer RM. A longitudinal evaluation of bone mineral density in adults with histories of delayed puberty. J Clin Endocrinol Metab 1996;81:1152–1155.

    Article  PubMed  CAS  Google Scholar 

  198. Yap F, Hogler W, Briody J, Moore B, Howman-Giles R, Cowell CT. The skeletal phenotype of men with previous constitutional delay of puberty. J Clin Endocrinol Metab 2004;89:4306–4311.

    Article  PubMed  CAS  Google Scholar 

  199. Kindblom JM, Lorentzon M, Norjavaara E, Hellqvist A, Nilsson S, Mellströ m D, Ohlsson C. Pubertal timing predicts previous fractures and BMD in young adult men: the GOOD study. J Bone Miner Res 2006;21:790–795.

    Article  PubMed  Google Scholar 

  200. Warren MP, Brooks-Gunn J, Hamilton LH, Warren LF, Hamilton WG. Scoliosis and fractures in young ballet dancers: relation with delayed menarche and secondary amenorrhea. N Engl J Med 1986;314:1348–1353.

    Article  PubMed  CAS  Google Scholar 

  201. Dhuper S, Warren MP, Brooks-Gunn J, Fox R. Effects of hormonal status on bone density in adolescent girls. J Clin Endocrinol Metab 1990;71:1083–1088.

    Article  PubMed  CAS  Google Scholar 

  202. Sims AN, Clement-Lacroix P, De Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA. Bone homeostasis in growth hormone receptor-null mice in restored by IGF-I but independent from stat5. J Clin Invest 2000;106:1095–1103.

    Article  PubMed  CAS  Google Scholar 

  203. Tanner JM, Whitehouse RH, Marubini E, Resele LF. The adolescent growth spurt of boys and girls of the Harpenden growth study. Ann Hum Biol 1976;3:109–126.

    Article  PubMed  CAS  Google Scholar 

  204. Blizzard RM, Thompson RG, Baghdassarian A, Kowarski A, Migeon CJ, Rodriguez A. The interrelationship of steroids, growth hormone and other hormones on pubertal growth. In: Grumbach MM, Grave GD, Mayer FE, eds. The control of the onset of puberty. New York: John Wiley & Sons, 1974:342.

    Google Scholar 

  205. Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentration of GH. A new inborn error of metabolism. Israel J Med Sci 1966;2:15.

    Google Scholar 

  206. Martin LG, Clark JW, Connor TB. Growth hormone secretion enhanced by androgens. J Clin Endocrinol Metab 1968;28:425

    Article  PubMed  CAS  Google Scholar 

  207. Martin LG, Grossman MS, Connor TB, Levitsky LL, Clark JW, Camitta FD. Effect of androgen on growth hormone secretion and growth in boys with short stature. Acta Endocrinol (Copenh) 1979;91:201–212.

    CAS  Google Scholar 

  208. Illig R, Prader A. Effect of testosterone on growth hormone secretion in patients with anorchia and delayed puberty. J Clin Endocrinol Metab 1970;20:615.

    Article  Google Scholar 

  209. Wiedeman E, Schwartz F, Frantz AG. Acute and chronic estrogen effects upon serum somatomedin activity, growth hormone and prolactin in man. J Clin Endocrinol Metab 1976;42:942–952.

    Article  Google Scholar 

  210. Moll G, Rosenfield RL, Fang VS. Administration of low-dose estrogen rapidly and directly stimulates growth hormone production. Am J Dis Child 1986;140:124–127.

    PubMed  Google Scholar 

  211. Meyer WJ, Furlanetto RW, Walker PA. The effect of sex steroids on radioimmunoassayable plasma somatomedin-C concentrations. J Clin Endocrinol Metab 1982;55:1184–1187.

    Article  PubMed  Google Scholar 

  212. Ho YK, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO. Effects of sex and age on the twenty-four-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 1987;64:51–58.

    Article  PubMed  CAS  Google Scholar 

  213. Mauras N, Blizzard RM, Link K, Johnson ML, Rogol AD, Veldhuis JD. Augmentation of growth hormone secretion during puberty: evidence for a pulse amplitude-modulated phenomenon. J Clin Endocrinol Metab 1987;64:596–601.

    Article  PubMed  CAS  Google Scholar 

  214. Rosenfield RL, Furlanetto R, Bock D. Relationship of somatomedin-C concentrations to pubertal changes. J Pediatr 1983;103:723–728.

    Article  PubMed  CAS  Google Scholar 

  215. Parker MW, Johanson AJ, Rogol AD, Kaiser DL, Blizzard RM. Effects of testosterone on somatomedin-C concentrations in prepubertal boys. J Clin Endocrinol Metab 1984;58:87–90.

    Article  PubMed  CAS  Google Scholar 

  216. Ross JL, Cassorla FG, Skerda MC, Valk IM, Loriaux DL, Cutler GB. A preliminary study of the effect of estrogen dose on growth in Turner’s syndrome. N Engl J Med 1983;39:1104–1106.

    Article  Google Scholar 

  217. Cuttler L, Van Vliet G, Conte FA, Kaplan SL, Grumbach M. Somatomedin-C levels in children and adolescents with gonadal dysgenesis: differences from age-matched normal females and effect of chronic replacement therapy. J Clin Endocrinol Metab 1985;60:1087–1092.

    Article  PubMed  CAS  Google Scholar 

  218. Bourguignon JP. Linear growth as a function of age at onset of puberty and sex steroid dosage: therapeutic implications. Endocr Rev 1988;9:467–488.

    Article  PubMed  CAS  Google Scholar 

  219. Styne DM. The regulation of pubertal growth. Horm Res 2003;60(suppl 1):22–26.

    Article  PubMed  CAS  Google Scholar 

  220. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987;219:1–9.

    Article  PubMed  CAS  Google Scholar 

  221. Frost HM. A determinant of bone architecture. The minimum effective strain. Clin Orthop Relat Res 1983;175:286–292.

    PubMed  Google Scholar 

  222. Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, Zanchetta JR. Gender-related differences in the relationship between densitometric values of whole-body bone mineral density and lean body mass in humans between 2 and 87 years of age. Bone 1998;22:683–690.

    Article  PubMed  CAS  Google Scholar 

  223. Knothe-Tate M, Steck R, Forwood M, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol 2000;203:2737–2745.

    PubMed  CAS  Google Scholar 

  224. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987;2:73–85.

    PubMed  CAS  Google Scholar 

  225. Burr DB. Orthopedic principle of skeletal growth, modelling, and remodelling. In: Carlson D, Goldstein S, eds. Bone biodynamics in orthodontic and orthopedic treatment. Ann Arbor, MI, USA: University of Michigan, 15–51.

    Google Scholar 

  226. Biewener AA, Taylor CR. Bone strain: a determinant of gait and speed? J Exp Biol 1986;123:383–400.

    PubMed  CAS  Google Scholar 

  227. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone 1998;23:399–407.

    Article  PubMed  CAS  Google Scholar 

  228. Dickinson JA, Cook SD, Leinhardt TM. The measurements of shock waves following heel strike in running. J Biochem 1985;18:415–422.

    CAS  Google Scholar 

  229. Smeathers JE. Transient vibrations caused by heel strike. Proc Inst Mech Engin 1989;203:181–186.

    Article  CAS  Google Scholar 

  230. Vuori I. Peak bone mass and physical activity: a short review. Nutr Rev 1996;54:S11–S14.

    Article  PubMed  CAS  Google Scholar 

  231. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 2001;16:148–156.

    Article  PubMed  CAS  Google Scholar 

  232. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S. Beck T, Carlson J, Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, volumetric density and bone strength. A controlled prospective study. J Bone Miner Res 1998;13:1814–1821.

    Article  PubMed  CAS  Google Scholar 

  233. MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 2004;34:755–764.

    Article  PubMed  Google Scholar 

  234. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: A hip structural analysis study. J Bone Miner Res 2002;17:363–372.

    Article  PubMed  CAS  Google Scholar 

  235. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S. The effect of mechanical loading on the size and shape of bone in pre-, peri- and postpubertal girls: a study in tennis players. J Bone Miner Res 2002;12:2274–2280.

    Article  Google Scholar 

  236. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 2001;16:148–156.

    Article  PubMed  CAS  Google Scholar 

  237. Nordstrom P, Pettersson U, Lorentzon R. Type of physical activity, muscle strength and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res 1998;13:1141–1148.

    Article  PubMed  CAS  Google Scholar 

  238. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J bone Mineral Res 1999;14:1672–1679.

    Article  CAS  Google Scholar 

  239. Chesnut CH III. Is osteoporosis a pediatric disease? Peak bone mass attainment in the adolescent female. Public Health Rep 1989;104:50–54.

    PubMed  Google Scholar 

  240. Gustavsson A, Thorsen K, Nordstrom P. A 3 year longitudinal study on the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Calcif Tissue Int 2003;73:108–114.

    Article  PubMed  CAS  Google Scholar 

  241. Forwood MR, Baxter-Jones AD, Beck TJ, Mirwald RL, Howard A, Bailey DA. Physical activity and strength of the femoral neck during the adolescent growth spurt. A longitudinal analysis. Bone 2006:38:576–583.

    Article  PubMed  Google Scholar 

  242. Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12:1539–1546.

    Article  PubMed  CAS  Google Scholar 

  243. Lu RW, Taylor SK, O’Connor JJ, Walker PS. Influence of muscle activity on the forces in the femur: an in vivo study. J Biochem 1997;30:1101–1106.

    CAS  Google Scholar 

  244. Rauch F, Bailey D, Baxter-Jones A, Mirwald R, Faulkner R. The “muscle-bone unit” during the pubertal growth spurt. Bone 2004;34:771–775.

    Article  PubMed  Google Scholar 

  245. Ward KA, Roberts SA, Adams JE, Mughal MZ. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 2005;36:1012–1018.

    Article  PubMed  CAS  Google Scholar 

  246. Turner CH, Burr DB. Basic biomechanical measurement of bone: a tutorial. Bone 1993:14:595–608.

    Article  PubMed  CAS  Google Scholar 

  247. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents. A review of controlled trials. Bone 2007;40:14–27.

    Article  PubMed  CAS  Google Scholar 

  248. Galbo H, Hummer L, Petersen IB, Christiensen NJ, Bie N. Thyroid and testicular responses to graded and prolonged exercise in men. Eur J Appl Physiol 1977;36:101–106.

    Article  CAS  Google Scholar 

  249. Hakkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 1993:74:882–887.

    PubMed  CAS  Google Scholar 

  250. Fahrner CL, Hackney AC. Effects of endurance exercise of free testosterone concentration and the binding affinity of sex hormone binding globulin (SHBG). Int J Sports Med 1998;19:12–15.

    Article  PubMed  CAS  Google Scholar 

  251. MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ. Decreased hypothalamic gonadotrophin-releasing hormone secretion in male marathon runners. N Engl J Med 1986;315:411–417.

    Article  PubMed  CAS  Google Scholar 

  252. MacDougall JD, Webber CE, Martin J, Ormerod S, Chesley A, Younglai EV, Gordon L, Blimkie CJR. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol 1992;73:1165–1170.

    PubMed  CAS  Google Scholar 

  253. Wheeler GD, Singh M, Pierce WD, Epling WF, Cumming DC. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J Clin Endocrinol Metab 1991;72:422–425.

    Article  PubMed  CAS  Google Scholar 

  254. De Souza MJ, Arce JC, Pescatello LS, Sherzer HS, Luciano A. Gonadal hormones and semen quality in male runners. Int J Sports Med 1994;15:383–391.

    Article  PubMed  Google Scholar 

  255. Smith R, Rutherford OM. Spine and total bone mineral density and serum testosterone levels in male athletes. Eur J Appl Physiol Occup Physiol 1993;67:330–334.

    Article  PubMed  CAS  Google Scholar 

  256. Hoogeveen AR, Zonderblad ML. Relationship between testosterone, cortisol and performance in professional cyclists. Int J Sports Med 1996;17:423–428.

    Article  PubMed  CAS  Google Scholar 

  257. Cann CE, Martin MC, Genant HK, Jaffe RB. Decreased spinal mineral content in amenorrheic women. JAMA 1984;251;626–629.

    Article  PubMed  Google Scholar 

  258. Robinson TL, Snow-Harter C, Taffe G, Gillis D, Shaw J, Marcus R. Gymnast exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 1995;10:26–35.

    Article  PubMed  CAS  Google Scholar 

  259. Maïmoun L, Lumbroso S, Manetta J, Paris F, Leroux JL, Sultan C. Testosterone is significantly reduced in endurances athletes without impact on bone mineral density. Horm Res 2003;59:285–292.

    Article  PubMed  CAS  Google Scholar 

  260. Guéguen R, Jouanny P, Guilleming F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 1995;10:2017–2022.

    Article  PubMed  Google Scholar 

  261. Pocock NA, Eisman JA, Hopper JL, Yates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults: a twin study. J Clin Invest 1987;80:706–710.

    Article  PubMed  CAS  Google Scholar 

  262. Benoit FL, Theil GB, Watten RH. Titel Metabolism 1963;12:1072–1082.

    CAS  Google Scholar 

  263. Taylor HS, Block K, Bick DP, Shering RJ. Layman LC. Mutation analysis of the EMX2 gen in Kallmann’s syndrome. Fertility and Sterility 1999;72:910–914.

    Article  PubMed  CAS  Google Scholar 

  264. Brown TR, Lubahn DB, Wilson EM, Joseph DR, French FS, Migeon CJ. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity: evidence for further genetic heterogeneity in this syndrome. Proc Natl Acad Sci USA 1988;85:8152–8155.

    Google Scholar 

  265. Morris JM. The syndrome of testicular feminization in male pseudohermaphrodites. Am J Obstet Gynecol 1953;65:1192–1211.

    PubMed  CAS  Google Scholar 

  266. Quigley CA, De Bellis A, Marschke KB, El-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr Rev 1995;16:271–316.

    PubMed  CAS  Google Scholar 

  267. French FS, Baggett B, Van Wyk JJ, Talbert LS, Hubbard WR, Johnston FR, Weaver RP. Testicular feminization: clinical, morphological and biochemical studies. J Clin Endocrinol Metab 1965;25:661–677.

    Article  PubMed  CAS  Google Scholar 

  268. MacDonald PC, Madden JD, Brenner PF, Wilson JD, Siiteri PK. Origin of estrogen in normal men and in women with testicular feminization. J Clin Endocrinol Metab 1979;49:905–916.

    Article  PubMed  CAS  Google Scholar 

  269. Zitzmann M, Brune M, Kornmann B, Gromoll J, Junker R, Nieschlag E. The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males. Clin Endocrinol 2001;55:649–657.

    Article  CAS  Google Scholar 

  270. Sowers M, Willing M, Burns T, Deschenes S, Hollis B, Curtchfield M, Jannausch M. Genetic markers, bone mineral density and serum osteocalcin levels. J Bone Miner Res 1999;14:1411–1419.

    Article  PubMed  CAS  Google Scholar 

  271. Remes T, Väisänen SB, Mahonen A, Huuskonen J, Kröger H, Jurvelin JS, Penttilä IM, Rauramaa R. Aerobic exercise and bone mineral density in middle-aged Finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor α gene polymorphisms Bone 2003;32:412–420.

    CAS  Google Scholar 

  272. Van Pottelbergh I, Lumbroso S, Goemaere S, Sultan C, Kaufman JM. Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men. Clin Endocrinol 2001;55:659–666.

    Article  Google Scholar 

  273. Crabbe P, Bogaert V, De Bacquer D, Goemaere S, Zmierczak H, Kaufman JM. Part of the interindividual variation in serum testosterone levels in healthy men reflects differences in androgen sensitivity and feedback set point: contribution of the androgen receptor polyglutamine tract polymorphism. J Clin Endocrinol Metab 2007;92:3604–3610.

    Article  PubMed  CAS  Google Scholar 

  274. Simpson ER, Zhao Yn, Agarwal VR, Michael MD, Bulun SE, Hinshelwood MM, Graham-Lorence S, Sun T, Fisher CR, Qin K, Mendelson CR. Aromatase expression in health and disease. Recent Prog Horm Rex 1997;52:185–213.

    CAS  Google Scholar 

  275. Polymeropoulos MH, Xiao H, Rath DS, Merril CR. Tetranucleotide repeat polymorphism at the human cytochrome P-450 gene (CYP19). Nucl Acids Res 1991;19:4792–4792.

    Google Scholar 

  276. Haiman CA, Hankinson SE, Spiegelman D, De Vivo I, Colditz GA, Willett WC, Speizer FE, Hunter DJ. A tetranucleotide repeat polymorphism in CUP19 and breast cancer risk. Int J Cancer 2000;87:204–210.

    Article  PubMed  CAS  Google Scholar 

  277. Masi L, Becherini L, Gennari L, Amedei A, Colli E, Falchetti A, Farci M, Silvestri S, Gonnelli S, Brandi ML. Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab 2001;86:2263–2269.

    Article  PubMed  CAS  Google Scholar 

  278. Van Pottelbergh I, Goemaere S, Kaufman JM. Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab 2003;88:3075–3081.

    Article  PubMed  CAS  Google Scholar 

  279. Gennari L, Becherini L, Merlotti D, Masi L, Lucani B, Gonnelli S, Falchetti A, Dal Conto N, Nuti R, Gennari C, Brandi ML. Body mass index and circulating testosterone modulate the effect of aromatase gene polymorphism on bone in elderly men. J Bone Miner Res 2002 15(suppl 1): M121 (abstract).

    Google Scholar 

  280. Eriksson S, Eriksson A, Stege R, Carlström K. Bone mineral density in patients with prostatic cancer treated with orchidectomy and with estrogens. Calcif Tissue Int 1995;57:97–99.

    Article  PubMed  CAS  Google Scholar 

  281. Daniell HW. Osteoporosis after orchiectomy for prostate cancer. J Urol 1997;157:439–444.

    Article  PubMed  CAS  Google Scholar 

  282. Moul JW. Contemporary hormonal management of advanced prostate cancer. Oncology 1998;12:499–505.

    PubMed  CAS  Google Scholar 

  283. Robson M, Dawson N. How is androgen-dependent metastatic prostate cancer best treated? Hematol Oncol Clin North Am 1996;10:727–747.

    Article  PubMed  CAS  Google Scholar 

  284. Hoff AO, Gagel RF. Osteoporosis in breast and prostate cancer survivors. Oncology 2005;19:651–658.

    PubMed  Google Scholar 

  285. Maillefert JF, Sibilia J, Michel F, Saussine C, Javier RM, Tavernier C. Bone mineral density in men treated with synthetic gonadotropin-releasing hormone agonists for prostatic carcinoma. J Urol 1999;161:1219–1222.

    Article  PubMed  CAS  Google Scholar 

  286. Higano CS. Understanding treatments for bone loss and bone metastases in patients with prostate cancer: a practical review and guide for the clinician. Urol Clin North Am 2004;31:331–352.

    Article  PubMed  Google Scholar 

  287. Townsend MF, Sanders WH, Northway RO, Graham SD Jr. Bone fractures associated with luteinizing hormone-releasing hormone agonists used in the treatment of prostate carcinoma. Cancer 1997;79:545–550.

    Article  PubMed  CAS  Google Scholar 

  288. Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. (2005) Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 2005;352:154–164.

    Article  PubMed  CAS  Google Scholar 

  289. Jackson JA, Kleerkper M, Parfitt AM, Rao DS, Villanueva AR, Frame B. Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. J Clin Endocrinol Metab 1987;65:53–58.

    Article  PubMed  CAS  Google Scholar 

  290. Francis RM, Peacock M, Aaron JE, Selby PL, Taylor GA, Thompson J, Marshall DH, Horsman A. Osteoporosis in hypogonadal men: role of decreased plasma 1,25 dihydroxyvitamin D, Calcium malabsorption, and low bone formation. Bone 1986;7:261–268.

    Article  PubMed  CAS  Google Scholar 

  291. Horowitz M, Wishart JM, O’Loughlin PD, Morris HA, Need AG, Nordin BE. Osteoporosis and Klinefelter’s syndrome. Clin Endocrinol 1992;36:113–118.

    Article  CAS  Google Scholar 

  292. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995;16:87–116.

    PubMed  CAS  Google Scholar 

  293. Kelepouris N, Harper KD, Gannon F, Kaplan JG. Severe osteoporosis in men. Ann Intern Med 1995;123:452–460.

    PubMed  CAS  Google Scholar 

  294. Stanley HL, Schmitt BP, Poses RM, Deiss WP. Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc 1991;39:766–771.

    PubMed  CAS  Google Scholar 

  295. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E. The differing tempo of growth in bone size, mass and density in girls is region-specific. J Clin Invest 1999;104:795–804.

    Article  PubMed  CAS  Google Scholar 

  296. Garn SM. The course of bone gain and the phases of bone loss. Orthop Clin North Am. 1972;3:503–520.

    PubMed  CAS  Google Scholar 

  297. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E. Delmas PD. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Mineral Res 2006;21:1856–1863.

    Article  Google Scholar 

  298. Szulc P. Delmas PD, Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study. Osteoporos Int 2007;18:495–503.

    Article  PubMed  CAS  Google Scholar 

  299. Schönau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 2001;86:613–618.

    Article  Google Scholar 

  300. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 2005;26:833–876.

    Article  PubMed  CAS  Google Scholar 

  301. Oden A, Dawson A, Dere W, Johnell O, Jonsson B, Kanis JA. Lifetime risk of hip fractures is underestimated. Osteoporosis Int 1998;8:599–603.

    Article  CAS  Google Scholar 

  302. Cooper C, Campion G, Melton LJ. Hip-fractures in the elderly – A worldwide projection. Osteoporosis Int 1992;2:285–289.

    Article  CAS  Google Scholar 

  303. Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges AJ, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes VA, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Poor G, Raspe HH, Reid DM, Reisinger W, Scheidt-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 2002;17:716–724.

    Article  Google Scholar 

  304. Van der Klift M, De Laet CEDH, McCloskey EV, Hofman A, Pols HAP. The incidence of vertebral fractures in men and women: The Rotterdam Study. J Bone Miner Res 2002;17:1051–1056.

    Article  PubMed  Google Scholar 

  305. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 1999;353:878–882.

    Article  PubMed  CAS  Google Scholar 

  306. Poor G, Atkinson EJ, Lewallen DG, OFallon WM, Melton LJ. Age-related hip fractures in men: Clinical spectrum and short-term outcomes. Osteoporosis Int 1995;5:419–426.

    Article  CAS  Google Scholar 

  307. Stoch SA, Parker RA, Chen LP, Bubley G, Ko YJ, Vincelette A, Greenspan SL. Bone loss in men with prostate cancer treated with gonadotropin-releasing hormone agonists. J Clin Endocrinol Metab 2001;86:2787–2791.

    Article  PubMed  CAS  Google Scholar 

  308. Mittan D, Lee S, Miller E, Perez RC, Basler JW, Bruder JM. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab 2002;87:3656–3661.

    Article  PubMed  CAS  Google Scholar 

  309. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002;23:279–302.

    Article  PubMed  CAS  Google Scholar 

  310. Khosla S, Melton LJ III, Riggs BL. Clinical review 144: Estrogen and the male skeleton. J Clin Endocrinol Metab 2002;87:1443–1450.

    Article  PubMed  CAS  Google Scholar 

  311. Meier DE, Orwoll ES, Keenan EJ, Fagerstrom RM. Marked decline in trabecular bone mineral content in healthy men with age: lack of association with sex steroid levels. J Am Geriatr Soc 1987;35:189–197.

    PubMed  CAS  Google Scholar 

  312. Drinka PJ, Olson J, Bauwens S, Voeks SK, Carlson I, Wilson M. Lack of association between free testosterone and bone density separate from age in elderly males. Calcif Tissue Int 1993;52:67–69.

    Article  PubMed  CAS  Google Scholar 

  313. Clarke BL, Ebeling PR, Jones JD, Wahner HW, O'Fallon WM, Riggs BL, Fitzpatrick LA. Changes in quantitative bone histomorphometry in aging healthy men. J Clin Endocrinol Metab 1996;81:2264–2270.

    Article  PubMed  CAS  Google Scholar 

  314. van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab 2000;85:3276–3282.

    Article  PubMed  Google Scholar 

  315. Rudman D, Drinka PJ, Wilson CR, Mattson DE, Scherman F, Cuisinier MC, Schultz S. Relations of endogenous anabolic hormones and physical activity to bone mineral density and lean body mass in elderly men. Clin Endocrinol 1994;40:653–661.

    Article  CAS  Google Scholar 

  316. Murphy S, Khaw KT, Cassidy A, Compston JE. Sex hormones and bone mineral density in elderly men. Bone Miner 1993;20:133–140.

    Article  PubMed  CAS  Google Scholar 

  317. Kenny AM, Gallagher JC, Prestwood KM, Gruman CA, Raisz LG. Bone density, bone turnover, and hormone levels in men over age 75. J Gerontol A Biol Sci Med Sci 1998;53:M419–M425.

    PubMed  CAS  Google Scholar 

  318. Greendale GA, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res 1997;12:1833–1843.

    Article  PubMed  CAS  Google Scholar 

  319. Khosla S, Melton LJ III, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 1998;83:2266–2274.

    Article  PubMed  CAS  Google Scholar 

  320. Slemenda CW, Longcope C, Zhou LF, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men – Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 1997;100:1755–1759.

    Article  PubMed  CAS  Google Scholar 

  321. Center JR, Nguyen TV, White CP, Eisman JA. Male osteoporosis predictors: Sex hormones and calcitropic hormones. J Bone Miner Res 1997;12(supplement):F569.

    Google Scholar 

  322. Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S, Piaseu N, Chailurkit L. Serum oestradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin Endocrinol 1998;49:803–809.

    Article  CAS  Google Scholar 

  323. Amin S, Zhang YQ, Sawin DT, Evans SR, Hannan MT, Kiel DP, Wilson PWF, Felson DT. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Int Med 2000;133:951–963.

    PubMed  CAS  Google Scholar 

  324. Szulc P, Munoz F, Claustrat B, Garnero P, Marchand F, Duboeuf F, Delmas PD. Bioavailable estradiol may be an important determinant of osteoporosis in men: The MINOS study. J Clin Endocrinol Metab 2001;86:192–199.

    Article  PubMed  CAS  Google Scholar 

  325. Van Pottelbergh I, Goemaere S, Kaufman JM. Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab 2003;88:3075–3081.

    Article  PubMed  CAS  Google Scholar 

  326. Szulc P, Claustrat B, Marchand F, Delmas PD. Increased risk of falls and increased bone resorption in elderly men with partial androgen deficiency: The MINOS study. J Clin Endocrinol Metab 2003;88:5240–5247.

    Article  PubMed  CAS  Google Scholar 

  327. Goemaere S, Van P, I, Zmierczak H, Toye K, Daems M, Demuynck R, Myny H, De Bacquer D, Kaufman JM. Inverse association between bone turnover rate and bone mineral density in community-dwelling men >70 years of age: no major role of sex steroid status. Bone 2001;29:286–291.

    Article  PubMed  CAS  Google Scholar 

  328. Szulc P, Kaufman JM, Delmas PD. Biochemical assessment of bone turnover and bone fragility in men. Osteoporos Int 2007;18:1451–1461.

    Article  PubMed  CAS  Google Scholar 

  329. Khosla S, Melton LJ III, Riggs BL. Clinical review 144: estrogen and the male skeleton. J Clin Endocrinol Metab 2002;87:1443–1450.

    Article  PubMed  CAS  Google Scholar 

  330. Khosla S, Melton LJ, Atkinson EJ, O'Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001;86:3555–3561.

    Article  PubMed  CAS  Google Scholar 

  331. Gennari L, Masi L, Merlotti D, Picariello L, Falchetti A, Tanini A, Mavilia C, Del Monte F, Gonnelli S, Lucani B, Gennari C, Brandi ML. A polymorphic CYP19 TTTTA repeat influences aromatase activity and estrogen levels in elderly men: effects on bone metabolism. J Clin Endocrinol Metab 2004;89:2803–2810.

    Article  PubMed  CAS  Google Scholar 

  332. Zitzmann M, Brune M, Kornmann B, Gromoll J, Junker R, Nieschlag E. The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males. Clin Endocrinol 2001;55:649–657.

    Article  CAS  Google Scholar 

  333. Van Pottelbergh I, Lumbroso S, Goemaere S, Sultan C, Kaufman JM. Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men. Clin Endocrinol 2001;55:659–666.

    Article  Google Scholar 

  334. Falahati-Nini A, Riggs BL, Atkinson EJ, O'Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000;106:1553–1560.

    Article  PubMed  CAS  Google Scholar 

  335. Doran PM, Riggs BL, Atkinson EJ, Khosla S. Effects of raloxifene, a selective estrogen receptor modulator, on bone turnover markers and serum sex steroid and lipid levels in elderly men. J Bone Miner Res 2001;16:2118–2125.

    Article  PubMed  CAS  Google Scholar 

  336. Center JR, Nguyen TV, Sambrook PN, Eisman JA. Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab 1999;84:3626–3635.

    Article  PubMed  CAS  Google Scholar 

  337. Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, Lucani B, Dal Canto N, Valenti R, Gennari C, Nuti R. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab 2003;88:5327–5333.

    Article  PubMed  CAS  Google Scholar 

  338. Stanley HL, Schmitt BP, Poses RM, Deiss WP. Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc 1991;39:766–771.

    PubMed  CAS  Google Scholar 

  339. Boonen S, Vanderschueren D, Cheng XG, Verbeke G, Dequeker J, Geusens P, Broos P, Bouillon R. Age-related (type II) femoral neck osteoporosis in men: Biochemical evidence for both hypovitaminosis D- and androgen deficiency-induced bone resorption. J Bone Miner Res 1997;12:2119–2126.

    Article  PubMed  CAS  Google Scholar 

  340. Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a case–control study. Am J Med Sci 1992;304:4–8.

    Article  PubMed  CAS  Google Scholar 

  341. Barrett-Connor E, Mueller JE, von Muhlen DG, Laughlin GA, Schneider DL, Sartoris DJ. Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J Clin Endocrinol Metab 2000;85:219–223.

    Article  PubMed  CAS  Google Scholar 

  342. Goderie-Plomp HW, Van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HAP. Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: The Rotterdam Study. J Clin Endocrinol Metab 2004;89:3261–3269.

    Article  PubMed  CAS  Google Scholar 

  343. Mellstrom Dn Johnell, Ljunggren O, Eriksson AL, Lorentzon M, Mallmin H, Holmberg A, Redlund-Johnell I, Orwoll E, Ohlsson C. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 2006;21:529–535.

    Article  Google Scholar 

  344. Tenover JS. Androgen administration to aging men. Endocrin Metab Clin North Am 1994;23:877–892.

    CAS  Google Scholar 

  345. Swerdloff RS, Wang C. Androgens and aging in men. Exp Gerontol 1993;28:435–446.

    Article  PubMed  CAS  Google Scholar 

  346. Vermeulen A, Goemaere S, Kaufman JM. Sex hormones, body composition and aging. Aging Male 2003;2:8–16.

    Article  Google Scholar 

  347. Katznelson L, Rosenthal DI, Rosol MS, Anderson EJ, Hayden DL, Schoenfeld DA, Klibanski A. Using quantitative CT to assess adipose distribution in adult men with acquired hypogonadism. Am J Roentgenol 1998;170:423–427.

    CAS  Google Scholar 

  348. Tzankoff SP, Norris AH. Effect of muscle mass decrease on age-related BMR changes. J Appl Physiol 1977;43:1001–1006.

    PubMed  CAS  Google Scholar 

  349. Forbes GB, Reine JC. Adult lean body mass declines with age: some longitudinal observations. Metabolism 1970;19:653–667.

    Article  PubMed  CAS  Google Scholar 

  350. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 1979;46:451–456.

    PubMed  CAS  Google Scholar 

  351. Roy TA, Blackman MR, Harman SM, Tobin JD, Schrager M, Metter EJ. Interrelationships of serum testosterone and free testosterone index with FFM and strength in aging men. Am J Physiol Endocrinol Metab 2002;283:E284–E294.

    PubMed  CAS  Google Scholar 

  352. Orwoll E, Lambert LC, Marshall LM, Blank J, Barrett-Connor E, Cauly J, Ensrud K, Cummings SR. Endogenous testosterone levels, physical performance and fall risk in older men. Arch Intern Med 2006;166:2124–2131.

    Article  PubMed  Google Scholar 

  353. Abbasi AA, Drinka PJ, Mattson DE, Rudman D. Low circulating levels of insulin-like growth factors and testosterone in chronically institutionalized elderly men. J Am Geriatr Soc 1993;41:975–982.

    PubMed  CAS  Google Scholar 

  354. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 1999;107:123–136.

    Article  PubMed  CAS  Google Scholar 

  355. Orwoll ES. Androgens: basic biology and clinical implication. Calcif Tissue Int 2001;69:185–188.

    Article  PubMed  CAS  Google Scholar 

  356. Bahsin S, Bremmer WJ. Clinical review 85: emerging issues in androgen replacement therapy. J Clin Endocrinol Metab 1997;82:3–8.

    Article  Google Scholar 

  357. Aynsley-Green A, Zachmann, M, Prader. Interrelation of the therapeutic effects of growth hormone and testosterone on growth in hypopituitarism. J Pediatr 1976;89:992–999.

    Article  PubMed  CAS  Google Scholar 

  358. Burns EC, Tanner JM, Preece MA, Cameron N. Final height and pubertal development in 55 children with idiopathic growth hormone deficiency, treated for between 2 and 15 years with human growth hormone. Eur J Pediatr 1981;137:155–164.

    PubMed  CAS  Google Scholar 

  359. Bourguignon PJ, Vandeweghe M, Vanderschueren-Lodeweyckx, Malvaux P, Wolter R, Du Caju M, Ernould C. Pubertal growth and final height in hypopituitary boys: a minor role of bone age at onset of puberty. J Clin Endocrinol Metab 1986;63:376–382.

    Article  PubMed  CAS  Google Scholar 

  360. Ranke MB, Butenandt O. Idiopathic growth hormone deficiency: final height to treatment with growth hormone and effects of puberty and sex steroids. In: Firsch H, Laron Z, eds. Induction of puberty in hypopituitarism. Serono Symposia review 16, Aris-Serono Symposia, Rome, p 85.

    Google Scholar 

  361. Lenko HL, Leisti S, Perheentupa J. The efficacy of growth hormone in different types of growth failure. An analysis of 101 cases. Eur J Pediatr 1982;138:241–249.

    Article  PubMed  CAS  Google Scholar 

  362. Joss E, Zuppinger K, Scharz HP, Roten H. Final height of patients with pituitary growth failure and changes in growth variables after long-term hormonal therapy. Pediatr Res 1983;17:676–679.

    Article  PubMed  CAS  Google Scholar 

  363. Zachmann M, Ferrandez A, Mürset G, Prader A. Testosterone treatment of excessively tall boys. J Pediatr 1976;88:116–123.

    Article  PubMed  CAS  Google Scholar 

  364. Wickman S, Sipila I, Ankarberg-Lindgren C, Norjavaara E, Dunkel L. A specific aromatase inhibitor and potential increase in adult height in boys with delayed puberty: a randomised controlled trial. Lancet 2001;357:1743–1748.

    Article  PubMed  CAS  Google Scholar 

  365. Jain P, Rademaker AW, McVary KT. Testosterone supplementation for erectile dysfunction: results of meta-analysis. J Urol 2000;164:371–375.

    Article  PubMed  CAS  Google Scholar 

  366. Bhasin S, Singh AB, Mac RP, Carter B, Lee MI, Cunningham GR. Managing the risks of prostate disease during testosterone replacement therapy in older men: recommendations for a standardized monitoring plan. J Androl 2003;24:299–311.

    PubMed  Google Scholar 

  367. Rhoden EL, Morgentaler A. Medical progress: risk of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med 2004;350:482–492.

    Article  PubMed  CAS  Google Scholar 

  368. Bhasin S. Testosterone supplementation for aging-associated sarcopenia. J Gerontol A Biol Sci 2004;58:1002–1008.

    Google Scholar 

  369. Basaria S, Dob AS. Hypogonadism and androgen replacement therapy in elderly men. Am J Med 2001;110:563–572.

    Article  PubMed  CAS  Google Scholar 

  370. Snyder PJ. Effects of age on testiscular function and consequences of testosterone treatment. J Clin Endocrinol Metab 2001;86:2369–2372.

    Article  PubMed  CAS  Google Scholar 

  371. Tan RS, Culberson JW. An integrative review on current evidence of testosterone replacement for the andropause. Maturitas 2003;45:15–27.

    Article  PubMed  CAS  Google Scholar 

  372. Vastag B. Many questions, few answers for testosterone replacement therapy. JAMA 2003;289:971–972.

    Article  PubMed  Google Scholar 

  373. Liu PY, Swerdloff RS, Veldhuis JD. The rationale, efficacy and safety of androgen therapy in older men: future research and current practice recommendations. J Clin Endocrinol Metab 2004;89:4789–4796.

    Article  PubMed  CAS  Google Scholar 

  374. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc 2003;51:101–115.

    Article  PubMed  Google Scholar 

  375. Liberman C, Blazer D. Testosterone and aging: clinical research directions. Washington DC: The National Academic Press.

    Google Scholar 

  376. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997;82:2386–2390.

    Article  PubMed  CAS  Google Scholar 

  377. Aminorroaya A, Kelleher S, Conway AJ, Ly LP, Handelsman DJ. Adequacy of androgen replacement influences bone density response to testosterone in androgen-deficient men. Eur J Endocrinol 2005;152:881–886.

    Article  PubMed  CAS  Google Scholar 

  378. Schubert M, Bullmann C, Minneman T, Reiners C, Krone W, Jockenhövel F. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. Horm Res 2003;60:21–28.

    Article  PubMed  CAS  Google Scholar 

  379. Benito M, Vasilic B, Wehrli FW, Bunker B, Wald M, Bomberg B, Wright AC, Zemel B, Cucchiara, Snyder PJ. Effect of testosterone replacement of trabecular architecture in hypogonadal men. J Bone Mineral Res 2005;20:1785–1791.

    Article  CAS  Google Scholar 

  380. Crawford BAL, Liu PY, Kean MT, Bleasel JF, Handelsman DJ. Randomized placebo-controlled trial of androgen effects on muscle and bone in men requiring long-term systemic glucocorticoid treatment. J Clin Endocrinol Metab 2003;88:3167–3176.

    Article  PubMed  CAS  Google Scholar 

  381. Reid IR, Wattie DJ, Evans MC, Stapleton JP. Testosterone therapy in glucocorticoid-treated men. Arch Intern Med 1996;156:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  382. Howell SJ, Radford JA, Adams JE, Smets EMA, Warburton R, Shalet SM. Randomized placebo-controlled trial of testosterone replacement in men with mild Leydig cell insufficiency following cytotoxic chemotherapy. Clin Endocrinol 2001; 315–324.

    Google Scholar 

  383. Sih R, Morley JE, Kaiser FE, Perry HM, Patrick P, Ross C. Testosterone replacement in older hypogonadal men: a 12 month randomized controlled study. J Clin Endocrinol Metab 1997;82:1661–1667.

    Article  PubMed  CAS  Google Scholar 

  384. Wang C, Alexander G, Berman N, Salehian B, Davidson T, McDonald V, Steiner B, Hull L, Callegari C, Swerdloff RS. Testosterone replacement therapy improves mood in hypogonadal men – a clinical research center study. J Clin Endocrinol Metab 1996;81:3578–3583.

    Article  PubMed  CAS  Google Scholar 

  385. Page ST, Amory JK, DuBois Bowman F, Anawalt BD, Matsumoto AM, Bremmer WJ, Tenover JL. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength and lean body mass in older men with low serum T. J Clin Endocrinol Metab 2005;90:1502–1510.

    Article  PubMed  CAS  Google Scholar 

  386. Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremmer WJ, Tenover JL. Exogenous testosterone or testosterone with finasteride increase bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab 2004;89:503–510.

    Article  PubMed  CAS  Google Scholar 

  387. Wang C, Swerdloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, Matsumoto AM, Weber T, Berman N and the Testosterone Gel Study Group. Effects of transdermal testosterone gel on bone turnover markers and bone mineral density in hypogonadal men. Clin Endocrinol 2001;54:739–750.

    Article  Google Scholar 

  388. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 1996;335:1–7.

    Article  PubMed  CAS  Google Scholar 

  389. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen XH, Yarasheski KE, Magliano L, Dzekov C, Dezkov J, Bross R, Phillips J, Sinha-Hikim I, Shen RQ, Storer TW. Testosterone dose–response relationships in healthy young men. Am J Physiol Endocrinol Metab 2001;281:E1172–E1181.

    PubMed  CAS  Google Scholar 

  390. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee MI, Yarasheski KE, Sinha-Hikim I, Dzekov C, Dzekov J, Magliano L, Storer TW. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab 2005;90:678–688.

    Article  PubMed  CAS  Google Scholar 

  391. Ottenbacher KJ, Ottenbacher ME, Ottenbacher AJ, Acha AA, Ostir GV. Androgen treatment and muscle strength in elderly men: a meta-analysis. J Am Geriatr Soc 2006;54:1666–1673.

    Article  PubMed  Google Scholar 

  392. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, Lenzi A, Fabbri A. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol 2005;63:280–293.

    Article  CAS  Google Scholar 

  393. Tenover JS. Effects of testosterone supplementation in aging male. J Clin Endocrinol Metab 1992;75:1092–1098.

    Article  PubMed  CAS  Google Scholar 

  394. Morley JE, Perry HM, Kaiser FE, Kraenzle D, Jensen J, Houston K, Mattammal M, Perry HM. Effects of testosterone replacement therapy in old hypogonadal males: a preliminary study. J Am Geriatr Soc 1993;41:149–152.

    PubMed  CAS  Google Scholar 

  395. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, Dlewati A, Staley J, Santanna J, Kapoor SC, Attie MF, Haddad JG, Strom BL. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 1999;84:1966–1972.

    Article  PubMed  CAS  Google Scholar 

  396. Christmas, O’Connor KG, Harman SM, Tobin JD, Munzer T, Bellantoni MF, Clair CS, Pabst KM, Sorkin JD, Blackman MR. Growth hormone and sex steroid effects on bone metabolism and bone mineral density in healthy aged women and men. J Gerontol A Biol Sci Med Sci 2002;57:M12–M18.

    PubMed  Google Scholar 

  397. Kenney AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci 2001;56:266–272.

    Google Scholar 

  398. Meier C, Miu PY, Ly LP, de Winter-Modezelewski J, Jimenez M, Handelsman DJ, Seibel MJ. Recombinant human chorionic gonadotropin but not dehydrotestosterone alone stimulates osteoblastic collagen synthesis in older men with partial age-related androgen deficiency. J Clin Endocrinol Metab 2004;89:3033–3041.

    Article  PubMed  CAS  Google Scholar 

  399. Seidman SN, Klein DF. AA2500 testosterone gel normalizes androgen levels in aging males with improvements in body composition and sexual function. J Clin Endocrinol Metab 2004;89:6358–6359.

    Article  PubMed  CAS  Google Scholar 

  400. van Kesteren, P, Lips, P, Gooren, LJ, Asscheman H, Megens J. Long term follow-up of bone mineral density in transsexuals treated with cross-sex hormones. Clin Endocrinol 1998;48:347–354.

    Article  Google Scholar 

  401. Lips P, Asscheman H, Uitewaal P, Netelenbos JC, Gooren L. The effect of cross-gender hormonal treatment on bone metabolism in male-to-female transsexuals. J Bone Miner Res 1989;4:657–662.

    Article  PubMed  CAS  Google Scholar 

  402. van Kesteren P, Lips P, Deville W, Popp-Snijders C, Asscheman H, Megens J, Gooren L. The effect of one-year cross-sex hormonal treatment on bone metabolism and serum insulin-like growth factor-1 in transsexuals. J Clin Endocrinol Metab 1996;81:2227–2232.

    Article  PubMed  Google Scholar 

  403. Turner A, Chen TC, Barber TW, Malabanan AO, Holick MF, Tangpricha V. Testosterone increases bone mineral density in female-to-male transsexuals: a case series of 15 subjects. Clin Endocrinol (Oxf) 2004;61:560–566.

    Article  CAS  Google Scholar 

  404. Goh HHV, Ratman SS. Effects of hormone deficiency, androgen therapy and calcium supplementation on bone mineral density in female transsexuals. Maturitas 1997;26:45–52.

    Article  PubMed  CAS  Google Scholar 

  405. Lips P, van Kesteren PJ, Asscheman H, Gooren LJ. The effect of androgen treatment on bone metabolism in female-to-male transsexuals. J Bone Miner Res 1996;11:1769–1773.

    Article  PubMed  CAS  Google Scholar 

  406. Vered I, Kaiserman I, Sela BA, Sack J. Cross genotype sex hormone treatment in two cases of hypogonadal osteoporosis. J Clin Endocrinol Metab 1997;82:576–578.

    Article  PubMed  CAS  Google Scholar 

  407. Orenteich N, Brind JL, Rizer Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations through adulthood. J Clin Endo Metab 1984;59:551–555.

    Article  Google Scholar 

  408. Barrett-Connor E, Khaw K, Yen SSC. A prospective study of DS, mortality and cardiovascular risk. N Engl J Met 1986;315:1519–1924.

    Article  CAS  Google Scholar 

  409. Helzsouer KJ, Gordon GB, Alberg A, Bush TL, Comstock GW. Relationship of prediagnostic serum levels of DHEA and DS to the risk of developing premenopausal breast cancer. Cancer Res 1992;52:1–4.

    Google Scholar 

  410. Carwoord EH, Bancroft J. Steroid hormones, the menopause, sexuality and well-being of women. Psychol Med 1996;26:925.

    Article  Google Scholar 

  411. Morales A, Nolan J, Nelson J, Yen S. Effects of replacement dose of dehydroepiandrostenedione in men and women of advancing age. J Clin Endocrinol Metab 1994;78:1360–1367.

    Article  PubMed  CAS  Google Scholar 

  412. Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SS. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrostenedione (DHEA) on circulating sex steroids, body composition, muscle strength in age-advanced men and women. Clin Endocrinol 1998;49:421–432.

    Article  CAS  Google Scholar 

  413. Yen SSC, Morales AJ, Khorram O. Replacement of DHEA in aging men and women. Ann NY Acad Sci 1995;774:128–142.

    Article  PubMed  CAS  Google Scholar 

  414. Mortola JF, Yen SSC. The effects of oral dehydroepiandrostenedione on endocrine-metabolic parameters in postmenopausal women. J Clin Endocrinol Metab 1990;71:696–704.

    Article  PubMed  CAS  Google Scholar 

  415. Pecheron G, Hogrel JY, Denot-ledunois S, Fayet G, Forette F, Baulieu EE, Fardeau M, Marini JF. Effect of 1-year oral administration of dehydroepiandrosterone to 60- to 80-year old individuals on muscle function and cross-sectional area: a double-blind placebo-controlled trial. Arch Intern Med 2003;163;720–727.

    Article  Google Scholar 

  416. Dayal M, Sammel MD, Zhao J, Hummel AC, Vandenbourne K, Barnhart KT. Supplementation of DHEA: effect on muscle size, strength, quality of life and lipids. J Women’s Health 2005;14:391–400.

    Article  Google Scholar 

  417. Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis: its clinical features. J Am Med Assoc 1941;116:2465–2474.

    Google Scholar 

  418. Riggs BL, Jowsey J, Goldsmith RS, Kelly PJ, Hoffman DL, Arnaud CD. Short and long-term effects of estrogen and synthetic anabolic hormone in postmenopausal osteoporosis. J Clin Invest 1972;51:1659–1663.

    Article  PubMed  CAS  Google Scholar 

  419. Chesnut CH, Nelp WB, Baylink DJ, Demay JD. Effect of methandrostenolone on postmenopausal bone wasting as assessed by changes in total mineral mass. Metabolism 1977;26:276–277.

    Article  Google Scholar 

  420. Aloia JF, Kappoor A, Vaswani A, Cohn SH. Changes in body composition following therapy of osteoporosis with methandrostenolone. Metabolism 1983;30:1076–1079.

    Article  Google Scholar 

  421. Chesnut C, Ivey JL, Gruber HE, Matthews M, Nelp WB, Sisom K, Baylink DJ. Stanozolol in postmenopausal osteoporosis: therapeutic efficacy and possible mechanisms of action. Metabolism 1983;32:571–580.

    Article  PubMed  Google Scholar 

  422. Kopera H. The history of anabolic steroids and a review of clinical experience with anabolic steroids. Acta Endocrinol 1985;Suppl 271:11–18.

    CAS  Google Scholar 

  423. Dequeker J, Geusens P. Anabolic Steroids and osteoporosis. Acta Endocrinologica 1985;Suppl 271:45–52.

    CAS  Google Scholar 

  424. Geusens P, Dequeker J. Long-term effect of nandrolone decanoate, 1α-hydroxyvitamin D3, or intermittent calcium infusion therapy on bone mineral content, bone remodeling and fracture rate in symptomatic osteoporosis: a double-blind controlled study. Bone Mineral 1986;1:347–357.

    CAS  Google Scholar 

  425. Need AG, Chatterton BE, Walker CJ, Steuer TA, Horowitz M, Nordin BEC. Comparison of calcium, calcitriol ovarian hormones and nandrolone in the treatment of osteoporosis. Maturitas 1986;8:275–280.

    Article  PubMed  CAS  Google Scholar 

  426. Need AG, Morris HA, Hartley TF, Horowitz M, Nordin BEC. Effects of nandrolone decanoate on forearm mineral density and calcium metabolism in osteoporotic postmenopausal women. Calcif Tissue Int 1987;41:7–10.

    Article  PubMed  CAS  Google Scholar 

  427. Johansen JS, Hassager C, Podenphant J, Riis BJ, Hartwell D, Thomsen K, Christiansen C. Treatment of postmenopausal osteoporosis: is the anabolic steroid nandrolone decanoate a candidate ? Bone Miner 1989:6:77–86.

    Article  PubMed  CAS  Google Scholar 

  428. Grumbach MM. Estrogen, bone, growth and sex: a sea change in conventional wisdom. J Pediatr Endocrinol Metab 2000;13(suppl 6):1439–1455.

    PubMed  Google Scholar 

  429. Wackley GK, Schutte HD Jr, Hannon KS, Turner RT. Androgen treatment prevents loss of cancellous bone in the orchidectomized rat. J Bone Miner Res 1991;6:325–330.

    Article  Google Scholar 

  430. Sato T, Matsumoto T, Kawano H, Watanabe T, Uematsu Y, Sekine K, Fukuda T, Aihara K, Krust A, Yamada T, Nakamichi Y, Yamamoto Y, Nakamura T, Yoshimura K, Yoshizawa T, Metzger D, Chambon P, Kato S. Brain masculinization requires androgen receptor function. Proc Natl Acad Sci USA 2004;101:1673–1678.

    Article  PubMed  CAS  Google Scholar 

  431. Negro-Vilar A. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J Clin Endocrinol Metab 1999;84:3459–3462.

    Article  PubMed  CAS  Google Scholar 

  432. Allan G, Lai MT, Sbriscia T, Linton O, Haynes-Johnson D, Bhattacharjee S, Dodds R, Fiordeliso J, Lanter J, Sui J, Lundeen S. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats. J Steroid Bioch Molec Biol 2007;103:76–83.

    Article  CAS  Google Scholar 

  433. Kearbey JD, Gao W, Narayanan R, Fisher SJ, Wu Di, Miller DD, Dalton JT. Selective androgen receptor modulator (SARM) treatment presents bone loss and reduces body fat in ovariectomized rats. Pharmaceutical Res 2007;24:328–335.

    Article  CAS  Google Scholar 

  434. Miner JN, Chang W, Chapman MS, Finn PD, Hong MH, Lopez FJ, Marschke KB, Rosen J, Schrader W, Turner R, van Oeveren A, Viveros H, Zhi L, Negro-Vilar A. An orally active selective androgen receptor modulator in efficacious on bone, muscle and sex function with reduced impact on prostate. Endocrinology 2007;148:363–373.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goemaere, S., T’Sjoen, G., Kaufman, JM. (2010). Androgen Actions on Bone: Clinical Aspects. In: Adler, R. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-459-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-459-9_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-19-0

  • Online ISBN: 978-1-59745-459-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics