Skip to main content

Gene Therapy in the Treatment of Human Cancer

  • Chapter
  • First Online:

Abstract

Cancer can be considered a disease caused by mutations and/or epigenetic changes in tumor suppressor genes and oncogenes that populate the host genome. It is well established that most of the genetic events in cancer result from a series of accumulated, acquired genetic lesions. These genetic events either inactivate tumor suppressor genes or activate oncogenes. With an enhanced understanding of the genetic lesions associated with malignant transformation and progression in a wide variety of human cancers, different therapeutic approaches are being identified. In this regard, gene therapy is emerging as a method of preventive and therapeutic intervention against cancer targeted at the level of cellular gene expression. In this approach, altering the complex cancerous pathophysiologic state is achieved by delivering nucleic acids into cells. These nucleic acids may be genes, portions of genes, oligonucleotides, or RNA. In conventional therapeutics, as in pharmacotherapy, altering a cell or tissue phenotype is accomplished by altering cell physiology or metabolism at the level of protein expression. In contrast, in gene therapy this is accomplished by changing the pattern of expression of genes whose products may correct defects in cellular phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev. 2004;4:177–83.

    Article  CAS  Google Scholar 

  2. Verma IM, Somia N. Gene therapy—promises, problems and prospects. Nature. 1997;389:239–42.

    Article  CAS  PubMed  Google Scholar 

  3. Bishop JM. Molecular themes in oncogenesis. Cell. 1991;64:235–48.

    Article  CAS  PubMed  Google Scholar 

  4. Fisher PB. Enhancement of viral transformation and expression of the transformed phenotype by tumor promoters. In: Slaga T, editor. Tumor promotion and cocarcinogenesis in vitro, mechanisms of tumor promotion. Boca Raton, FL: CRC Press, Inc.; 1984. p. 57–123.

    Google Scholar 

  5. Blau HM, Springer ML. Gene therapy—a novel form of drug delivery. N Engl J Med. 1995;333:1204–7.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson WF. Human gene therapy. Science. 1992;256:808–13.

    Article  CAS  PubMed  Google Scholar 

  7. Seth P. Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther. 2005;4:512–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kirn D, Martuza RL, Zwiebel J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med. 2001;7:781–7.

    Article  CAS  PubMed  Google Scholar 

  9. Todo T, Rabkin SD. Development of oncolytic replication-competent herpes simplex virus vectors: the G207 paradigm. In: Curiel DT, Douglas JT, editors. Cancer gene therapy. Totowa, NJ: Humana Press Inc.; 2005. p. 199–210.

    Chapter  Google Scholar 

  10. Friedmann T. Gene therapy of cancer through restoration of tumor-suppressor functions? Cancer. 1992;70:1810–7.

    Article  CAS  PubMed  Google Scholar 

  11. Wang NP, To H, Lee WH, Lee EY. Tumor suppressor activity of RB and p53 genes in human breast carcinoma cells. Oncogene. 1993;8:279–88.

    CAS  PubMed  Google Scholar 

  12. Jiang Z, Zacksenhaus E. Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma. J Cell Biol. 2002;156:185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai J, Zhu X, Zheng X, Wu Y. Retroviral vector containing human p16 gene and its inhibitory effect on Bcap-37 breast cancer cells. Chin Med J (Engl). 2001;114:497–501.

    CAS  Google Scholar 

  14. Campbell I, Magliocco A, Moyana T, Zheng C, Xiang J. Adenovirus-mediated p16INK4 gene transfer significantly suppresses human breast cancer growth. Cancer Gene Ther. 2000;7:1270–8.

    Article  CAS  PubMed  Google Scholar 

  15. Davies MA, Kim SJ, Parikh NU, et al. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res. 2002;8:1904–14.

    CAS  PubMed  Google Scholar 

  16. Fisher PB. Is mda-7/IL-24 a “magic bullet” for cancer? Cancer Res. 2005;65:10128–38.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995;11:2477–86.

    CAS  PubMed  Google Scholar 

  18. McKenzie T, Liu Y, Fanale M, et al. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells. Surgery. 2004;136:437–42.

    Article  PubMed  Google Scholar 

  19. Pestka S, Krause CD, Sarkar D, et al. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004;22:929–79.

    Article  CAS  PubMed  Google Scholar 

  20. Sauane M, Gopalkrishnan RV, Choo HT, et al. Mechanistic aspects of mda-7/IL-24 cancer cell selectivity analysed via a bacterial fusion protein. Oncogene. 2004;23:7679–90.

    Article  CAS  PubMed  Google Scholar 

  21. Dent P, Yacoub A, Hamed HA, et al. The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther. 2010;128:375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holt JT, Thompson ME, Szabo C, et al. Growth retardation and tumour inhibition by BRCA1. Nat Genet. 1996;12:298–302.

    Article  CAS  PubMed  Google Scholar 

  23. Holt JT. Breast cancer genes: therapeutic strategies. Ann N Y Acad Sci. 1997;833:34–41.

    Article  CAS  PubMed  Google Scholar 

  24. Sellar GC, Watt KP, Rabiasz GJ, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat Genet. 2003;34:337–43.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta P, Su ZZ, Lebedeva IV, et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther. 2006;111:596–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cunningham CC, Chada S, Merritt JA, et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther. 2005;11:149–59.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher PB, Sarkar D, Lebedeva IV, et al. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): Novel gene therapeutic for metastatic melanoma. Toxicol Appl Pharmacol. 2007;224:300–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lebedeva IV, Sauane M, Gopalkrishnan RV, et al. mda-7/IL-24: exploiting cancer’s Achilles’ heel. Mol Ther. 2005;11:4–18.

    Article  CAS  PubMed  Google Scholar 

  29. Tong AW, Nemunaitis J, Su D, et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther. 2005;11:160–72.

    Article  CAS  PubMed  Google Scholar 

  30. Malkin D. Germline p53 mutations and heritable cancer. Annu Rev Genet. 1994;28:443–65.

    Article  CAS  PubMed  Google Scholar 

  31. Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993;329:1318–27.

    Article  CAS  PubMed  Google Scholar 

  32. Bouvet M, Ellis LM, Nishizaki M, et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 1998;58:2288–92.

    CAS  PubMed  Google Scholar 

  33. Xu M, Kumar D, Srinivas S, et al. Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther. 1997;8:177–85.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi T, Nau MM, Chiba I, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989;246:491–4.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen LL, Maneval DC. P53 tumor suppressor gene therapy for cancer. Cancer Gene Ther. 1998;5:52–63.

    CAS  PubMed  Google Scholar 

  36. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med. 1996;2:985–91.

    Article  CAS  PubMed  Google Scholar 

  37. Roth JA. Modification of mutant K-ras gene expression in non-small cell lung cancer (NSCLC). Hum Gene Ther. 1996;7:875–89.

    Article  CAS  PubMed  Google Scholar 

  38. Roth JA. Modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wildtype p53 and cisplatin. Hum Gene Ther. 1996;7:1013–30.

    Article  CAS  PubMed  Google Scholar 

  39. Swisher SG, Roth JA, Komaki R, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res. 2003;9:93–101.

    CAS  PubMed  Google Scholar 

  40. Cristofanilli M, Krishnamurthy S, Guerra L, et al. A nonreplicating adenoviral vector that contains the wild-type p53 transgene combined with chemotherapy for primary breast cancer: safety, efficacy, and biologic activity of a novel gene-therapy approach. Cancer. 2006;107:935–44.

    Article  CAS  PubMed  Google Scholar 

  41. Shimada H, Matsubara H, Shiratori T, et al. Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma. Cancer Sci. 2006;97:554–61.

    Article  CAS  PubMed  Google Scholar 

  42. Atencio IA, Grace M, Bordens R, et al. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a phase 1 colorectal cancer trial. Cancer Gene Ther. 2006;13:169–81.

    Article  CAS  PubMed  Google Scholar 

  43. Tolcher AW, Hao D, de Bono J, et al. Phase I, pharmacokinetic, and pharmacodynamic study of intravenously administered Ad5CMV-p53, an adenoviral vector containing the wild-type p53 gene, in patients with advanced cancer. J Clin Oncol. 2006;24:2052–8.

    Article  CAS  PubMed  Google Scholar 

  44. Xu HJ, Zhou Y, Seigne J, et al. Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastoma protein. Cancer Res. 1996;56:2245–9.

    CAS  PubMed  Google Scholar 

  45. Zhou Y, Li J, Xu K, et al. Further characterization of retinoblastoma gene-mediated cell growth and tumor suppression in human cancer cells. Proc Natl Acad Sci U S A. 1994;91:4165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Editorial. No stranger to controversy. Nature genetics. 1997; 17:247–8.

    Google Scholar 

  47. Helene C, Thuong NT, Harel-Bellan A. Control of gene expression by triple helix-forming oligonucleotides. The antigene strategy. Ann N Y Acad Sci. 1992;660:27–36.

    Article  CAS  PubMed  Google Scholar 

  48. Xing X, Matin A, Yu D, et al. Mutant SV40 large T antigen as a therapeutic agent for HER-2/neu-overexpressing ovarian cancer. Cancer Gene Ther. 1996;3:168–74.

    CAS  PubMed  Google Scholar 

  49. Chen H, Hung MC. Involvement of co-activator p300 in the transcriptional regulation of the HER-2/neu gene. J Biol Chem. 1997;272:6101–4.

    Article  CAS  PubMed  Google Scholar 

  50. Yu D, Matin A, Xia W, et al. Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. 1995;11:1383–8.

    CAS  PubMed  Google Scholar 

  51. Madhusudan S, Tamir A, Bates N, et al. A multicenter phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res. 2004;10:2986–96.

    Article  CAS  PubMed  Google Scholar 

  52. Feng M, Cabrera G, Deshane J, Scanlon KJ, Curiel DT. Neoplastic reversion accomplished by high efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res. 1995;55:2024–8.

    CAS  PubMed  Google Scholar 

  53. Kashani-Sabet M, Scanlon KJ. Application of ribozymes to cancer gene therapy. Cancer Gene Ther. 1995;2:213–23.

    CAS  PubMed  Google Scholar 

  54. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  56. Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene. 2002;21:5716–24.

    Article  CAS  PubMed  Google Scholar 

  57. Scherr M, Battmer K, Winkler T, et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003;101:1566–9.

    Article  CAS  PubMed  Google Scholar 

  58. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2:243–7.

    Article  CAS  PubMed  Google Scholar 

  59. Fu GF, Lin XH, Han QW, et al. RNA interference remarkably suppresses bcl-2 gene expression in cancer cells in vitro and in vivo. Cancer Biol Ther. 2005;4:822–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang M, Zhang X, Bai CX, et al. Silencing the epidermal growth factor receptor gene with RNAi may be developed as a potential therapy for non small cell lung cancer. Genet Vaccines Ther. 2005;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dohjima T, Lee NS, Li H, Ohno T, Rossi JJ. Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line. Mol Ther. 2003;7:811–6.

    Article  CAS  PubMed  Google Scholar 

  62. El-Naggar SM, Malik MT, Kakar SS. Small interfering RNA against PTTG: a novel therapy for ovarian cancer. Int J Oncol. 2007;31:137–43.

    CAS  PubMed  Google Scholar 

  63. Zhu H, Zhu Y, Hu J, et al. Adenovirus-mediated small hairpin RNA targeting Bcl-XL as therapy for colon cancer. Int J Cancer. 2007;121:1366–72.

    Article  CAS  PubMed  Google Scholar 

  64. Alama A, Barbieri F, Cagnoli M, Schettini G. Antisense oligonucleotides as therapeutic agents. Pharmacol Res. 1997;36:171–8.

    Article  CAS  PubMed  Google Scholar 

  65. Gibson I. Antisense approaches to the gene therapy of cancer—“Recnac”. Cancer Metastasis Rev. 1996;15:287–99.

    Article  CAS  PubMed  Google Scholar 

  66. Su Z, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci U S A. 2001;98:10332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang WW. Antisense oncogene and tumor suppressor gene therapy of cancer. J Mol Med. 1996;74:191–204.

    Article  CAS  PubMed  Google Scholar 

  68. Baker BF, Lot SS, Condon TP, et al. 2′-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem. 1997;272:11994–2000.

    Article  CAS  PubMed  Google Scholar 

  69. Wu H, Lima WF, Zhang H, et al. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004;279:17181–9.

    Article  CAS  PubMed  Google Scholar 

  70. Eckstein F. Developments in RNA chemistry, a personal view. Biochimie. 2002;84:841–8.

    Article  CAS  PubMed  Google Scholar 

  71. Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999;1489:141–58.

    Article  CAS  PubMed  Google Scholar 

  72. Stein CA. Antitumor effects of antisense phosphorothioate c-myc oligodeoxynucleotides: a question of mechanism. J Natl Cancer Inst. 1996;88:391–3.

    Article  CAS  PubMed  Google Scholar 

  73. Milner N, Mir KU, Southern EM. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol. 1997;15:537–41.

    Article  CAS  PubMed  Google Scholar 

  74. Marasco WA. Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther. 1997;4:11–5.

    Article  CAS  PubMed  Google Scholar 

  75. Deshane J, Loechel F, Conry RM, et al. Intracellular single-chain antibody directed against erbB2 down-regulates cell surface erbB2 and exhibits a selective anti-proliferative effect in erbB2 overexpressing cancer cell lines. Gene Ther. 1994;1:332–7.

    CAS  PubMed  Google Scholar 

  76. Barnes MN, Deshane JS, Siegal GP, Alvarez RD, Curiel DT. Novel gene therapy strategy to accomplish growth factor modulation induces enhanced tumor cell chemosensitivity. Clin Cancer Res. 1996;2:1089–95.

    CAS  PubMed  Google Scholar 

  77. Deshane J, Cabrera G, Grim JE, et al. Targeted eradication of ovarian cancer mediated by intracellular expression of anti-erbB-2 single-chain antibody. Gynecol Oncol. 1995;59:8–14.

    Article  CAS  PubMed  Google Scholar 

  78. Alvarez RD, Curiel DT. A phase I study of recombinant adenovirus vector-mediated delivery of an anti-erbB-2 single-chain (sFv) antibody gene for previously treated ovarian and extraovarian cancer patients. Hum Gene Ther. 1997;8:229–42.

    Article  CAS  PubMed  Google Scholar 

  79. Alvarez RD, Barnes MN, Gomez-Navarro J, et al. A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin Cancer Res. 2000;6:3081–7.

    CAS  PubMed  Google Scholar 

  80. Furth ME, Davis LJ, Fleurdelys B, Scolnick EM. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J Virol. 1982;43:294–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Werge TM, Biocca S, Cattaneo A. Intracellular immunization. Cloning and intracellular expression of a monoclonal antibody to the p21ras protein. FEBS Lett. 1990;274:193–8.

    Article  CAS  PubMed  Google Scholar 

  82. Cochet O, Kenigsberg M, Delumeau I, et al. Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res. 1998;58:1170–6.

    CAS  PubMed  Google Scholar 

  83. Pereboev AV, Asiedu CK, Kawakami Y, et al. Coxsackievirus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances adenoviral transduction of dendritic cells. Gene Ther. 2002;9:1189–93.

    Article  CAS  PubMed  Google Scholar 

  84. Li HJ, Everts M, Pereboeva L, et al. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter. Cancer Res. 2007;67:5354–61.

    Article  CAS  PubMed  Google Scholar 

  85. Suto R, Tominaga K, Mizuguchi H, et al. Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther. 2004;11:187–93.

    Article  CAS  PubMed  Google Scholar 

  86. Lee HY, Suh YA, Lee JI, et al. Inhibition of oncogenic K-ras signaling by aerosolized gene delivery in a mouse model of human lung cancer. Clin Cancer Res. 2002;8:2970–5.

    CAS  PubMed  Google Scholar 

  87. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  88. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res. 1996;69:135–74.

    Article  CAS  PubMed  Google Scholar 

  89. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6.

    Article  CAS  PubMed  Google Scholar 

  90. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  91. Parangi S, O’Reilly M, Christofori G, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A. 1996;93:2002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Craft PS, Harris AL. Clinical prognostic significance of tumour angiogenesis. Ann Oncol. 1994;5:305–11.

    CAS  PubMed  Google Scholar 

  93. Fox SB. Tumour angiogenesis and prognosis. Histopathology. 1997;30:294–301.

    Article  CAS  PubMed  Google Scholar 

  94. Weidner N. Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol. 1998;184:119–22.

    Article  CAS  PubMed  Google Scholar 

  95. Bicknell R. Vascular targeting and the inhibition of angiogenesis. Ann Oncol. 1994;5 Suppl 4:45–50.

    Article  PubMed  Google Scholar 

  96. Denekamp J. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol. 1993;66:181–96.

    Article  CAS  PubMed  Google Scholar 

  97. Denekamp J, Hobson B. Endothelial-cell proliferation in experimental tumours. Br J Cancer. 1982;46:711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175:409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays. 1991;13:31–6.

    Article  CAS  PubMed  Google Scholar 

  100. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390:404–7.

    Article  CAS  PubMed  Google Scholar 

  101. Kakeji Y, Teicher BA. Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs. 1997;15:39–48.

    Article  CAS  PubMed  Google Scholar 

  102. Gradishar WJ. An overview of clinical trials involving inhibitors of angiogenesis and their mechanism of action. Invest New Drugs. 1997;15:49–59.

    Article  CAS  PubMed  Google Scholar 

  103. Kong HL, Crystal RG. Gene therapy strategies for tumor antiangiogenesis. J Natl Cancer Inst. 1998;90:273–86.

    Article  CAS  PubMed  Google Scholar 

  104. Nguyen JT, Wu P, Clouse ME, Hlatky L, Terwilliger EF. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res. 1998;58:5673–7.

    CAS  PubMed  Google Scholar 

  105. Millauer B, Longhi MP, Plate KH, et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 1996;56:1615–20.

    CAS  PubMed  Google Scholar 

  106. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature. 1994;367:576–9.

    Article  CAS  PubMed  Google Scholar 

  107. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72:835–46.

    Article  CAS  PubMed  Google Scholar 

  108. Kong HL, Hecht D, Song W, et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum Gene Ther. 1998;9:823–33.

    Article  CAS  PubMed  Google Scholar 

  109. Lin P, Sankar S, Shan S, et al. Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ. 1998;9:49–58.

    CAS  PubMed  Google Scholar 

  110. Takei Y, Mizukami H, Saga Y, et al. Suppression of ovarian cancer by muscle-mediated expression of soluble VEGFR-1/Flt-1 using adeno-associated virus serotype 1-derived vector. Int J Cancer. 2007;120:278–84.

    Article  CAS  PubMed  Google Scholar 

  111. Goldman CK, Kendall RL, Cabrera G, et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci U S A. 1998;95:8795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther. 2005;12:217–27.

    Article  CAS  PubMed  Google Scholar 

  113. Kwon HS, Shin HC, Kim JS. Suppression of vascular endothelial growth factor expression at the transcriptional and post-transcriptional levels. Nucleic Acids Res. 2005;33:e74.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cheng SY, Huang HJ, Nagane M, et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci U S A. 1996;93:8502–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Saleh M, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res. 1996;56:393–401.

    CAS  PubMed  Google Scholar 

  116. Wu HP, Feng GS, Liang HM, Zheng CS, Li X. Vascular endothelial growth factor antisense oligodeoxynucleotides with lipiodol in arterial embolization of liver cancer in rats. World J Gastroenterol. 2004;10:813–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tanaka T, Kanai F, Lan KH, et al. Adenovirus-mediated gene therapy of gastric carcinoma using cancer-specific gene expression in vivo. Biochem Biophys Res Commun. 1997;231:775–9.

    Article  CAS  PubMed  Google Scholar 

  118. Ma HI, Lin SZ, Chiang YH, et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther. 2002;9:2–11.

    Article  CAS  PubMed  Google Scholar 

  119. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 1999;59:3308–12.

    CAS  PubMed  Google Scholar 

  120. Ponnazhagan S, Mahendra G, Kumar S, et al. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor. Cancer Res. 2004;64:1781–7.

    Article  CAS  PubMed  Google Scholar 

  121. Huang YW, Baluna R, Vitetta ES. Adhesion molecules as targets for cancer therapy. Histol Histopathol. 1997;12:467–77.

    CAS  PubMed  Google Scholar 

  122. Conese M, Blasi F. The urokinase/urokinase-receptor system and cancer invasion. Baillieres Clin Haematol. 1995;8:365–89.

    Article  CAS  PubMed  Google Scholar 

  123. Mazzieri R, Blasi F. The urokinase receptor and the regulation of cell proliferation. Thromb Haemost. 2005;93:641–6.

    CAS  PubMed  Google Scholar 

  124. Wang Y. The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med Res Rev. 2001;21:146–70.

    Article  PubMed  Google Scholar 

  125. Ge Y, Elghetany MT. Urokinase plasminogen activator receptor (CD87): something old, something new. Lab Hematol. 2003;9:67–71.

    PubMed  Google Scholar 

  126. Kuhn W, Pache L, Schmalfeldt B, et al. Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III) after radical surgery and platinum-based chemotherapy. Gynecol Oncol. 1994;55:401–9.

    Article  CAS  PubMed  Google Scholar 

  127. Gondi CS, Lakka SS, Dinh DH, et al. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23:8486–96.

    Article  CAS  PubMed  Google Scholar 

  128. Mohanam S, Chintala SK, Go Y, et al. In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene. 1997;14:1351–9.

    Article  CAS  PubMed  Google Scholar 

  129. Go Y, Chintala SK, Mohanam S, et al. Inhibition of in vivo tumorigenicity and invasiveness of a human glioblastoma cell line transfected with antisense uPAR vectors. Clin Exp Metastasis. 1997;15:440–6.

    Article  CAS  PubMed  Google Scholar 

  130. Mohan PM, Chintala SK, Mohanam S, et al. Adenovirus-mediated delivery of antisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res. 1999;59:3369–73.

    CAS  PubMed  Google Scholar 

  131. Ma D, Gerard RD, Li XY, Alizadeh H, Niederkorn JY. Inhibition of metastasis of intraocular melanomas by adenovirus-mediated gene transfer of plasminogen activator inhibitor type 1 (PAI-1) in an athymic mouse model. Blood. 1997;90:2738–46.

    CAS  PubMed  Google Scholar 

  132. Suyama E, Wadhwa R, Kawasaki H, et al. LIM kinase-2 targeting as a possible anti-metastasis therapy. J Gene Med. 2004;6:357–63.

    Article  CAS  PubMed  Google Scholar 

  133. Ding Y, Wen Y, Spohn B, et al. Proapoptotic and antitumor activities of adenovirus-mediated p202 gene transfer. Clin Cancer Res. 2002;8:3290–7.

    CAS  PubMed  Google Scholar 

  134. Dong JT, Lamb PW, Rinker-Schaeffer CW, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2.. Science. 1995;268:884–6.

    Article  CAS  PubMed  Google Scholar 

  135. Yoshida BA, Dubauskas Z, Chekmareva MA, et al. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res. 1999;59:5483–7.

    CAS  PubMed  Google Scholar 

  136. Deonarain MP, Spooner RA, Epenetos AA. Genetic delivery of enzymes for cancer therapy. Gene Ther. 1995;2:235–44.

    CAS  PubMed  Google Scholar 

  137. Martin LA, Lemoine NR. Direct cell killing by suicide genes. Cancer Metastasis Rev. 1996;15:301–16.

    Article  CAS  PubMed  Google Scholar 

  138. Moolten FL. Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther. 1994;1:279–87.

    CAS  PubMed  Google Scholar 

  139. Rigg A, Sikora K. Genetic prodrug activation therapy. Mol Med Today. 1997;3:359–66.

    Article  CAS  PubMed  Google Scholar 

  140. Niculescu-Duvaz I, Spooner R, Marais R, Springer CJ. Gene-directed enzyme prodrug therapy. Bioconjug Chem. 1998;9:4–22.

    Article  CAS  PubMed  Google Scholar 

  141. Gene therapy clinical trials worldwide. 2011. http://www.wiley.com/legacy/wileychi/genmed/clinical/. Accessed 22 Feb 2011.

  142. Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990;82:297–300.

    Article  CAS  PubMed  Google Scholar 

  143. Kuriyama S, Kikukawa M, Masui K, et al. Cancer gene therapy with HSV-tk/GCV system depends on T-cell-mediated immune responses and causes apoptotic death of tumor cells in vivo. Int J Cancer. 1999;83:374–80.

    Article  CAS  PubMed  Google Scholar 

  144. Brand K, Arnold W, Bartels T, et al. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors. Cancer Gene Ther. 1997;4:9–16.

    CAS  PubMed  Google Scholar 

  145. van der Eb MM, Cramer SJ, Vergouwe Y, et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther. 1998;5:451–8.

    Article  PubMed  CAS  Google Scholar 

  146. Alvarez RD, Gomez-Navarro J, Wang M, et al. Adenoviral-mediated suicide gene therapy for ovarian cancer. Mol Ther. 2000;2:524–30.

    Article  CAS  PubMed  Google Scholar 

  147. Hasenburg A, Tong XW, Rojas-Martinez A, et al. Thymidine kinase gene therapy with concomitant topotecan chemotherapy for recurrent ovarian cancer. Cancer Gene Ther. 2000;7:839–44.

    Article  CAS  PubMed  Google Scholar 

  148. Chevez-Barrios P, Chintagumpala M, Mieler W, et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J Clin Oncol. 2005;23:7927–35.

    Article  CAS  PubMed  Google Scholar 

  149. Sung MW, Yeh HC, Thung SN, et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther. 2001;4:182–91.

    Article  CAS  PubMed  Google Scholar 

  150. Floeth FW, Shand N, Bojar H, et al. Local inflammation and devascularization—in vivo mechanisms of the “bystander effect” in VPC-mediated HSV-Tk/GCV gene therapy for human malignant glioma. Cancer Gene Ther. 2001;8:843–51.

    Article  CAS  PubMed  Google Scholar 

  151. Adachi Y, Tamiya T, Ichikawa T, et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther. 2000;11:77–89.

    Article  CAS  PubMed  Google Scholar 

  152. Trask TW, Trask RP, Aguilar-Cordova E, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther. 2000;1:195–203.

    Article  CAS  PubMed  Google Scholar 

  153. Singh S, Cunningham C, Buchanan A, Jolly DJ, Nemunaitis J. Toxicity assessment of intratumoral injection of the herpes simplex type I thymidine kinase gene delivered by retrovirus in patients with refractory cancer. Mol Ther. 2001;4:157–60.

    Article  CAS  PubMed  Google Scholar 

  154. Nasu Y, Saika T, Ebara S, et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol Ther. 2007;15:834–40.

    CAS  PubMed  Google Scholar 

  155. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–401.

    Article  CAS  PubMed  Google Scholar 

  156. Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther. 2000;11:2197–205.

    Article  CAS  PubMed  Google Scholar 

  157. Takamiya Y, Short MP, Ezzeddine ZD, et al. Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J Neurosci Res. 1992;33:493–503.

    Article  CAS  PubMed  Google Scholar 

  158. Freeman SM, Abboud CN, Whartenby KA, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;53:5274–83.

    CAS  PubMed  Google Scholar 

  159. Namba H, Iwadate Y, Tagawa M, et al. Evaluation of the bystander effect in experimental brain tumors bearing herpes simplex virus-thymidine kinase gene by serial magnetic resonance imaging. Hum Gene Ther. 1996;7:1847–52.

    Article  CAS  PubMed  Google Scholar 

  160. Pope IM, Poston GJ, Kinsella AR. The role of the bystander effect in suicide gene therapy. Eur J Cancer. 1997;33:1005–16.

    Article  CAS  PubMed  Google Scholar 

  161. Samejima Y, Meruelo D. “Bystander killing” induces apoptosis and is inhibited by forskolin. Gene Ther. 1995;2:50–8.

    CAS  PubMed  Google Scholar 

  162. Rosenfeld ME, Feng M, Michael SI, et al. Adenoviral-mediated delivery of the herpes simplex virus thymidine kinase gene selectively sensitizes human ovarian carcinoma cells to ganciclovir. Clin Cancer Res. 1995;1:1571–80.

    CAS  PubMed  Google Scholar 

  163. Dilber MS, Abedi MR, Christensson B, et al. Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer Res. 1997;57:1523–8.

    CAS  PubMed  Google Scholar 

  164. Elshami AA, Saavedra A, Zhang H, et al. Gap junctions play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther. 1996;3:85–92.

    CAS  PubMed  Google Scholar 

  165. Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med. 1997;3:1354–61.

    Article  CAS  PubMed  Google Scholar 

  166. Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH. In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 1993;53:83–8.

    CAS  PubMed  Google Scholar 

  167. Whartenby KA, Abboud CN, Marrogi AJ, Ramesh R, Freeman SM. The biology of cancer gene therapy. Lab Investig. 1995;72:131–45.

    CAS  PubMed  Google Scholar 

  168. Ram Z, Walbridge S, Shawker T, et al. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats. J Neurosurg. 1994;81:256–60.

    Article  CAS  PubMed  Google Scholar 

  169. Freeman SM, Ramesh R, Shastri M, et al. The role of cytokines in mediating the bystander effect using HSV-TK xenogeneic cells. Cancer Lett. 1995;92:167–74.

    Article  CAS  PubMed  Google Scholar 

  170. Vile RG, Nelson JA, Castleden S, Chong H, Hart IR. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res. 1994;54:6228–34.

    CAS  PubMed  Google Scholar 

  171. Gagandeep S, Brew R, Green B, et al. Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect”. Cancer Gene Ther. 1996;3:83–8.

    CAS  PubMed  Google Scholar 

  172. Kianmanesh AR, Perrin H, Panis Y, et al. A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther. 1997;8:1807–14.

    Article  CAS  PubMed  Google Scholar 

  173. Vile RG, Castleden S, Marshall J, et al. Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer. 1997;71:267–74.

    Article  CAS  PubMed  Google Scholar 

  174. Crystal RG, Hirschowitz E, Lieberman M, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther. 1997;8:985–1001.

    Article  CAS  PubMed  Google Scholar 

  175. Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A. 1992;89:33–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Blackburn RV, Galoforo SS, Corry PM, Lee YJ. Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res. 1998;58:1358–62.

    CAS  PubMed  Google Scholar 

  177. Bridgewater JA, Springer CJ, Knox RJ, et al. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer. 1995;31A:2362–70.

    Article  CAS  PubMed  Google Scholar 

  178. Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst. 1998;90:370–80.

    Article  CAS  PubMed  Google Scholar 

  179. Rogulski KR, Kim JH, Kim SH, Freytag SO. Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther. 1997;8:73–85.

    Article  CAS  PubMed  Google Scholar 

  180. Rafferty JA, Hickson I, Chinnasamy N, et al. Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev. 1996;15:365–83.

    Article  CAS  PubMed  Google Scholar 

  181. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science. 1992;257:99–103.

    Article  CAS  PubMed  Google Scholar 

  182. Cowan KH, Moscow JA, Huang H, et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res. 1999;5:1619–28.

    CAS  PubMed  Google Scholar 

  183. Moscow JA, Huang H, Carter C, et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood. 1999;94:52–61.

    CAS  PubMed  Google Scholar 

  184. Rahman Z, Kavanagh J, Champlin R, et al. Chemotherapy immediately following autologous stem-cell transplantation in patients with advanced breast cancer. Clin Cancer Res. 1998;4:2717–21.

    CAS  PubMed  Google Scholar 

  185. Devereux S, Corney C, Macdonald C, et al. Feasibility of multidrug resistance (MDR-1) gene transfer in patients undergoing high-dose therapy and peripheral blood stem cell transplantation for lymphoma. Gene Ther. 1998;5:403–8.

    Article  CAS  PubMed  Google Scholar 

  186. Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol. 1998;16:165–72.

    CAS  PubMed  Google Scholar 

  187. Abonour R, Williams DA, Einhorn L, et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med. 2000;6:652–8.

    Article  CAS  PubMed  Google Scholar 

  188. Dorigo O, Turla ST, Lebedeva S, Gjerset RA. Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J Neurosurg. 1998;88:535–40.

    Article  CAS  PubMed  Google Scholar 

  189. Wakasa T, Inoue T, Kawai N, et al. The combination of ionizing radiation and expression of a wild type p53 gene via recombinant adenovirus induced a prominent tumour suppressing effect in human oral squamous cell carcinoma. Br J Radiol. 2002;75:657–62.

    Article  CAS  PubMed  Google Scholar 

  190. Piche A, Grim J, Rancourt C, et al. Modulation of Bcl-2 protein levels by an intracellular anti-Bcl-2 single-chain antibody increases drug-induced cytotoxicity in the breast cancer cell line MCF-7. Cancer Res. 1998;58:2134–40.

    CAS  PubMed  Google Scholar 

  191. Chen L, Waxman DJ, Chen D, Kufe DW. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res. 1996;56:1331–40.

    CAS  PubMed  Google Scholar 

  192. Rogulski KR, Zhang K, Kolozsvary A, Kim JH, Freytag SO. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy. Clin Cancer Res. 1997;3:2081–8.

    CAS  PubMed  Google Scholar 

  193. Pederson LC, Buchsbaum DJ, Vickers SM, et al. Molecular chemotherapy combined with radiation therapy enhances killing of cholangiocarcinoma cells in vitro and in vivo. Cancer Res. 1997;57:4325–32.

    CAS  PubMed  Google Scholar 

  194. Elshami AA, Kucharczuk JC, Zhang HB, et al. Treatment of pleural mesothelioma in an immunocompetent rat model utilizing adenoviral transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther. 1996;7:141–8.

    Article  CAS  PubMed  Google Scholar 

  195. Mujoo K, Maneval DC, Anderson SC, Gutterman JU. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene. 1996;12:1617–23.

    CAS  PubMed  Google Scholar 

  196. Smythe WR, Hwang HC, Elshami AA, et al. Treatment of experimental human mesothelioma using adenovirus transfer of the herpes simplex thymidine kinase gene. Ann Surg. 1995;222:78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yee D, McGuire SE, Brunner N, et al. Adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase in an ascites model of human breast cancer. Hum Gene Ther. 1996;7:1251–7.

    Article  CAS  PubMed  Google Scholar 

  198. Zhang L, Wikenheiser KA, Whitsett JA. Limitations of retrovirus-mediated HSV-tk gene transfer to pulmonary adenocarcinoma cells in vitro and in vivo. Hum Gene Ther. 1997;8:563–74.

    Article  CAS  PubMed  Google Scholar 

  199. Ebbell B. The Papyrus Ebers; the greatest Egyptian medical document. Copenhagen: Levin & Munksgaard; 1937. 135 p.

    Google Scholar 

  200. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother. 1997;20:165–77.

    Article  CAS  PubMed  Google Scholar 

  201. Hellstrom I, Hellstrom KE. Tumor vaccines—a reality at last? J Immunother. 1998;21:119–26.

    Article  CAS  PubMed  Google Scholar 

  202. Hodi FS, Dranoff G. Genetically modified tumor cell vaccines. Surg Oncol Clin N Am. 1998;7:471–85.

    CAS  PubMed  Google Scholar 

  203. Pardoll DM. Cancer vaccines. Nat Med. 1998;4:525–31.

    Article  CAS  PubMed  Google Scholar 

  204. Foa R, Guarini A, Cignetti A, et al. Cytokine gene therapy: a new strategy for the management of cancer patients. Nat Immun. 1994;13:65–75.

    CAS  PubMed  Google Scholar 

  205. Addison CL, Bramson JL, Hitt MM, et al. Intratumoral coinjection of adenoviral vectors expressing IL-2 and IL-12 results in enhanced frequency of regression of injected and untreated distal tumors. Gene Ther. 1998;5:1400–9.

    Article  CAS  PubMed  Google Scholar 

  206. Allione A, Consalvo M, Nanni P, et al. Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and gamma-interferon gene or admixed with conventional adjuvants. Cancer Res. 1994;54:6022–6.

    CAS  PubMed  Google Scholar 

  207. Benedetti S, Pirola B, Pollo B, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med. 2000;6:447–50.

    Article  CAS  PubMed  Google Scholar 

  208. Blezinger P, Freimark BD, Matar M, et al. Intratracheal administration of interleukin 12 plasmid-cationic lipid complexes inhibits murine lung metastases. Hum Gene Ther. 1999;10:723–31.

    Article  CAS  PubMed  Google Scholar 

  209. de Vos S, Kohn DB, Cho SK, et al. Immunotherapy against murine leukemia. Leukemia. 1998;12:401–5.

    Article  PubMed  CAS  Google Scholar 

  210. Di Carlo E, Coletti A, Modesti A, et al. Local release of interleukin-10 by transfected mouse adenocarcinoma cells exhibits pro- and anti-inflammatory activity and results in a delayed tumor rejection. Eur Cytokine Netw. 1998;9:61–8.

    PubMed  Google Scholar 

  211. Douvdevani A, Huleihel M, Zoller M, Segal S, Apte RN. Reduced tumorigenicity of fibrosarcomas which constitutively generate IL-1 alpha either spontaneously or following IL-1 alpha gene transfer. Int J Cancer. 1992;51:822–30.

    Article  CAS  PubMed  Google Scholar 

  212. Esandi MC, van Someren GD, Bout A, et al. IL-1/IL-3 gene therapy of non-small cell lung cancer (NSCLC) in rats using “cracked” adenoproducer cells. Gene Ther. 1998;5:778–88.

    Article  CAS  PubMed  Google Scholar 

  213. Gansbacher B, Zier K, Daniels B, et al. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990;172:1217–24.

    Article  CAS  PubMed  Google Scholar 

  214. Giovarelli M, Musiani P, Modesti A, et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol. 1995;155:3112–23.

    CAS  PubMed  Google Scholar 

  215. McBride WH, Dougherty GD, Wallis AE, Economou JS, Chiang CS. Interleukin-3 in gene therapy of cancer. Folia Biol. 1994;40:62–73.

    CAS  Google Scholar 

  216. Missol E, Sochanik A, Szala S. Introduction of murine Il-4 gene into B16(F10) melanoma tumors by direct gene transfer with DNA-liposome complexes. Cancer Lett. 1995;97:189–93.

    Article  CAS  PubMed  Google Scholar 

  217. Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004;11:1155–64.

    Article  CAS  PubMed  Google Scholar 

  218. Parmiani G, Rodolfo M, Melani C. Immunological gene therapy with ex vivo gene-modified tumor cells: a critique and a reappraisal. Hum Gene Ther. 2000;11:1269–75.

    Article  CAS  PubMed  Google Scholar 

  219. Putzer BM, Stiewe T, Rodicker F, et al. Large nontransplanted hepatocellular carcinoma in woodchucks: treatment with adenovirus-mediated delivery of interleukin 12/B7.1 genes. J Natl Cancer Inst. 2001;93:472–9.

    Article  CAS  PubMed  Google Scholar 

  220. Sangro B, Mazzolini G, Ruiz J, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol. 2004;22:1389–97.

    Article  CAS  PubMed  Google Scholar 

  221. Trudel S, Trachtenberg J, Toi A, et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther. 2003;10:755–63.

    Article  CAS  PubMed  Google Scholar 

  222. Nemunaitis J, Sterman D, Jablons D, et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst. 2004;96:326–31.

    Article  CAS  PubMed  Google Scholar 

  223. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 1999;59:5160–8.

    CAS  PubMed  Google Scholar 

  224. Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 1998;95:13141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mundt AJ, Vijayakumar S, Nemunaitis J, et al. A phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res. 2004;10:5747–53.

    Article  CAS  PubMed  Google Scholar 

  226. Senzer N, Mani S, Rosemurgy A, et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol. 2004;22:592–601.

    Article  CAS  PubMed  Google Scholar 

  227. Dummer R, Hassel JC, Fellenberg F, et al. Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumor regressions in cutaneous lymphomas. Blood. 2004;104:1631–8.

    Article  CAS  PubMed  Google Scholar 

  228. Khorana AA, Rosenblatt JD, Sahasrabudhe DM, et al. A phase I trial of immunotherapy with intratumoral adenovirus-interferon-gamma (TG1041) in patients with malignant melanoma. Cancer Gene Ther. 2003;10:251–9.

    Article  CAS  PubMed  Google Scholar 

  229. Vegh Z, Wang P, Vanky F, Klein E. Selectively down-regulated expression of major histocompatibility complex class I alleles in human solid tumors. Cancer Res. 1993;53:2416–20.

    CAS  PubMed  Google Scholar 

  230. Kawakami Y, Nishimura MI, Restifo NP, et al. T-cell recognition of human melanoma antigens. J Immunother Emphasis Tumor Immunol. 1993;14:88–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kono K, Halapi E, Hising C, et al. Mechanisms of escape from CD8+ T-cell clones specific for the HER-2/neu proto-oncogene expressed in ovarian carcinomas: related and unrelated to decreased MHC class 1 expression. Int J Cancer. 1997;70:112–9.

    Article  CAS  PubMed  Google Scholar 

  232. DeBruyne L. Treatment of malignancy by direct gene transfer of a foreign MHC class I molecule. Cancer Immunol Immunother. 1996;43:180–9.

    Article  CAS  PubMed  Google Scholar 

  233. Nabel GJ, Gordon D, Bishop DK, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A. 1996;93:15388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Stopeck AT, Hersh EM, Akporiaye ET, et al. Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J Clin Oncol. 1997;15:341–9.

    CAS  PubMed  Google Scholar 

  235. Gonzalez R, Hutchins L, Nemunaitis J, Atkins M, Schwarzenberger PO. Phase 2 trial of Allovectin-7 in advanced metastatic melanoma. Melanoma Res. 2006;16:521–6.

    Article  CAS  PubMed  Google Scholar 

  236. Abdel-Wahab ZA, Osanto S, Darrow TL, et al. Transduction of human melanoma cells with the gamma interferon gene enhances cellular immunity. Cancer Gene Ther. 1994;1:171–9.

    CAS  PubMed  Google Scholar 

  237. Abdel-Wahab Z, Weltz C, Hester D, et al. A phase I clinical trial of immunotherapy with interferon-gamma gene-modified autologous melanoma cells: monitoring the humoral immune response. Cancer. 1997;80:401–12.

    Article  CAS  PubMed  Google Scholar 

  238. van der Merwe PA, Davis SJ. Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol. 2003;21:659–84.

    Article  PubMed  CAS  Google Scholar 

  239. Sartor WM, Kyprianou N, Fabian DF, Lefor AT. Enhanced expression of ICAM-1 in a murine fibrosarcoma reduces tumor growth rate. J Surg Res. 1995;59:66–74.

    Article  CAS  PubMed  Google Scholar 

  240. Wei K, Wilson JG, Jurgensen CH, et al. Xenogeneic ICAM-1 gene transfer suppresses tumorigenicity and generates protective antitumor immunity. Gene Ther. 1996;3:531–41.

    CAS  PubMed  Google Scholar 

  241. Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem. 1996;271:33325–34.

    Article  CAS  PubMed  Google Scholar 

  242. Hiltbold EM, Alter MD, Ciborowski P, Finn OJ. Presentation of MUC1 tumor antigen by class I MHC and CTL function correlate with the glycosylation state of the protein taken Up by dendritic cells. Cell Immunol. 1999;194:143–9.

    Article  CAS  PubMed  Google Scholar 

  243. Barnd DL, Lan MS, Metzgar RS, Finn OJ. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci U S A. 1989;86:7159–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Pantuck AJ, van Ophoven A, Gitlitz BJ, et al. Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother. 2004;27:240–53.

    Article  CAS  PubMed  Google Scholar 

  245. Rochlitz C, Figlin R, Squiban P, et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J Gene Med. 2003;5:690–9.

    Article  CAS  PubMed  Google Scholar 

  246. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323:570–8.

    Article  CAS  PubMed  Google Scholar 

  247. Hwu P, Rosenberg SA. The genetic modification of T cells for cancer therapy: an overview of laboratory and clinical trials. Cancer Detect Prev. 1994;18:43–50.

    CAS  PubMed  Google Scholar 

  248. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  249. Matzinger P. An innate sense of danger. Semin Immunol. 1998;10:399–415.

    Article  CAS  PubMed  Google Scholar 

  250. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol. 1996;8:271–80.

    Article  CAS  PubMed  Google Scholar 

  251. Inoshima N, Nakanishi Y, Minami T, et al. The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res. 2002;8:3480–6.

    CAS  PubMed  Google Scholar 

  252. Treilleux I, Blay JY, Bendriss-Vermare N, et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res. 2004;10:7466–74.

    Article  CAS  PubMed  Google Scholar 

  253. Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev. 2002;188:147–54.

    Article  CAS  PubMed  Google Scholar 

  254. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90:3539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ali SA, Lynam J, McLean CS, et al. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity. J Immunol. 2002;168:3512–9.

    Article  CAS  PubMed  Google Scholar 

  256. Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW. Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine. 2002;20:1466–74.

    Article  CAS  PubMed  Google Scholar 

  257. Nakamura M, Iwahashi M, Nakamori M, et al. Dendritic cells genetically engineered to simultaneously express endogenous tumor antigen and granulocyte macrophage colony-stimulating factor elicit potent therapeutic antitumor immunity. Clin Cancer Res. 2002;8:2742–9.

    CAS  PubMed  Google Scholar 

  258. Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res. 2002;26:757–63.

    Article  CAS  PubMed  Google Scholar 

  259. Chen Z, Huang H, Chang T, et al. Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Ther. 2002;9:778–86.

    Article  CAS  PubMed  Google Scholar 

  260. Hiroishi K, Tuting T, Tahara H, Lotze MT. Interferon-alpha gene therapy in combination with CD80 transduction reduces tumorigenicity and growth of established tumor in poorly immunogenic tumor models. Gene Ther. 1999;6:1988–94.

    Article  CAS  PubMed  Google Scholar 

  261. Tatsumi T, Gambotto A, Robbins PD, Storkus WJ. Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Res. 2002;62:5853–8.

    CAS  PubMed  Google Scholar 

  262. Schjetne KW, Thompson KM, Aarvak T, et al. A mouse C kappa-specific T cell clone indicates that DC-SIGN is an efficient target for antibody-mediated delivery of T cell epitopes for MHC class II presentation. Int Immunol. 2002;14:1423–30.

    Article  CAS  PubMed  Google Scholar 

  263. Engering A, Geijtenbeek TB, van Vliet SJ, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol. 2002;168:2118–26.

    Article  CAS  PubMed  Google Scholar 

  264. Salamero J, Bausinger H, Mommaas AM, et al. CD1a molecules traffic through the early recycling endosomal pathway in human Langerhans cells. J Invest Dermatol. 2001;116:401–8.

    Article  CAS  PubMed  Google Scholar 

  265. Waeckerle-Men Y, Uetz-von Allmen E, Fopp M, et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol Immunother. 2006;55:1524–33.

    Article  PubMed  Google Scholar 

  266. Conry RM, Allen KO, Lee S, et al. Human autoantibodies to carcinoembryonic antigen (CEA) induced by a vaccinia-CEA vaccine. Clin Cancer Res. 2000;6:34–41.

    CAS  PubMed  Google Scholar 

  267. Gulley J, Chen AP, Dahut W, et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate. 2002;53:109–17.

    Article  CAS  PubMed  Google Scholar 

  268. Marshall JL, Hoyer RJ, Toomey MA, et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol. 2000;18:3964–73.

    CAS  PubMed  Google Scholar 

  269. Taupier MA, Kearney JF, Leibson PJ, Loken MR, Schreiber H. Nonrandom escape of tumor cells from immune lysis due to intraclonal fluctuations in antigen expression. Cancer Res. 1983;43:4050–6.

    CAS  PubMed  Google Scholar 

  270. Welch WR, Niloff JM, Anderson D, et al. Antigenic heterogeneity in human ovarian cancer. Gynecol Oncol. 1990;38:12–6.

    Article  CAS  PubMed  Google Scholar 

  271. Fenton RG, Longo DL. Danger versus tolerance: paradigms for future studies of tumor-specific cytotoxic T lymphocytes. J Natl Cancer Inst. 1997;89:272–5.

    Article  CAS  PubMed  Google Scholar 

  272. Staveley-O’Carroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci U S A. 1998;95:1178–83.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Morel A, de La Coste A, Fernandez N, et al. Does preventive vaccination with engineered tumor cells work in cancer-prone transgenic mice? Cancer Gene Ther. 1998;5:92–100.

    CAS  PubMed  Google Scholar 

  274. Bierman HR, Crile DM, Dod KS, et al. Remissions in leukemia of childhood following acute infectious disease: staphylococcus and streptococcus, varicella, and feline panleukopenia. Cancer. 1953;6:591–605.

    Article  CAS  PubMed  Google Scholar 

  275. Bluming AZ, Ziegler JL. Regression of Burkitt’s lymphoma in association with measles infection. Lancet. 1971;2:105–6.

    Article  CAS  PubMed  Google Scholar 

  276. Southam CM. Present status of oncolytic virus studies. Trans N Y Acad Sci. 1960;22:657–73.

    Article  CAS  PubMed  Google Scholar 

  277. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.

    Article  CAS  PubMed  Google Scholar 

  278. Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98:298–300.

    Article  PubMed  Google Scholar 

  279. Martuza RL. Conditionally replicating herpes vectors for cancer therapy. J Clin Invest. 2000;105:841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9:967–78.

    Article  CAS  PubMed  Google Scholar 

  281. Chou J, Kern ER, Whitley RJ, Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990;250:1262–6.

    Article  CAS  PubMed  Google Scholar 

  282. He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1997;94:843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Farassati F, Yang AD, Lee PW. Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol. 2001;3:745–50.

    Article  CAS  PubMed  Google Scholar 

  284. Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci U S A. 2000;97:6097–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Goldstein DJ, Weller SK. Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology. 1988;166:41–51.

    Article  CAS  PubMed  Google Scholar 

  286. MacLean AR, ul-Fareed M, Robertson L, Harland J, Brown SM. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the “a” sequence. J Gen Virol. 1991;72:631–9.

    Article  CAS  PubMed  Google Scholar 

  287. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–43.

    Article  CAS  PubMed  Google Scholar 

  288. Yazaki T, Manz HJ, Rabkin SD, Martuza RL. Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res. 1995;55:4752–6.

    CAS  PubMed  Google Scholar 

  289. Hunter WD, Martuza RL, Feigenbaum F, et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol. 1999;73:6319–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Todo T, Feigenbaum F, Rabkin SD, et al. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther. 2000;2:588–95.

    Article  CAS  PubMed  Google Scholar 

  291. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000;7:867–74.

    Article  CAS  PubMed  Google Scholar 

  292. Kemeny N, Brown K, Covey A, et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther. 2006;17:1214–24.

    Article  CAS  PubMed  Google Scholar 

  293. Ahn K, Meyer TH, Uebel S, et al. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J. 1996;15:3247–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19:2–12.

    Article  CAS  PubMed  Google Scholar 

  295. Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 2000;6:1134–9.

    Article  CAS  PubMed  Google Scholar 

  296. O’Connor RJ, Hearing P. The E4-6/7 protein functionally compensates for the loss of E1A expression in adenovirus infection. J Virol. 2000;74:5819–24.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274:373–6.

    Article  CAS  PubMed  Google Scholar 

  298. White E, Faha B, Stillman B. Regulation of adenovirus gene expression in human WI38 cells by an E1B-encoded tumor antigen. Mol Cell Biol. 1986;6:3763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol. 1998;140:637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Marcellus RC, Chan H, Paquette D, et al. Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J Virol. 2000;74:7869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Marcellus RC, Lavoie JN, Boivin D, et al. The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol. 1998;72:7144–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Barker DD, Berk AJ. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology. 1987;156:107–21.

    Article  CAS  PubMed  Google Scholar 

  303. Harada JN, Berk AJ. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol. 1999;73:5333–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Pilder S, Moore M, Logan J, Shenk T. The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol. 1986;6:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Ganly I, Kirn D, Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.

    CAS  PubMed  Google Scholar 

  306. Nemunaitis J, Ganly I, Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 2000;60:6359–66.

    CAS  PubMed  Google Scholar 

  307. Mulvihill S, Warren R, Venook A, et al. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther. 2001;8:308–15.

    Article  CAS  PubMed  Google Scholar 

  308. Habib N, Salama H, Abd El Latif Abu Median A, et al. Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 2002;9:254–9.

    Article  CAS  PubMed  Google Scholar 

  309. Vasey PA, Shulman LN, Campos S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol. 2002;20:1562–9.

    Article  CAS  PubMed  Google Scholar 

  310. Reid T, Galanis E, Abbruzzese J, et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 2001;8:1618–26.

    Article  CAS  PubMed  Google Scholar 

  311. Reid T, Galanis E, Abbruzzese J, et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 2002;62:6070–9.

    CAS  PubMed  Google Scholar 

  312. Zhang JF, Hu C, Geng Y, et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci U S A. 1996;93:4513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Sarkar D, Su ZZ, Vozhilla N, et al. Targeted virus replication plus immunotherapy eradicates primary and distant pancreatic tumors in nude mice. Cancer Res. 2005;65:9056–63.

    Article  CAS  PubMed  Google Scholar 

  314. Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF. A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther. 2000;11:2009–24.

    Article  CAS  PubMed  Google Scholar 

  316. van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR. Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res. 2002;62:6165–71.

    PubMed  Google Scholar 

  317. Sarkar D, Lebedeva IV, Su ZZ, et al. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res. 2007;67:5434–42.

    Article  CAS  PubMed  Google Scholar 

  318. Sarkar D, Su ZZ, Vozhilla N, et al. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci U S A. 2005;102:14034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther. 1998;9:1323–33.

    Article  CAS  PubMed  Google Scholar 

  320. Wildner O, Morris JC. Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses. J Gene Med. 2000;2:353–60.

    Article  CAS  PubMed  Google Scholar 

  321. Bernt KM, Steinwaerder DS, Ni S, et al. Enzyme-activated prodrug therapy enhances tumor-specific replication of adenovirus vectors. Cancer Res. 2002;62:6089–98.

    CAS  PubMed  Google Scholar 

  322. Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses—selective retargeting to tumor cells. Oncogene. 2005;24:7775–91.

    Article  CAS  PubMed  Google Scholar 

  323. Ko D, Hawkins L, Yu DC. Development of transcriptionally regulated oncolytic adenoviruses. Oncogene. 2005;24:7763–74.

    Article  CAS  PubMed  Google Scholar 

  324. Sarkar D, Su ZZ, Fisher PB. Unique conditionally replication competent bipartite adenoviruses-cancer terminator viruses (CTV): efficacious reagents for cancer gene therapy. Cell Cycle. 2006;5:1531–6.

    Article  CAS  PubMed  Google Scholar 

  325. Stoff-Khalili MA, Rivera AA, Nedeljkovic-Kurepa A, et al. Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control. Breast Cancer Res Treat. 2008;108:43–55.

    Article  CAS  PubMed  Google Scholar 

  326. Short JJ, Rivera AA, Wu H, et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther. 2010;9:2536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Lamfers ML, Grill J, Dirven CM, et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res. 2002;62:5736–42.

    CAS  PubMed  Google Scholar 

  328. Kimball KJ, Preuss MA, Barnes MN, et al. A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases. Clin Cancer Res. 2010;16:5277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Ulasov IV, Rivera AA, Sonabend AM, et al. Comparative evaluation of survivin, midkine, and CXCR4 promoters for transcriptional targeting of glioma gene therapy. Cancer Biol Ther. 2007;6.

    Google Scholar 

  330. Su ZZ, Sarkar D, Emdad L, et al. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci U S A. 2005;102:1059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Rojas JJ, Cascallo M, Guedan S, et al. A modified E2F-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther. 2009;16:1441–51.

    Article  CAS  PubMed  Google Scholar 

  332. Orkin SH, Motulsky AG. Report and recommendations of the panel to assess the NIH investement in research on gene therapy. 1995. http://www.nih.gov/news/panelrep.html. Accessed 22 Feb 2011.

  333. Douglas JT, Rogers BE, Rosenfeld ME, et al. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol. 1996;14:1574–8.

    Article  CAS  PubMed  Google Scholar 

  334. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol. 1996;70:6839–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Michael SI, Hong JS, Curiel DT, Engler JA. Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther. 1995;2:660–8.

    CAS  PubMed  Google Scholar 

  336. Wickham TJ, Segal DM, Roelvink PW, et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol. 1996;70:6831–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Chen L, Chen D, Manome Y, et al. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. J Clin Invest. 1995;96:2775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Garver Jr RI, Goldsmith KT, Rodu B, et al. Strategy for achieving selective killing of carcinomas. Gene Ther. 1994;1:46–50.

    CAS  PubMed  Google Scholar 

  339. Harris JD, Gutierrez AA, Hurst HC, Sikora K, Lemoine NR. Gene therapy for cancer using tumour-specific prodrug activation. Gene Ther. 1994;1:170–5.

    CAS  PubMed  Google Scholar 

  340. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res. 1995;55:5283–7.

    CAS  PubMed  Google Scholar 

  341. Richards CA, Austin EA, Huber BE. Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy. Hum Gene Ther. 1995;6:881–93.

    Article  CAS  PubMed  Google Scholar 

  342. Smith MJ, Rousculp MD, Goldsmith KT, Curiel DT, Garver Jr RI. Surfactant protein A-directed toxin gene kills lung cancer cells in vitro. Hum Gene Ther. 1994;5:29–35.

    Article  CAS  PubMed  Google Scholar 

  343. Vile RG, Hart IR. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 1993;53:3860–4.

    CAS  PubMed  Google Scholar 

  344. Gahery-Segard H, Farace F, Godfrin D, et al. Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. J Virol. 1998;72:2388–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther. 1997;8:37–44.

    Article  CAS  PubMed  Google Scholar 

  346. Zinkernagel RM, Hengartner H. Antiviral immunity. Immunol Today. 1997;18:258–60.

    Article  CAS  PubMed  Google Scholar 

  347. Le LP, Rivera AA, Glasgow JN, et al. Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells. Gene Ther. 2006;13:389–99.

    Article  CAS  PubMed  Google Scholar 

  348. Glasgow JN, Kremer EJ, Hemminki A, et al. An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology. 2004;324:103–16.

    Article  CAS  PubMed  Google Scholar 

  349. Nakayama M, Both GW, Banizs B, et al. An adenovirus serotype 5 vector with fibers derived from ovine atadenovirus demonstrates CAR-independent tropism and unique biodistribution in mice. Virology. 2006;350:103–15.

    Article  CAS  PubMed  Google Scholar 

  350. Xia ZJ, Chang JH, Zhang L, et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng. 2004;23:1666–70.

    PubMed  Google Scholar 

  351. Corey DR. RNA learns from antisense. Nat Chem Biol. 2007;3:8–11.

    Article  CAS  PubMed  Google Scholar 

  352. Consalvo M, Mullen CA, Modesti A, et al. 5-Fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J Immunol. 1995;154:5302–12.

    CAS  PubMed  Google Scholar 

  353. Bailey SM, Hart IR. Nitroreductase activation of CB1954—an alternative “suicide” gene system. Gene Ther. 1997;4:80–1.

    Article  CAS  PubMed  Google Scholar 

  354. Bridgewater JA, Knox RJ, Pitts JD, Collins MK, Springer CJ. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum Gene Ther. 1997;8:709–17.

    Article  CAS  PubMed  Google Scholar 

  355. Friedlos F, Court S, Ford M, Denny WA, Springer C. Gene-directed enzyme prodrug therapy: quantitative bystander cytotoxicity and DNA damage induced by CB1954 in cells expressing bacterial nitroreductase. Gene Ther. 1998;5:105–12.

    Article  CAS  PubMed  Google Scholar 

  356. Green NK, Youngs DJ, Neoptolemos JP, et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther. 1997;4:229–38.

    CAS  PubMed  Google Scholar 

  357. Chen L, Yu LJ, Waxman DJ. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res. 1997;57:4830–7.

    CAS  PubMed  Google Scholar 

  358. Danks MK, Morton CL, Pawlik CA, Potter PM. Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Res. 1998;58:20–2.

    CAS  PubMed  Google Scholar 

  359. Kojima A, Hackett NR, Ohwada A, Crystal RG. In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors. J Clin Invest. 1998;101:1789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Marais R, Spooner RA, Light Y, Martin J, Springer CJ. Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res. 1996;56:4735–42.

    CAS  PubMed  Google Scholar 

  361. Hapke DM, Stegmann AP, Mitchell BS. Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res. 1996;56:2343–7.

    CAS  PubMed  Google Scholar 

  362. Manome Y, Wen PY, Dong Y, et al. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med. 1996;2:567–73.

    Article  CAS  PubMed  Google Scholar 

  363. Parker WB, King SA, Allan PW, et al. In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase. Hum Gene Ther. 1997;8:1637–44.

    Article  CAS  PubMed  Google Scholar 

  364. Mroz PJ, Moolten FL. Retrovirally transduced Escherichia coli gpt genes combine selectability with chemosensitivity capable of mediating tumor eradication. Hum Gene Ther. 1993;4:589–95.

    Article  CAS  PubMed  Google Scholar 

  365. Ono Y, Ikeda K, Wei MX, et al. Regression of experimental brain tumors with 6-thioxanthine and Escherichia coli gpt gene therapy. Hum Gene Ther. 1997;8:2043–55.

    Article  CAS  PubMed  Google Scholar 

  366. Tamiya T, Ono Y, Wei MX, et al. Escherichia coli gpt gene sensitizes rat glioma cells to killing by 6-thioxanthine or 6-thioguanine. Cancer Gene Ther. 1996;3:155–62.

    CAS  PubMed  Google Scholar 

  367. Nabel EG, Nabel GJ. Direct gene transfer: basic studies and human therapies. Thromb Haemost. 1993;70:202–3.

    CAS  PubMed  Google Scholar 

  368. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348:370–4.

    Article  CAS  PubMed  Google Scholar 

  369. Rosenfeld ME, Wang M, Siegal GP, et al. Adenoviral-mediated delivery of herpes simplex virus thymidine kinase results in tumor reduction and prolonged survival in a SCID mouse model of human ovarian carcinoma. J Mol Med. 1996;74:455–62.

    Article  CAS  PubMed  Google Scholar 

  370. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992;256:1550–2.

    Article  CAS  PubMed  Google Scholar 

  371. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK. Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg. 1996;224:323–9. discussion 329-330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Boviatsis EJ, Park JS, Sena-Esteves M, et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 1994;54:5745–51.

    CAS  PubMed  Google Scholar 

  373. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993;90:8033–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Kasahara N, Dozy AM, Kan YW. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science. 1994;266:1373–6.

    Article  CAS  PubMed  Google Scholar 

  375. Marin M, Noel D, Valsesia-Wittman S, et al. Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J Virol. 1996;70:2957–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Konishi H, Ochiya T, Chester KA, et al. Targeting strategy for gene delivery to carcinoembryonic antigen-producing cancer cells by retrovirus displaying a single-chain variable fragment antibody. Hum Gene Ther. 1998;9:235–48.

    Article  CAS  PubMed  Google Scholar 

  377. Krasnykh V, Dmitriev I, Mikheeva G, et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol. 1998;72:1844–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  378. Wickham TJ, Tzeng E, Shears 2nd LL, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol. 1997;71:8221–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  379. Wu GY, Wilson JM, Shalaby F, et al. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J Biol Chem. 1991;266:14338–42.

    CAS  PubMed  Google Scholar 

  380. Curiel DT, Wagner E, Cotten M, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther. 1992;3:147–54.

    Article  CAS  PubMed  Google Scholar 

  381. Citro G, Perrotti D, Cucco C, et al. Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1992;89:7031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Mizuno M, Yoshida J, Sugita K, et al. Growth inhibition of glioma cells transfected with the human beta-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res. 1990;50:7826–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by National Institute of Health grants P01CA104177, R01CA121187, P50CA101955, P30AR046031, P30DK074038, R01DK081463, P30DK079337, R01CA097318, R01CA108520, R01CA127641, R01DK052825, R01CA141703, R01CA150214. Additional support was provided by the National Foundation for Cancer Research (NFCR) and the Samuel Waxman Cancer Research Foundation (SWCRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Curiel M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Annan, A.C., Fisher, P.B., Dent, P., Siegal, G.P., Curiel, D.T. (2017). Gene Therapy in the Treatment of Human Cancer. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_42

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics