Advertisement

Retinoblastoma: Clinical and Molecular Perspectives

  • J. William HarbourEmail author
Chapter

Abstract

Retinoblastoma is a rare eye cancer that has been fundamental to the understanding of tumorigenesis. The RB gene was the first tumor suppressor gene to be discovered, and the Rb protein is targeted for inactivation in the vast majority of human cancers. This chapter reviews the clinical features of retinoblastoma and highlights the insights into molecular oncology that have resulted from study of the Rb tumor suppressor pathway.

Keywords

Retinoblastoma Eye cancer Tumor suppressor Cell cycle Differentiation Apoptosis 

References

  1. 1.
    Pendergrass TW, Davis S. Incidence of retinoblastoma in the United States. Arch Ophthalmol. 1980;98:1204–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Harbour JW. Retinoblastoma: treatment. In: Char DH, editor. Tumors of the eye and orbit. Philadelphia: B.C. Decker; 2001. p. 266–78.Google Scholar
  3. 3.
    Harbour JW. Retinoblastoma: pathogenesis and diagnosis. In: Char DH, editor. Tumors of the eye and orbit. Philadelphia: B.C. Decker; 2001. p. 253–65.Google Scholar
  4. 4.
    Lennox EL, Draper GJ, Sanders BM. Retinoblastoma: a study of natural history and prognosis of 268 cases. Br Med J. 1975;3:731–4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wong FL, Boice JJ, Abramson DH, et al. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA. 1997;278:1262–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Blach LE, McCormick B, Abramson DH, Ellsworth RM. Trilateral retinoblastoma—incidence and outcome: a decade of experience. Int J Radiat Oncol Biol Phys. 1994;29:729–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Marcus DM, Brooks SE, Leff G, et al. Trilateral retinoblastoma: Insights into histogenesis and management. Surv Ophthalmol. 1998;43:59–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Moll AC, Imhof SM, Bouter LM, Tan KE. Second primary tumors in patients with retinoblastoma. A review of the literature. Ophthalmic Genet. 1997;18:27–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Eng C, Li FP, Abramson DH, et al. Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst. 1993;85:1121–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Fletcher O, Easton D, Anderson K, Gilham C, Jay M, Peto J. Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst. 2004;96:357–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Harbour JW. Eye cancer: unique insights into oncogenesis: The Cogan Lecture. Invest Ophthalmol Vis Sci. 2006;47:1736–45.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Neel JV, Falls HF. The rate of mutation of the gene responsible for retinoblastoma in man. Science. 1951;114:419–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gallie BL, Ellsworth RM, Abramson DH, Phillips RA. Retinoma: spontaneous regression of retinoblastoma or benign manifestation of the mutation? Br J Cancer. 1982;45:513–21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Margo C, Hidayat A, Kopelman J. Retinocytoma: a benign variant of retinoblastoma. Arch Ophthalmol. 1983;101:1519–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Nork TM, Schwartz TL, Doshi HM, Millecchia LL. Retinoblastoma. Cell of origin. Arch Ophthalmol. 1995;113:791–802.CrossRefPubMedGoogle Scholar
  17. 17.
    Bogenmann E, Lochrie MA, Simon MI. Cone cell-specific genes expressed in retinoblastoma. Science. 1988;240:76–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Vrabec T, Arbizo V, Adamus G, McDowell JH, Hargrave PA, Donoso LA. Rod cell-specific antigens in retinoblastoma. Arch Ophthalmol. 1989;107:1061–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Khelfaoui F, Validire P, Auperin A, et al. Histopathologic risk factors in retinoblastoma: a retrospective study of 172 patients treated in a single institution. Cancer. 1996;77:1206–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Albert DM, McGhee CN, Seddon JM, Weichselbaum RR. Development of additional primary tumors after 62 years in the first patient with retinoblastoma cured by radiation therapy. Am J Ophthalmol. 1984;97:189–96.CrossRefPubMedGoogle Scholar
  21. 21.
    Roarty JD, McLean IW, Zimmerman LE. Incidence of second neoplasms in patients with bilateral retinoblastoma. Ophthalmology. 1988;95:1583–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323:643–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Abramson DH, Frank CM. Second nonocular tumors in survivors of bilateral retinoblastoma: a possible age effect on radiation-related risk. Ophthalmology. 1998;105:573–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Gallie BL, Budning A, DeBoer G, et al. Chemotherapy with focal therapy can cure intraocular retinoblastoma without radiotherapy. Arch Ophthalmol. 1996;114:1321–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Murphree AL, Villablanca JG, Deegan WR, et al. Chemotherapy plus local treatment in the management of intraocular retinoblastoma. Arch Ophthalmol. 1996;114:1348–56.CrossRefPubMedGoogle Scholar
  26. 26.
    Franke U. Retinoblastoma and chromosome 13. Cytogenet Cell Genet. 1976;16:131–4.CrossRefGoogle Scholar
  27. 27.
    Sparkes RS, Sparkes MC, Wilson MG, et al. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science. 1980;208:1042–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science. 1983;219:973–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Cavenee WK, Dryja TP, Phillips RA, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 1983;305:779–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Fung YK, Murphree AL, T'Ang A, Qian J, Hinrichs SH, Benedict WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236:1657–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. 1987;235:1394–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Madreperla SA, Whittum-Hudson JA, Prendergast RA, Chen PL, Lee WH. Intraocular tumor suppression of retinoblastoma gene-reconstituted retinoblastoma cells. Cancer Res. 1991;51:6381–4.PubMedGoogle Scholar
  33. 33.
    Wiggs J, Nordenskjold M, Yandell D, et al. Prediction of the risk of hereditary retinoblastoma, using DNA polymorphisms within the retinoblastoma gene. N Engl J Med. 1988;318:151–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Blanquet V, Turleau C, de Grouchy J, Creau-Goldberg N. Physical map around the retinoblastoma gene: possible genomic imprinting suggested by NruI digestion. Genomics. 1991;10:350–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Harbour JW. Overview of RB gene mutations in patients with retinoblastoma. Implications for clinical genetic screening. Ophthalmology. 1998;105:1442–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Mancini D, Singh S, Ainsworth P, Rodenhiser D. Constitutively methylated CpG dinucleotides as mutation hot spots in the retinoblastoma gene (RB1). Am J Hum Genet. 1997;61:80–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhu X, Dunn JM, Goddard AD, et al. Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenet Cell Genet. 1992;59:248–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Harbour JW. Molecular basis of low-penetrance retinoblastoma. Arch Ophthalmol. 2001;119:1699–704.CrossRefPubMedGoogle Scholar
  39. 39.
    Chow KN, Dean DC. Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol Cell Biol. 1996;16:4862–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Qin XQ, Chittenden T, Livingston DM, Kaelin Jr WG. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 1992;6:953–64.CrossRefPubMedGoogle Scholar
  41. 41.
    Hiebert SW. Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol Cell Biol. 1993;13:3384–91.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xiao ZX, Chen J, Levine AJ, et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature. 1995;375:694–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Hsieh JK, Chan FS, O'Connor DJ, Mittnacht S, Zhong S, Lu X. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell. 1999;3:181–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Welch PJ, Wang JY. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell. 1993;75:779–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Xu HJ, Xu K, Zhou Y, Li J, Benedict WF, Hu SX. Enhanced tumor cell growth suppression by an N-terminal truncated retinoblastoma protein. Proc Natl Acad Sci U S A. 1994;91:9837–41.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol. 2000;2:E65–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Lee WH, Shew JY, Hong FD, et al. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature. 1987;329:642–5.CrossRefPubMedGoogle Scholar
  48. 48.
    DeCaprio JA, Ludlow JW, Lynch D, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989;58:1085–95.CrossRefPubMedGoogle Scholar
  49. 49.
    DeCaprio JA, Furukawa Y, Ajchenbaum F, Griffin JD, Livingston DM. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. Proc Natl Acad Sci U S A. 1992;89:1795–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stein GH, Beeson M, Gordon L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science. 1990;249:666–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Chen PL, Scully P, Shew JY, Wang JY, Lee WH. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989;58:1193–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Ikeda MA, Jakoi L, Nevins JR. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci U S A. 1996;93:3215–20.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    DeCaprio JA, Ludlow JW, Figge J, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.CrossRefPubMedGoogle Scholar
  54. 54.
    Whyte P, Buchkovich KJ, Horowitz JM, et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature. 1988;334:124–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell. 1991;65:1053–61.CrossRefPubMedGoogle Scholar
  57. 57.
    DeGregori J, Johnson DG. Distinct and overlapping roles for e2f family members in transcription, proliferation and apoptosis. Curr Mol Med. 2006;6:739–48.PubMedGoogle Scholar
  58. 58.
    Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993;13:6501–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Flemington EK, Speck SH, Kaelin WJ. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci U S A. 1993;90:6914–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature. 1995;375:812–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Harbour JW, Dean DC. The Rb/E2F pathway: emerging paradigms and expanding roles. Genes Dev. 2000;14:2545–62.CrossRefGoogle Scholar
  62. 62.
    Harbour JW, Dean DC. Chromatin remodeling and Rb activity. Curr Opin Cell Biol. 2000;12:685–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Magnaghi JL, Groisman R, Naguibneva I, et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998;391:601–5.CrossRefGoogle Scholar
  64. 64.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391:597–601.CrossRefPubMedGoogle Scholar
  65. 65.
    Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25:338–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Dahiya A, Wong S, Gonzalo S, Gavin M, Dean DC. Linking the Rb and polycomb pathways. Mol Cell. 2001;8:557–69.CrossRefPubMedGoogle Scholar
  67. 67.
    Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature. 2001;412:561–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell. 1998;92:463–73.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFß, and contact inhibition. Cell. 1999;97:53–61.CrossRefPubMedGoogle Scholar
  70. 70.
    Harbour JW, Luo RX, Dei Sante A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98:859–69.CrossRefPubMedGoogle Scholar
  71. 71.
    Ma D, Zhou P, Harbour JW. Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J Biol Chem. 2003;278:19358–66.CrossRefPubMedGoogle Scholar
  72. 72.
    Delston RB, Harbour JW. Rb at the interface between cell cycle and apoptotic decisions. Curr Mol Med. 2006;6:713–8.PubMedGoogle Scholar
  73. 73.
    Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science. 1988;241:353–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell. 1993;73:487–97.CrossRefPubMedGoogle Scholar
  76. 76.
    Arnold A. The cyclin D1/PRAD1 oncogene in human neoplasia. J Investig Med. 1995;43:543–9.PubMedGoogle Scholar
  77. 77.
    Brantley Jr MA, Harbour JW. Inactivation of retinoblastoma protein in uveal melanoma by phosphorylation of sites in the COOH-terminal region. Cancer Res. 2000;60:4320–3.PubMedGoogle Scholar
  78. 78.
    Wolfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 1995;269:1281–4.CrossRefPubMedGoogle Scholar
  79. 79.
    Okamoto A, Demetrick DJ, Spillare EA, et al. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci U S A. 1994;91:11045–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Shackney SE, Shankey TV. Cell cycle models for molecular biology and molecular oncology: exploring new dimensions. Cytometry. 1999;35:97–116.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ocular Oncology Service, Bascom Palmer Eye Institute and Sylvester Comprehensive Cancer CenterUniversity of MIami Miller School of MedicineMiamiUSA

Personalised recommendations