Skip to main content

Chromosomes and Chromosomal Instability in Human Cancer

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Human cancers show chromosome abnormalities, some of which are frequent and specific cytogenetic changes associated with certain forms of cancer. The most striking findings are nonrandom chromosomal changes in human hematologic neoplasia. Specific cytogenetic changes are associated with the diagnosis of leukemia, clinical implications, and prognosis. Since some chromosomal changes in human hematologic neoplasms are simple and linked to molecular changes that create fusion products, such anomalies are currently being utilized as therapeutic markers. These findings have emerged gradually over the last 40 years as increasingly better techniques, for example fluorescence in situ hybridization (FISH), have become available for preparation and analysis of human chromosomes. More recently, small molecules that target fusion protein created by chromosomal changes are clinically available. Thus, detection and monitoring of chromosomal alterations in human cancer cells, especially in human hematologic neoplasms, are important in clinical practice. Nevertheless, the biological and clinical significance of nonrandom cytogenetic changes in neoplasms and chromosomal instability are still unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowley JD. Identification of the constant chromosome regions involved in human hematologic malignant disease. Science. 1982;216:749–51.

    Article  CAS  PubMed  Google Scholar 

  2. Yunis JJ. The chromosomal basis of human neoplasia. Science. 1983;221:227–36.

    Article  CAS  PubMed  Google Scholar 

  3. Sandberg AA. In: Sandberg AA, editor. The chromosomes in human cancer and leukemia. 2nd ed. New York, Amsterdam, Oxford: Elsevier; 1990.

    Google Scholar 

  4. Weiner AM. Chromosome abnormalities associated with human tumors. In: Atrson JD, Hopkins NH, Roberts J, editors. Molecular biology of the gene. 4th ed. Menlo Park, CA: Benjamin/Cumming; 1987. p. 1074–86.

    Google Scholar 

  5. Tanaka K, Arif M, Eguchi M, Kyo T, Dohy H, Kamada N. Frequent jumping translocations of chromosomal segments involving the ABL oncogene alone or in combination with CD3-MLL genes in secondary leukemias. Blood. 1997;89:596–600.

    CAS  PubMed  Google Scholar 

  6. ISCN (2013) An international system for human cytogenetic nomenclature. Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature Published in collaboration with “Shaffer LG, McGowan-Jordan J, Schmid M, editors. Cytogenetic and Genome Research. Basel, Switzerland: Karger; 2013”.

    Google Scholar 

  7. Vardiman JW, Melo JV, Baccarani M, Thiele J. Myeloproliferative neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stain H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008. p. 31–65.

    Google Scholar 

  8. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497–500.

    Google Scholar 

  9. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  10. Rowley JD, Testa JR. Chromosome abnormalities in malignant hematologic diseases. Adv Cancer Res. 1982;36:103–48.

    Article  CAS  PubMed  Google Scholar 

  11. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9.

    Article  CAS  PubMed  Google Scholar 

  12. Dreazen O, Canaani E, Gale RP. Molecular biology of chronic myelogenous leukemia. Semin Hematol. 1988;25:35–48.

    CAS  PubMed  Google Scholar 

  13. Hermans A, Heisterkamp N, von Linden M, van Baal S, Meijer D, van der Plas D, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51:33–40.

    Article  CAS  PubMed  Google Scholar 

  14. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  CAS  PubMed  Google Scholar 

  15. Jabbour E, Cortes J, Kantarjian H. Novel tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr Opin Oncol. 2006;18:578–83.

    Article  CAS  PubMed  Google Scholar 

  16. Kantarjian HM, Talpaz M, Giles F, O'Brien S, Cortes J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med. 2006;145:913–23.

    Article  PubMed  Google Scholar 

  17. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, European LeukemiaNet, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108:1809–20.

    Article  CAS  PubMed  Google Scholar 

  18. Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    Article  CAS  PubMed  Google Scholar 

  19. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348:1201–14.

    Article  CAS  PubMed  Google Scholar 

  20. Gotlib J, Cools J, Malone 3rd JM, Schrier SL, Gilliland DG, Coutre SE. The FIP1L1-PDGFRα fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood. 2003;103:2879–91.

    Article  PubMed  CAS  Google Scholar 

  21. Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:779–90.

    Article  Google Scholar 

  22. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacount C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  23. Baxter EJ, Scott LM, Campbell PJ, East C, Fouorouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  24. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280:22788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  27. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88:2410–4.

    CAS  PubMed  Google Scholar 

  30. Maxson JE, Gotlib J, Pollye DA, Fleischman AG, Agarwal A, Eide CA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368:1781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor. PML Cell. 1991;66:663–74.

    Article  CAS  PubMed  Google Scholar 

  32. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.

    Article  PubMed  Google Scholar 

  33. Sainty D, Liso V, Cantu-Rajnoldi A, Head D, Mozzionacci MJ, Armoulet C, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Group Francais de Cytogenetique Hematologique, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood. 2000;96:1287–96.

    CAS  PubMed  Google Scholar 

  34. Hart SM, Foroni L. Core binding factor genes and human leukemia. Haematologica. 2002;87:1307–23.

    CAS  PubMed  Google Scholar 

  35. Faretta M, Di Croce L, Pelicci PG. Effects of the acute myeloid leukemia-associated fusion proteins on nuclear architecture. Semin Hematol. 2001;38:42–53.

    Article  CAS  PubMed  Google Scholar 

  36. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 1993;12:2715–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261:1041–4.

    Article  CAS  PubMed  Google Scholar 

  38. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Burnett A, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.

    CAS  PubMed  Google Scholar 

  39. Frohling S, Schlenk RF, Kayser S, Morhardt M, Benner A, Dohner K, German-Austrian AML Study Group, et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood. 2006;108:3280–8.

    Article  CAS  PubMed  Google Scholar 

  40. von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol. 1992;12:1687–97.

    Article  Google Scholar 

  41. Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A. 1992;89:3937–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 1994;13:504–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992;71:691–700.

    Article  CAS  PubMed  Google Scholar 

  44. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71:701–8.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki T, Kiyoi H, Ozeki K, Yomita A, Yajima S, Suzuki R, et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood. 2005;106:2854–61.

    Article  CAS  PubMed  Google Scholar 

  46. Falini B, Mecucci C, Tiacci E, Alcalay N, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254–66.

    Article  CAS  PubMed  Google Scholar 

  47. Toyama K, Ohyashiki K, Yoshida Y, Abe T, Asano S, Hirai H, et al. Clinical implications of chromosomal abnormalities in 401 patients with myelodysplastic syndromes: a multicentric study in Japan. Leukemia. 1993;7:499–508.

    CAS  PubMed  Google Scholar 

  48. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    CAS  PubMed  Google Scholar 

  49. Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arber DA, Vardiman JW, Brunning RD, Porwit A, Le Beau MM, Thieie J, Falini B, Bloomfield CD. Acute myeloid leukaemias and related precursor neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stain H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008. p. 109–55.

    Google Scholar 

  52. Faderl S, Kantarjian HM, Talpaz M, Estrov Z. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood. 1998;91:3995–4019.

    CAS  PubMed  Google Scholar 

  53. Ferrando AA, Look AT. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol. 1990;37:381–95.

    Article  Google Scholar 

  54. Pui C-H, Evans WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339:605–15.

    Article  CAS  PubMed  Google Scholar 

  55. Hamlyn PH, Rabbitts TH. Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature. 1983;304:135–9.

    Article  CAS  PubMed  Google Scholar 

  56. Siebenlist U, Hennighausen L, Battey J, Leder P. Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell. 1984;37:381–91.

    Article  CAS  PubMed  Google Scholar 

  57. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991;253:79–82.

    Article  CAS  PubMed  Google Scholar 

  58. Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A, et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 1990;9:415–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990;60:535–45.

    Article  CAS  PubMed  Google Scholar 

  60. Kamps MP, Murre C, Sun XH, Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990;60:547–55.

    Article  CAS  PubMed  Google Scholar 

  61. Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23:4275–83.

    Article  CAS  PubMed  Google Scholar 

  62. Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res. 2001;61:2542–6.

    CAS  PubMed  Google Scholar 

  63. Ono R, Nosaka T, Hayashi Y. Roles of a trithorax group gene, MLL, in hematopoiesis. Int J Hematol. 2005;81:288–93.

    Article  CAS  PubMed  Google Scholar 

  64. Armstrong SA, Golub TR, Korsmeyer SJ. MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol. 2003;40:268–73.

    Article  CAS  PubMed  Google Scholar 

  65. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 2000;19:843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ottmann O, Wassmann B. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2005:118–22.

    Google Scholar 

  67. Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24:460–6.

    Article  CAS  PubMed  Google Scholar 

  68. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350:512–5.

    Article  CAS  PubMed  Google Scholar 

  69. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–9.

    Article  CAS  PubMed  Google Scholar 

  70. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–2.

    Article  CAS  PubMed  Google Scholar 

  71. Strasser A, Harris AW, Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 1991;67:889–99.

    Article  CAS  PubMed  Google Scholar 

  72. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263:1281–4.

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura S, Shiota M, Nakagawa A, Yatabe Y, Kojima M, Motoori T, et al. Anaplastic large cell lymphoma: a distinct molecular pathologic entity: a reappraisal with special reference to p80 (NPM/ALK) expression. Am J Sur Pathol. 1997;21:1420–32.

    Article  CAS  Google Scholar 

  74. Ohno H, Takimoto G, McKeithan TW. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell. 1990;60:991–7.

    Article  CAS  PubMed  Google Scholar 

  75. McKeithan TW, Takimoto GS, Ohno H, Bjorling VS, Morgan R, Hecht BK, et al. BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: a molecular and cytogenetic study. Genes Chromosomes Cancer. 1997;20:64–72.

    Article  CAS  PubMed  Google Scholar 

  76. Danilov AV, Danilova OV, Klein AK, Huber BT. Molecular pathogenesis of chronic lymphocytic leukemia. Curr Mol Med. 2006;6:665–75.

    Article  CAS  PubMed  Google Scholar 

  77. Stewart AK, Fonseca R. Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. J Clin Oncol. 2005;23:6339–44.

    Article  CAS  PubMed  Google Scholar 

  78. Konigsberg R, Zojer N, Ackermann J, Kromer E, Kittler H, Fritz E, et al. Predictive role of interphase cytogenetics for survival of patients with multiple myeloma. J Clin Oncol. 2000;18:804–12.

    CAS  PubMed  Google Scholar 

  79. Dimopoulos M, Kyle R, Fermand JP, Rajkumar SV, San Migue J, International Myeloma Workshop Consensus Panel 3, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117:4701–5.

    Article  CAS  PubMed  Google Scholar 

  80. Enzinger FM, Weiss SW. Soft tissue tumors. 3rd ed. St Louis: Mosby; 1995.

    Google Scholar 

  81. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  82. Zucman J, Delattre O, Desmaze C, Plougastel B, Joubert I, Melot T, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer. 1992;5:271–7.

    Article  CAS  PubMed  Google Scholar 

  83. Borden EC, Baker LH, Bell RS, Bramwell V, Demetri GD, Eisenberg BL, et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res. 2003;9:1941–56.

    PubMed  Google Scholar 

  84. Sandberg AA, Bridge JA. Updates on cytogenetics and molecular genetics of bone and soft tissue tumors: Ewing sarcoma and peripheral primitive neuroectodermal tumors. Cancer Genet Cytogenet. 2000;123:1–26.

    Article  CAS  PubMed  Google Scholar 

  85. Kuroda M, Sok J, Webb L, Baechtold H, Urano F, Yin Y, et al. Male sterility and enhanced radiation sensitivity in TLS/FUS(−/−) mice. EMBO J. 2000;19:453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Prasad DD, Rao VN, Reddy ES. Structure and expression of human Fli-1 gene. Cancer Res. 1992;52:5833–7.

    CAS  PubMed  Google Scholar 

  87. Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, et al. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994;14:3230–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giovannini M, Biegel JA, Serra M, Wang JY, Nycym L, Emanuel BS, et al. EWS-erg and EWS-Fli1 fusion transcripts in Ewing’s sarcoma and primitive neuroectodermal tumors with variant translocations. J Clin Invest. 1994;94:489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10:1229–34.

    CAS  PubMed  Google Scholar 

  90. Rougemont AL, Bouron-Dal Soglio D, Patey-Mariaud de Serre N, Fetni R, Fan L, Barrette S, et al. A t(17;22)(q21;q12) with partial ETV4 deletion in a soft tissue Ewing sarcoma. Cancer Genet. 2012;205:55–60.

    Article  CAS  PubMed  Google Scholar 

  91. Urano F, Umezawa A, Yabe H, Hong W, Yoshida K, Fujinaga K, et al. Molecular analysis of Ewing’s sarcoma: another fusion gene, EWS-E1AF, available for diagnosis. Jpn J Cancer Res. 1998;89:703–11.

    Article  CAS  PubMed  Google Scholar 

  92. Aman P, Ron D, Mandahl N, Fiorestor T, Heim S, Arheden K, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 1992;5:278–85.

    Article  CAS  PubMed  Google Scholar 

  93. Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363:640–4.

    Article  CAS  PubMed  Google Scholar 

  94. Rabbitts TH, Forster A, Larson R, Nathan P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet. 1993;4:175–80.

    Article  CAS  PubMed  Google Scholar 

  95. Panagopoulos I, Mandahl N, Mitelman F, Aman P. Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene. 1995;11:1133–7.

    CAS  PubMed  Google Scholar 

  96. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Gene Dev. 1992;6:439–53.

    Article  CAS  PubMed  Google Scholar 

  97. Zucman J, Delattre O, Desmaze C, Lutchman M, Ruttledge M, Baron C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993;4:341–5.

    Article  CAS  PubMed  Google Scholar 

  98. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994;54:2837–40.

    CAS  PubMed  Google Scholar 

  99. Labelle Y, Zucman J, Stenman G, Kindblom LG, Knight J, Turc-Carel C, et al. Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation. Hum Mol Genet. 1995;4:2219–26.

    Article  CAS  PubMed  Google Scholar 

  100. Clark J, Benjamin H, Gill S, Sidhar S, Goodwin G, Gusterson BA, et al. Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily, in a human myxoid chondrosarcoma. Oncogene. 1996;12:229–35.

    CAS  PubMed  Google Scholar 

  101. Attwooll C, Tariq M, Harris M, Coyne JD, Telford N, Varley JM. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene. 1999;18:7599–601.

    Article  CAS  PubMed  Google Scholar 

  102. Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 1994;54:2865–8.

    CAS  PubMed  Google Scholar 

  103. Panagopoulos I, Aman P, Fioretos T, Houglund M, Johansson B, Mandahl N, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer. 1994;11:256–62.

    Article  CAS  PubMed  Google Scholar 

  104. Kuroda M, Wang X, Sok J, Yin Y, Chung P, Giannotti JW, et al. Induction of a secreted protein by the myxoid liposarcoma oncogene. Proc Natl Acad Sci U S A. 1999;96:5025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7:502–8.

    Article  CAS  PubMed  Google Scholar 

  106. Ladanyi M. Fusions of the SYT and SSX genes in synovial sarcoma. Oncogene. 2001;20:5755–62.

    Article  CAS  PubMed  Google Scholar 

  107. Crew AJ, Clark J, Fisher C, Gill S, Grimer R, Chand A, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 1995;14:2333–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. de Leeuw B, Balemans M, Olde Weghuis D, Geurts van Kessel A. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 1995;4:1097–9.

    Article  PubMed  Google Scholar 

  109. Brett D, Whitehouse S, Antonson P, Shipley J, Cooper C, Goodwin G. The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet. 1997;6:1559–64.

    Article  CAS  PubMed  Google Scholar 

  110. Saito T, Nagai M, Ladanyi M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Res. 2006;66:6919–27.

    Article  CAS  PubMed  Google Scholar 

  111. Ishida M, Miyamoto M, Naitoh S, Tatsuda D, Hasegawa T, Nemoto T, et al. The SYT-SSX Fusion Protein Down-Regulates the Cell Proliferation Regulator COM1 in t(X;18) Synovial Sarcoma. Mol Cell Biol. 2007;27:1348–55.

    Article  CAS  PubMed  Google Scholar 

  112. Bridge JA, Borek DA, Neff JR, Huntrakoon M. Chromosomal abnormalities in clear cell sarcoma. Implications for histogenesis. Am J Clin Pathol. 1990;93:26–31.

    Article  CAS  PubMed  Google Scholar 

  113. Antonescu CR, Nafa K, Segal NH, Dal Cin P, Ladanyi M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma—association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12:5356–62.

    Article  CAS  PubMed  Google Scholar 

  114. Wexler LH. In: Pizzo PA, Poplack DG, editors. Principles and practices of pediatric oncology. Philadelphia: Lippincott-Raven; 1997. p. 799–829.

    Google Scholar 

  115. Douglass EC, Valentine M, Etcubanas E, Parham D, Webber BL, Houghton PJ, et al. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet. 1987;45:148–55.

    Article  CAS  PubMed  Google Scholar 

  116. Turc-Carel C, Lizard-Nacol S, Justrabo E, Favrot M, Philip T, Tabone E. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet. 1986;19:361–2.

    Article  CAS  PubMed  Google Scholar 

  117. Wang-Wuu S, Soukup S, Ballard E, Gotwals B, Lampkin B. Chromosomal analysis of sixteen human rhabdomyosarcomas. Cancer Res. 1988;48:983–7.

    CAS  PubMed  Google Scholar 

  118. Biegel JA, Meek RS, Parmiter AH, Conard K, Emanuel BS. Chromosomal translocation t(1;13)(p36;q14) in a case of rhabdomyosarcoma. Genes Chromosomes Cancer. 1991;3:483–4.

    Article  CAS  PubMed  Google Scholar 

  119. Douglass EC, Rowe ST, Valentine M, Rowe ST, Carroll AJ, Raney RB, et al. Variant translocations of chromosome 13 in alveolar rhabdomyosarcoma. Genes Chromosomes Cancer. 1991;3:480–2.

    Article  CAS  PubMed  Google Scholar 

  120. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher 3rd FJ, Emanuel BS, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5:230–5.

    Article  CAS  PubMed  Google Scholar 

  121. Tremblay P, Gruss P. Pax: genes for mice and men. Pharmacol Ther. 1994;61:205–26.

    Article  CAS  PubMed  Google Scholar 

  122. Kaufmann E, Knochel W. Five years on the wings of fork head. Mech Dev. 1996;57:3–20.

    Article  CAS  PubMed  Google Scholar 

  123. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998;47:187–99.

    Article  CAS  PubMed  Google Scholar 

  124. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J, et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene. 1997;14:195–202.

    Article  CAS  PubMed  Google Scholar 

  125. Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood. 1997;90:3714–9.

    CAS  PubMed  Google Scholar 

  126. Keller C, Hansen MS, Coffin CM, Capecchi MR. Pax3: Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Gene Dev. 2004;18:2608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Gene Dev. 2004;18:2614–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol. 1991;15:499–513.

    Article  CAS  PubMed  Google Scholar 

  129. Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16:411–6.

    Article  CAS  PubMed  Google Scholar 

  130. Biegel JA, Conard K, Brooks JJ. Translocation (11;22)(p13;q12): primary change in intra-abdominal desmoplastic small round cell tumor. Genes Chromosomes Cancer. 1993;7:119–21.

    Article  CAS  PubMed  Google Scholar 

  131. Rodriguez E, Sreekantaiah C, Gerald W, Reuter VE, Motzer RJ, Chaganti RS. A recurring translocation, t(11;22)(p13;q11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet Cytogenet. 1993;69:17–21.

    Article  CAS  PubMed  Google Scholar 

  132. Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Zucker JM, et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 1993;12:4481–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ladanyi M. The emerging molecular genetics of sarcoma translocations. Diagn Mol Pathol. 1995;4:162–73.

    Article  CAS  PubMed  Google Scholar 

  134. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993;90:5752–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lessnick SL, Braun BS, Denny CT, May WA. Multiple domains mediate transformation by the Ewing’s sarcoma EWS/FLI-1 fusion gene. Oncogene. 1995;10:423–31.

    CAS  PubMed  Google Scholar 

  136. Shmookler BM, Enzinger FM, Weiss SW. Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer. 1989;64:2154–61.

    Article  CAS  PubMed  Google Scholar 

  137. Craver RD, Correa H, Kao YS, Van Brunt T, Golladay ES. Aggressive giant cell fibroblastoma with a balanced 17;22 translocation. Cancer Genet Cytogenet. 1995;80:20–2.

    Article  CAS  PubMed  Google Scholar 

  138. Pedeutour F, Simon MP, Minoletti F, Barcelo G, Terrier-Lecombe MJ, Combemale P, et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet. 1996;72:171–4.

    Article  CAS  PubMed  Google Scholar 

  139. Dal Cin P, Sciot R, de Wever I, Brock P, Casteels-Van Dale M, Van Damme B, et al. Cytogenetic and immunohistochemical evidence that giant cell fibroblastoma is related to dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 1996;15:73–5.

    Article  CAS  PubMed  Google Scholar 

  140. Dal Cin P, Polito P, Van Eyken P, Sciot R, Hernandez JM, Garcia JL, et al. Anomalies of chromosomes 17 and 22 in giant cell fibroblastoma. Cancer Genet Cytogenet. 1997;97:165–6.

    Article  CAS  PubMed  Google Scholar 

  141. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15:95–8.

    Article  CAS  PubMed  Google Scholar 

  142. Sjoblom T, Shimizu A, O'Brien KP, Pietras K, Dal Cin P, Buchdunger E, et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res. 2001;61:5778–83.

    CAS  PubMed  Google Scholar 

  143. Pierotti MA. Chromosomal rearrangements in thyroid carcinomas: a recombination or death dilemma. Cancer Lett. 2001;166:1–7.

    Article  CAS  PubMed  Google Scholar 

  144. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289:1357–60.

    Article  CAS  PubMed  Google Scholar 

  145. Barr FG. Chromosomal translocations involving paired box transcription factors in human cancer. Int J Biochem Cell Biol. 1997;29:1449–61.

    Article  CAS  PubMed  Google Scholar 

  146. Viglietto G, Chiappetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995;11:1207–10.

    CAS  PubMed  Google Scholar 

  147. Fugazzola L, Pilotti S, Pinchera A, Vorontsova TV, Mondellini P, Bongarzone I, et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 1995;55:5617–20.

    CAS  PubMed  Google Scholar 

  148. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  149. Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997;15:1263–73.

    Article  CAS  PubMed  Google Scholar 

  150. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183:131–3.

    Article  CAS  PubMed  Google Scholar 

  151. Kovacs G, Fuzesi L, Emanual A, Kung HF. Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer. 1991;3:249–55.

    Article  CAS  PubMed  Google Scholar 

  152. Pecciarini L, Cangi MG, Lo Cunsolo CL, Macri E, Dal Cin P, Martignoni G, et al. Characterization of t(6;11)(p21;q12) in a renal-cell carcinoma of an adult patient. Genes Chromosomes Cancer. 2007;46:419–26.

    Article  CAS  PubMed  Google Scholar 

  153. Zattara-Cannoni H, Daniel L, Roll P, Coulange C, Vagner-Capodano A. Molecular cytogenetics of t(X;1)(p11.2;q21) with complex rearrangements in a renal cell carcinoma. Cancer Genet Cytogenet. 2000;123:61–4.

    Article  CAS  PubMed  Google Scholar 

  154. Davis IJ, His BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, et al. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci U S A. 2003;100:6051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E, Bridge J, et al. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet. 2003;12:1661–9.

    Article  CAS  PubMed  Google Scholar 

  156. Fisher C. Fibromatosis and fibrosarcoma in infancy and childhood. Eur J Cancer. 1996;32A:2094–100.

    Article  CAS  PubMed  Google Scholar 

  157. O'Malley DP, Mierau GW, Beckwith JB, Weeks DA. Ultrastructure of cellular congenital mesoblastic nephroma. Ultrastruct Pathol. 1996;20:417–27.

    Article  PubMed  Google Scholar 

  158. Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58:5046–8.

    CAS  PubMed  Google Scholar 

  159. Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153:1451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184–7.

    Article  CAS  PubMed  Google Scholar 

  161. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twiar E, Merel P, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6:180–4.

    Article  CAS  PubMed  Google Scholar 

  162. Tadokoro K, Fujii H, Ohshima A, Kakizawa Y, Shimizu K, Sakai A, et al. Intragenic homozygous deletion of the WT1 gene in Wilms’ tumor. Oncogene. 1992;7:1215–21.

    CAS  PubMed  Google Scholar 

  163. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359:235–7.

    Article  CAS  PubMed  Google Scholar 

  164. Schwab M, Varmus HE, Bishop JM, Grzeschik KH, Naylor SL, Sakaguchi AY, et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature. 1984;308:288–91.

    Article  CAS  PubMed  Google Scholar 

  165. Nau MM, Brooks BJ, Battey J, Sausville F, Gazdar AF, Kirsch IR, et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 1985;318:69–73.

    Article  CAS  PubMed  Google Scholar 

  166. Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington, DC: ASM Press; 1995.

    Google Scholar 

  167. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  168. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81.

    Article  CAS  PubMed  Google Scholar 

  169. Auerbach AD, Verlander PC. Disorders of DNA replication and repair. Curr Opin Pediatr. 1997;9:600–16.

    Article  CAS  PubMed  Google Scholar 

  170. Robins P, Jones CJ, Biggerstaff M, Lindahl T, Wood RD. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J. 1991;10:3913–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Treiber DK, Chen Z, Essigmann JM. An ultraviolet light-damaged DNA recognition protein absent in xeroderma pigmentosum group E cells binds selectively to pyrimidine (6-4) pyrimidone photoproducts. Nucleic Acids Res. 1992;20:5805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Scherly D, Nouspikel T, Corlet J, Ucla C, Bairoch A, Clarkson SG. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature. 1993;363:182–5.

    Article  CAS  PubMed  Google Scholar 

  173. O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD. G endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature. 1994;371:432–5.

    Article  PubMed  Google Scholar 

  174. van Vuuren AJ, Vermeulen W, Ma L, Weeda G, Appeldoorn E, Jaspers NG, et al. Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). EMBO J. 1994;13:1645–53.

    PubMed  PubMed Central  Google Scholar 

  175. Drapkin R, Reardon JT, Ansari A, Huang JC, Zawel L, Ahn K, et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994;368:769–72.

    Article  CAS  PubMed  Google Scholar 

  176. Leveillard T, Ander L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 1996;15:1615–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968;218:652–6.

    Article  CAS  PubMed  Google Scholar 

  178. Tanaka K, Wood RD. Xeroderma pigmentosum and nucleotide excision repair of DNA. Trends Biochem Sci. 1994;19:83–6.

    Article  CAS  PubMed  Google Scholar 

  179. German J. Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine. 1993;72:393–406.

    Article  CAS  PubMed  Google Scholar 

  180. German J, Ellis NA, Proytcheva M. Bloom’s syndrome. XIX. Cytogenetic and population evidence for genetic heterogeneity. Clin Genet. 1996;49:223–31.

    Article  CAS  PubMed  Google Scholar 

  181. German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997;93:100–6.

    Article  CAS  PubMed  Google Scholar 

  182. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995;83:655–66.

    Article  CAS  PubMed  Google Scholar 

  183. Ellis NA, German J. Molecular genetics of Bloom’s syndrome. Hum Mol Genet. 1996;5:1457–63.

    CAS  PubMed  Google Scholar 

  184. Alberts A, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. New York, NY: Garland; 1994.

    Google Scholar 

  185. Simon M, Giot L, Faye G. The 3′ to 5′ exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 1991;10:2165–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Morrison A, Bell JB, Kunkel TA, Sugino A. Eukaryotic DNA polymerase amino acid sequence required for 3′-5′ exonuclease activity. Proc Natl Acad Sci U S A. 1991;88:9473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Palombo F, Iaccarino I, Drummond J, Totty NF, Hsuan JJ, Modrich P, et al. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr Biol. 1996;6:484–6.

    Article  PubMed  Google Scholar 

  188. Antony E, Khubchandani S, Chen S, Hingorani MM. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein. DNA Repair. 2006;5:153–62.

    Article  CAS  PubMed  Google Scholar 

  189. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.

    Article  CAS  PubMed  Google Scholar 

  190. Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994;6:273–81.

    Article  CAS  PubMed  Google Scholar 

  191. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.

    Article  CAS  PubMed  Google Scholar 

  192. Risinger JI, Berchuck A, Kohler MF, Watson P, Lynch HT, Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993;53:5100–3.

    CAS  PubMed  Google Scholar 

  193. Shannonm C, Kirkm J, Barnetson R, Evans J, Schnitzler M, Quinn M, et al. Incidence of microsatellite instability in synchronous tumors of the ovary and endometrium. Clin Cancer Res. 2003;9:1387–92.

    Google Scholar 

  194. Orth K, Hung J, Gazdar A, Bowcock A, Mathis JM, Sambrook J. Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci U S A. 1994;91:9495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ouyang H, Shiwaku HO, Hagiwara H, Miura K, Abe T, Kato Y, et al. The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach, and colorectum. Cancer Res. 1997;57:1851–4.

    CAS  PubMed  Google Scholar 

  196. Wada C, Shionoya S, Fujino Y, Tokuhiro H, Akahoshi T, Uchida T, et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood. 1994;83:3449–56.

    CAS  PubMed  Google Scholar 

  197. Ohyashiki JH, Ohyashiki K, Aizawa S, Kawakubo K, Shimamoto T, Iwama H, et al. Replication errors in hematological neoplasms: genomic instability in progression of disease is different among different types of leukemia. Clin Cancer Res. 1996;2:1583–9.

    CAS  PubMed  Google Scholar 

  198. Kaneko H, Horiike S, Inazawa J, Nakai H, Misawa S. Microsatellite instability is an early genetic event in myelodysplastic syndrome. Blood. 1995;86:1236–7.

    CAS  PubMed  Google Scholar 

  199. Gartenhaus R, Johns 3rd MM, Wang P, Rai K, Sidransky D. Mutator phenotype in a subset of chronic lymphocytic leukemia. Blood. 1996;87:38–41.

    CAS  PubMed  Google Scholar 

  200. Robledo M, Martinez B, Arranz E, Trujillo MJ, Gonzalez Ageito A, Rivas C, et al. Genetic instability of microsatellites in hematological neoplasms. Leukemia. 1995;9:960–4.

    CAS  PubMed  Google Scholar 

  201. Bedi GC, Westra WH, Farzadegan H, Pitha PM, Sidransky D. Microsatellite instability in primary neoplasms from HIV + patients. Nat Med. 1995;1:65–8.

    Article  CAS  PubMed  Google Scholar 

  202. Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P, et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996;2:169–74.

    Article  CAS  PubMed  Google Scholar 

  203. Shin KH, Shin JH, Kim JH, Park JG. Mutational analysis of promoters of mismatch repair genes hMSH2 and hMLH1 in hereditary nonpolyposis colorectal cancer and early onset colorectal cancer patients: identification of three novel germ-line mutations in promoter of the hMSH2 gene. Cancer Res. 2002;62:38–42.

    PubMed  Google Scholar 

  204. Papadopoulos N, Nicolaides NC, Liu B, Parsons R, Lengauer C, Palombo F, et al. Mutations of GTBP in genetically unstable cells. Science. 1995;268:1915–7.

    Article  CAS  PubMed  Google Scholar 

  205. Katabuchi H, van Rees B, Lambers AR, Ronnett BM, Blazes MS, Leach MS, et al. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res. 1995;55:5556–60.

    CAS  PubMed  Google Scholar 

  206. Hangaishi A, Ogawa S, Mitani K, Hosoya N, Chiba S, Yazaki Y, Hirai H. Mutations and loss of expression of a mismatch repair gene. hMLH1, in leukemia and lymphoma cell lines. Blood. 1997;89:1740–7.

    CAS  PubMed  Google Scholar 

  207. Markowitz S, Wang J, Myeroff L, Parson R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–8.

    Article  CAS  PubMed  Google Scholar 

  208. da Costa LT, Liu B, el-Deiry W, Hamilton SR, Kinzler KW, Vogelstein B, et al. Polymerase delta variants in RER colorectal tumours. Nat Genet. 1995;9:10–1.

    Article  PubMed  Google Scholar 

  209. Tateishi M, Ishida T, Hamatake M, Fukuyama Y, Kodono S, Sugimachi K, et al. DNA polymerase alpha as an independent prognostic parameter in non-small cell lung cancer—an immunohistochemical study. Eur J Surg Oncol. 1994;20:461–6.

    CAS  PubMed  Google Scholar 

  210. Wang L, Patel U, Ghosh L, Banerjee S. DNA polymerase beta mutations in human colorectal cancer. Cancer Res. 1992;52:4824–7.

    CAS  PubMed  Google Scholar 

  211. Dobashi Y, Shuin T, Tsuruga H, Uemura H, Torigoe S, Kubota Y. DNA polymerase b gene mutation in human prostate cancer. Cancer Res. 1994;54:2827–9.

    CAS  PubMed  Google Scholar 

  212. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85:6622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  214. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–8.

    Article  CAS  PubMed  Google Scholar 

  215. de Lange T. Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol. 1995;70:197–204.

    Article  Google Scholar 

  216. Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A. 1995;92:9082–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Shay JW. Aging and cancer: are telomeres and telomerase the connection? Mol Med Today. 1995;1:378–84.

    Article  CAS  PubMed  Google Scholar 

  218. Shay JW, Wright WE. Telomerase activity in human cancer. Curr Opin Oncol. 1996;8:66–71.

    Article  CAS  PubMed  Google Scholar 

  219. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–5.

    Article  CAS  PubMed  Google Scholar 

  220. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, et al. The RNA component of human telomerase. Science. 1995;269:1236–41.

    Article  CAS  PubMed  Google Scholar 

  221. Nakamura TM, Morin GM, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–9.

    Article  CAS  PubMed  Google Scholar 

  222. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997;90:785–95.

    Article  CAS  PubMed  Google Scholar 

  223. Nakayama J, Saito M, Nakamura H, Matsuura A, Ishikawa F. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell. 1997;88:875–84.

    Article  CAS  PubMed  Google Scholar 

  224. Broccoli D, Smogorzewska A, Chong L, de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 1997;17:231–5.

    Article  CAS  PubMed  Google Scholar 

  225. van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385:740–3.

    Article  PubMed  Google Scholar 

  226. Harley CB, Sherwood SW. Telomerase, checkpoints and cancer. Cancer Surv. 1997;29:263–84.

    CAS  PubMed  Google Scholar 

  227. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Grider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Ye JZ, Donigian JR, van Overbeek M, Loayza D, Luo Y, Krutchinsky AN, et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem. 2004;279:47264–71.

    Article  CAS  PubMed  Google Scholar 

  229. Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 2004;18:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Loayza D, de Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature. 2003;423:1013–8.

    Article  CAS  PubMed  Google Scholar 

  231. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–91.

    Article  CAS  PubMed  Google Scholar 

  232. Hiyama K, Ishioka S, Shrotani Y, Inai K, Hiyama E, Murakami I, et al. Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 1995;10:937–44.

    CAS  PubMed  Google Scholar 

  233. Ohyashiki K, Ohyashiki JH, Iwama H, Hayashi S, Shay JW, Toyama K. Telomerase reactivation in leukemia cells. Int J Oncol. 1996;8:417–21.

    CAS  PubMed  Google Scholar 

  234. Ohyashiki K, Ohyashiki JH, Iwama H, Hayashi S, Shay JW, Toyama K. Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression. Leukemia. 1997;11:190–4.

    Article  CAS  PubMed  Google Scholar 

  235. Ohyashiki JH, Ohyashiki K, Fujimura T, Kawakubo K, Shimamoto T, et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res. 1994;54:3557–60.

    CAS  PubMed  Google Scholar 

  236. Tauchi T, Shin-ya K, Sashida G, Sumi M, Okabe S, Ohyashiki JH, et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene. 2006;25:5719–25.

    Article  CAS  PubMed  Google Scholar 

  237. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992;71:543–6.

    Article  CAS  PubMed  Google Scholar 

  238. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science. 1994;266:1821–8.

    Article  CAS  PubMed  Google Scholar 

  239. Young MA, Shah NP, Chao LH, Seeliger M, Milanov ZV, Biggs 3rd WH, et al. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res. 2004;66:1007–14.

    Article  Google Scholar 

  240. Shah NP. Improving upon the promise of targeted therapy of human malignancy: chronic myeloid leukemia as a paradigm. Cancer Chemother Pharmacol. 2006;58 Suppl 7:49–53.

    Article  CAS  Google Scholar 

  241. Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ. VX-680, a potent MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood. 2007;109:500–2.

    Article  CAS  PubMed  Google Scholar 

  242. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    Article  CAS  PubMed  Google Scholar 

  243. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351:453–6.

    Article  CAS  PubMed  Google Scholar 

  244. Levine AJ, Finlay CA, Hinds PW. P53 is a tumor suppressor gene. Cell. 2004;116(2 Suppl):S67–9.

    Article  CAS  PubMed  Google Scholar 

  245. Sturzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 1996;15:1992–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, et al. A p53-dependent mouse spindle checkpoint. Science. 1996;267:1353–6.

    Article  Google Scholar 

  247. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science. 1996;271:1744–7.

    Article  CAS  PubMed  Google Scholar 

  248. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9:839–45.

    Article  CAS  PubMed  Google Scholar 

  249. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  250. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  251. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  252. Garzon Z, Calin GA, Croce CM. MicroRNA in cancers. Ann Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  253. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27:5848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Ohyashiki M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohyashiki, K., Kuroda, M., Ohyashiki, J.H. (2017). Chromosomes and Chromosomal Instability in Human Cancer. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics