Skip to main content

The Biology of Cancer Cachexia and the Role of TNF-α

  • Chapter
Cytokines in the Genesis and Treatment of Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cachexia, or wasting, is the most common syndrome resulting from human malignancies, estimated to contribute to nearly a quarter of all cancer deaths. Although cachexia has been clinically diagnosed for more than a century, it is only relatively recently that investigators have begun unraveling the molecular mechanisms underlying the wasting state that predominates in adipose and skeletal muscle tissues. Tumor necrosis factor-α, or TNF-α is considered a leading mediator or cancer cachexia. This cytokine is produced by tumor, immune, and stromal cells to provide a growth and survival advantage within the tumor microenvironment. It also functions in an autocrine and paracrine fashion in adipose and skeletal muscles to regulate tissue breakdown. TNF-induced fat catabolism is largely regulated through the feeding response and through the control of gene expression to differentiate and maintain the homeostasis of adipose tissue. Regulation of skeletal muscle catabolism in cachexia is regulated by the ubiquitin-proteasome system, whose activity may also be controlled by TNF. Elucidation of the TNF signaling pathway has provided further insight into the regulation of cancer cachexia. One effector of this pathway in particular, NF-kB, appears to be essential for TNF-mediated fat and skeletal muscle decay. Understanding the mechanisms by which NF-kB functions in cancer cachexia may reveal still other novel therapeutic targets of wasting that may be used in combination with currently existing anti-TNF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argiles JM, Lopez-Soriano FJ. The role of cytokines in cancer cachexia. Med. Res. Rev. 1999; 19:223–248.

    Article  CAS  PubMed  Google Scholar 

  2. Tisdale MJ. Biology of cachexia. J. Nat. Cancer Instit. 1997; 89:1763–1773.

    Article  CAS  Google Scholar 

  3. Tisdale MJ. Cachexia in cancer patients. Nature Rev. Cancer 2002; 2:862–871.

    Article  CAS  Google Scholar 

  4. Body JJ. The Syndrome of Anorexia-Cachexia. Curr. Opin. Oncol. 1999; 11:255–260.

    Article  CAS  PubMed  Google Scholar 

  5. Evans WK, Makuch R, Clamon GH, et al. Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer R. 1985; 45:3347–3353.

    CAS  Google Scholar 

  6. van Eys J. Nutrition and cancer: physiological interrelationships. Annu. Rev. Nutr. 1985; 5:435–461.

    Article  PubMed  Google Scholar 

  7. Andreyev HJ, Norman AR, Oates J, Cunningham D. Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur. J. Cancer 1998; 34:503–509.

    Article  CAS  PubMed  Google Scholar 

  8. Dewys WD, Begg C, Lavin PT, et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 1980; 69:491–497.

    Article  CAS  PubMed  Google Scholar 

  9. DeWys W. Management of cancer cachexia. Semin. Oncol. 1985; 12:452–460.

    Google Scholar 

  10. Wigmore SJ, Plester CE, Richardson RA, Fearon KC. Changes in nutritional status associated with unresectable pancreatic cancer. Br. J. Cancer 1997; 75:106–109.

    CAS  PubMed  Google Scholar 

  11. Giordano A, Calvani M, Petillo O, Carteni M, Melone MR, Peluso G. Skeletal muscle metabolism in physiology and in cancer disease. J. Cell. Biochem. 2003; 90:170–186.

    Article  CAS  PubMed  Google Scholar 

  12. Beutler B, Greenwald D, Hulmes JD, et al. Identity of tumour necrosis factor and the macrophagesecreted factor cachectin. Nature 1985; 316:552–554.

    Article  CAS  PubMed  Google Scholar 

  13. Beutler B. Cachexia: a fundamental mechanism. Nut. Rev. 1988; 46:369–373.

    Article  CAS  Google Scholar 

  14. Hasselgren PO, Fischer JE. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann. Sur. 2001; 233:9–17.

    Article  CAS  Google Scholar 

  15. Felig P. Amino acid metabolism in man. Ann. Rev. Biochem. 1975; 44:933–955.

    Article  CAS  PubMed  Google Scholar 

  16. Lecker SH, Solomon V, Mitch WE, Goldberg AL. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nut. 1999; 129:227S–237S.

    CAS  Google Scholar 

  17. Emery PW, Lovell L, Rennie MJ. Protein synthesis measured in vivo in muscle and liver of cachectic tumor-bearing mice. Cancer Res. 1984; 44:2779–2784.

    CAS  PubMed  Google Scholar 

  18. Dice JE Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Tren. Biochem. Sci. 1990; 15:305–309.

    Article  CAS  Google Scholar 

  19. Jagoe RT, Redfern CP, Roberts RG, Gibson GJ, Goodship TH. Skeletal muscle mRNA levels for cathepsin B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy. Clin. Sci. 2002; 102:353–361.

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein degradation. Proc. Nat. Acad. Sci. USA 1998; 95:12100–12105.

    Article  CAS  PubMed  Google Scholar 

  21. Murachi T, Tanaka K, Hatanaka M, Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Advances Enz. Reg. 1980; 19:407–424.

    Article  CAS  Google Scholar 

  22. Williams AB, Decourten-Myers GM, Fischer JE, Luo G, Sun X, Hasseigren PO. Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J. 1999; 13:1435–1443.

    CAS  PubMed  Google Scholar 

  23. Ciechanover HA. The ubiquitin system. Ann. Rev. Biochem. 1998; 67:425–479.

    Article  PubMed  Google Scholar 

  24. Kisselev AF, Akopian TN, Castillo V, Goldberg AL. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol. Cell 1999; 4:395–402.

    Article  CAS  PubMed  Google Scholar 

  25. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Ann. Rev. Cell Dev. Biol. 2002; 18:637–706.

    Article  CAS  Google Scholar 

  26. Solomon V, Goldberg AL. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J. Biol. Chem. 1996; 271:26690–26697.

    Article  CAS  PubMed  Google Scholar 

  27. Tawa NE, Jr., Odessey R, Goldberg AL. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J. Clin. Invest. 1997; 100:197–203.

    CAS  PubMed  Google Scholar 

  28. Baracos VE, DeVivo C, Hoyle DH, Goldberg AL. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am. J. Physiol. 1995; 268:E996–1006.

    CAS  PubMed  Google Scholar 

  29. Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Ann. Rev. of Med. 1994; 45:491–503.

    Article  CAS  Google Scholar 

  30. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Tren. Cell Biol. 2001; 11:372–377.

    Article  CAS  Google Scholar 

  31. Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Sem. Cell Dev. Biol. 1999; 10:19–29.

    Article  CAS  Google Scholar 

  32. Wilson J, Balkwill F. The role of cytokines in the epithelial cancer microenvironment. Sem. Cancer Biol. 2002; 12:113–120.

    Article  CAS  Google Scholar 

  33. Kan H, Xie Z, Finkel MS. TNF-α enhances cardiac myocyte NO production through MAP kinasemediated NF-kB activation. Am. J. Phy. 1999; 277:H1641–H1646.

    CAS  Google Scholar 

  34. Sandra F, Matsuki NA, Takeuchi H, et al. TNF inhibited the apoptosis by activation of Akt serine/threonine kinase in the human head and neck squamous cell carcinoma. Cell. Sig. 2002; 14:771–778.

    Article  CAS  Google Scholar 

  35. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kB. J Clin Invest. 2001; 107:241–246.

    CAS  PubMed  Google Scholar 

  36. Negus RP, Turner L, Burke F, Balkwill FR. Hypoxia down-regulates MCP-1 expression: implications for macrophage distribution in tumors. J. Leuko. Biol. 1998; 63:758–765.

    CAS  PubMed  Google Scholar 

  37. Leber TM, Balkwill FR. Regulation of monocyte MMP-9 production by TNF-α and a tumour-derived soluble factor (MMPSF). Br. J. Cancer 1998; 78:724–732.

    CAS  PubMed  Google Scholar 

  38. Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC. Dual role of tumor necrosis factor-α in angiogenesis. Am. J. Path. 1992; 140:539–544.

    CAS  PubMed  Google Scholar 

  39. Hauner H, Petruschke T, Russ M, Rohrig K, Eckel J. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia 1995; 38:764–771.

    Article  CAS  PubMed  Google Scholar 

  40. Cornelius P, Enerback S, Bjursell G, Olivecrona T, Pekala PH. Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumour necrosis factor. Biochem. J. 1988; 249:765–769.

    CAS  PubMed  Google Scholar 

  41. Semb H, Peterson J, Tavernier J, Olivecrona T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J. Biol. Chem. 1987; 262:8390–8394.

    CAS  PubMed  Google Scholar 

  42. Memon RA, Feingold KR, Moser AH, Fuller J, Grunfeld C. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am. J. Physiol. 1998; 274:E210–E217.

    CAS  PubMed  Google Scholar 

  43. Pape ME, Kim KH. Effect of tumor necrosis factor on acetyl-coenzyme A carboxylase gene expression and preadipocyte differentiation. Mol. Endo. 1988; 2:395–403.

    Article  CAS  Google Scholar 

  44. Doerrler W, Feingold KR, Grunfeld C. Cytokines induce catabolic effects in cultured adipocytes by multiple mechanisms. Cytokine 1994; 6:478–484.

    Article  CAS  PubMed  Google Scholar 

  45. Torti FM, Dieckmann B, Beutler B, Cerami A, Ringold GM. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Science 1985; 229:867–869.

    Article  CAS  PubMed  Google Scholar 

  46. Oliff A, Defeo-Jones D, Boyer M, et al. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 1987; 50:555–563.

    Article  CAS  PubMed  Google Scholar 

  47. Meng L, Zhou J, Sasano H, Suzuki T, Zeitoun KM, Bulun SE. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction. Cancer R. 2001; 61:2250–2255.

    CAS  Google Scholar 

  48. Xing H, Northrop JP, Grove JR, Kilpatrick KE, Su JL, Ringold GM. TNF alpha-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARgamma without effects on Pref-1 expression. Endocrinol. 1997; 138:2776–2783.

    Article  CAS  Google Scholar 

  49. Zhang B, Berger J, Hu E, et al. Negative regulation of peroxisome proliferator-activated receptorgamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-α. Mol. Endocrinol. 1996; 10:1457–1466.

    Article  CAS  PubMed  Google Scholar 

  50. Ron D, Brasier AR, McGehee RE, Jr., Habener JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J. Clin. Invest. 1992; 89:223–233.

    CAS  PubMed  Google Scholar 

  51. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 1999; 4:611–617.

    Article  CAS  PubMed  Google Scholar 

  52. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000; 14:1293–1307.

    CAS  PubMed  Google Scholar 

  53. Feingold KR, Doerrler W, Dinarello CA, Fiers W, Grunfeld C. Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinol. 1992; 130:10–16.

    Article  CAS  Google Scholar 

  54. Souza SC, Yamamoto MT, Franciosa MD, Lien P, Greenberg AS. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-α: A potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 1998; 47:691–695.

    Article  CAS  PubMed  Google Scholar 

  55. Straus DS, Pascual G, Li M, et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-K B signaling pathway. Pro. Nat. Acad. Sci., USA 2000; 97:4844–4849.

    Article  CAS  Google Scholar 

  56. Hwang CS, Loftus TM, Mandrup S, Lane MD. Adipocyte differentiation and leptin expression. Ann. Rev. Cell Dev. Biol. 1997; 13:231–259.

    Article  CAS  Google Scholar 

  57. Lowell BB. PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 1999; 99:239–242.

    Article  CAS  PubMed  Google Scholar 

  58. Wang ND, Finegold MJ, Bradley A, et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995; 269:1108–1112.

    Article  CAS  PubMed  Google Scholar 

  59. Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 1995; 9:168–181.

    Article  CAS  PubMed  Google Scholar 

  60. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996; 10:1096–1107.

    Article  CAS  PubMed  Google Scholar 

  61. Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 1999; 3:151–158.

    Article  CAS  PubMed  Google Scholar 

  62. Loftus TM. An adipocyte-central nervous system regulatory loop in the control of adipose homeostasis. Sem. Cell Dev. Biol. 1999; 10:11–18.

    Article  CAS  Google Scholar 

  63. Schwartz MW, Baskin DG, Bukowski TR, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 1996; 45:531–535.

    Article  CAS  PubMed  Google Scholar 

  64. Grunfeld C, Zhao C, Fuller J, et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Invest. 1996; 97:2152–2157.

    CAS  PubMed  Google Scholar 

  65. Kirchgessner TG, Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Tumor necrosis factor-α contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes. J. Clin. Invest. 1997; 100:2777–2782.

    CAS  PubMed  Google Scholar 

  66. McCall JL, Tuckey JA, Parry BR. Serum tumour necrosis factor alpha and insulin resistance in gastrointestinal cancer. Br. J. Sur. 1992; 79:1361–1363.

    Article  CAS  Google Scholar 

  67. Stephens JM, Pekala PH. Transcriptional repression of the C/EBP-α and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-α. Regulations is coordinate and independent of protein synthesis. J. Biol. Chem. 1992; 267:13580–13584.

    CAS  PubMed  Google Scholar 

  68. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-αand obesity-induced insulin resistance. Science 1996; 271:665–668.

    Article  CAS  PubMed  Google Scholar 

  69. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Nat. Acad. Sci., USA 1994; 91:4854–4858.

    Article  CAS  Google Scholar 

  70. Kellerer M, Mushack J, Mischak H, Haring HU. Protein kinase C (PKC) epsilon enhances the inhibitory effect of TNF alpha on insulin signaling in HEK293 cells. FEBS Lett. 1997; 418:119–122.

    Article  CAS  PubMed  Google Scholar 

  71. Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem. 1997; 272:971–976.

    Article  CAS  PubMed  Google Scholar 

  72. Fong Y, Moldawer LL, Marano M, et al. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Amer. J. Physiol. 1989; 256:R659–R665.

    CAS  PubMed  Google Scholar 

  73. Buck M, Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 1996; 15:1753–1765.

    CAS  PubMed  Google Scholar 

  74. Llovera M, Garcia-Martinez C, Lopez-Soriano J, et al. Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Mol. Cell. Endo. 1998; 142:183–189.

    Article  CAS  Google Scholar 

  75. Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM. TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem. Biophy. Res. Comm. 1997; 230:238–241.

    Article  CAS  Google Scholar 

  76. Llovera M, Garcia-Martinez C, Agell N, Marzabal M, Lopez-Soriano FJ, Argiles JM. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett. 1994; 338:311–318.

    Article  CAS  PubMed  Google Scholar 

  77. Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM. Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. Int. J. Cancer 1995; 61:138–141.

    Article  CAS  PubMed  Google Scholar 

  78. Garcia-Martinez C, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM. Ubiquitin gene expression in skeletal muscle is increased by tumour necrosis factor-α. Biochem. Biophys. Res. Commun. 1994; 201:682–686.

    Article  CAS  Google Scholar 

  79. Costelli P, Carbo N, Tessitore L, et al. Tumor necrosis factor-α mediates changes in tissue protein turnover in a rat cancer cachexia model. J. Clin. Invest. 1993; 92:2783–2789.

    Article  CAS  PubMed  Google Scholar 

  80. Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB. TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J. 2003; 17:1048–1057.

    Article  CAS  PubMed  Google Scholar 

  81. Seale P, Rudnicki MA. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev. Biol. 2000; 218:115–124.

    Article  CAS  PubMed  Google Scholar 

  82. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS, Jr. NF-KB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia.[see comment]. Science 2000; 289:2363–2366.

    Article  CAS  PubMed  Google Scholar 

  83. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-KB. FASEB J. 2001; 15:1169–1180.

    Article  CAS  PubMed  Google Scholar 

  84. Layne MD, Farmer SR. Tumor necrosis factor-α and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exper. Cell R. 1999; 249:177–187.

    Article  CAS  Google Scholar 

  85. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS, Jr. NF-kB controls cell growth and differentiation through transcriptional regulation of cyclin Dl. Mol. Cell. Biol. 1999; 19:5785–5799.

    CAS  PubMed  Google Scholar 

  86. Lassar AB, Skapek SX, Novitch B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 1994; 6:788–794.

    Article  CAS  PubMed  Google Scholar 

  87. Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 1998; 14:167–196.

    Article  CAS  PubMed  Google Scholar 

  88. Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott SJ. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 2002; 9:587–600.

    Article  CAS  PubMed  Google Scholar 

  89. Coletti D, Yang E, Marazzi G, Sassoon D. TNFalpha inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO J. 2002; 21:631–642.

    Article  CAS  PubMed  Google Scholar 

  90. Collins RA, Grounds MD. The role of tumor necrosis factor-α (TNF-α) in skeletal muscle regeneration. Studies in TNF-α(-/-) and TNF-α(-/-)/LT-α(-/-) mice. J. Histochem. Cytochem. 2001; 49:989–1001.

    CAS  PubMed  Google Scholar 

  91. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387:83–90.

    Article  CAS  PubMed  Google Scholar 

  92. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 2003; 3:745–756.

    Article  CAS  Google Scholar 

  93. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002; 296:1634–1635.

    Article  CAS  PubMed  Google Scholar 

  94. Tang ED, Wang CY, Xiong Y, Guan KL. A role for NF-kB essential modifier/lKB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkB kinase complex by tumor necrosis factor-α. J. Biol. Chem. 2003; 278:37297–37305.

    Article  CAS  PubMed  Google Scholar 

  95. Lee SY, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y TRAF2 is essential for JNK but not NF-kB activation and regulates lymphocyte proliferation and survival. Immun. 1997; 7:703–713.

    Article  CAS  Google Scholar 

  96. Kelliher MA, Grimm S, Ishida Y Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 1998; 8:297–303.

    Article  CAS  PubMed  Google Scholar 

  97. Verma IM, Stevenson JK, Schwartz EM, Van Antwerp D, Miyamoto S. Rel/NF-kB/IkB family: intimate tales of association and dissociation. Genes Dev. 1995; 9:2723–2735.

    Article  CAS  PubMed  Google Scholar 

  98. Baldwin AS, Jr. The NF-κ B and I κ B proteins: new discoveries and insights. Ann. Rev. Imm. 1996; 14:649–683.

    Article  CAS  Google Scholar 

  99. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[κ]B activity. Ann. Rev. Immun. 2000; 18:621–663.

    Article  CAS  Google Scholar 

  100. Zhong H, May MJ, Jimi E, Ghosh S. The phosphorylation status of nuclear NF-κ B determines its association with CBP/p300 or HDAC-1. Mol. Cell 2002; 9:625–636.

    Article  CAS  PubMed  Google Scholar 

  101. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HE Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-KB activation by TNF-α is obligatory. Diabetes 2002; 51:1319–1336.

    Article  CAS  PubMed  Google Scholar 

  102. Hoffmann A, Horwitz BH, Baltimore D. Genetic analysis of the NFkB/IkB regulatory network: multiple roles and specificity in transcriptional control, NFkB Regulation and Function: From Basic Research to Drug Development, Tahoe City, California, 2002. Keystone Symposia.

    Google Scholar 

  103. Skapek SX, Rhee J, Spicer DB, Lassar AB. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 1995; 267:1022–1024.

    Article  CAS  PubMed  Google Scholar 

  104. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kB Function in Growth Control: Regulation of Cyclin D1 Expression and G0/Gl-to-S-Phase Transition. Mol. Cell. Biol. 1999; 19:2690–2698.

    CAS  PubMed  Google Scholar 

  105. Yao J, Mackman N, Edgington TS, Fan ST. Lipopolysaccharide induction of the tumor necrosis factor-a promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-κB transcription factors. J. Biol. Chem. 1997; 272:17795–17801.

    Article  CAS  PubMed  Google Scholar 

  106. Swantek JL, Christerson L, Cobb MH. Lipopolysaccharide-induced tumor necrosis factor-α promoter activity is inhibitor of nuclear factor-κB kinase-dependent. J. Biol. Chem. 1999; 274:11667–11671.

    Article  CAS  PubMed  Google Scholar 

  107. Steer JH, Kroeger KM, Abraham LJ, Joyce DA. Glucocorticoids suppress tumor necrosis factor-α expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-κ B and c-Jun-activating transcription factor-2 binding sites in the promoter. J. Biol. Chem. 2000; 275:18432–18440.

    Article  CAS  PubMed  Google Scholar 

  108. Li YP, Reid MB. NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Amer. J. Physiol. 2000; 279:R1165–R1170.

    CAS  Google Scholar 

  109. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor alpha. FASEB J. 1998; 12:871–880.

    CAS  PubMed  Google Scholar 

  110. Kawamura I, Morishita R, Tomita N, et al. Intratumoral injection of oligonucleotides to the NF κ B binding site inhibits cachexia in a mouse tumor model. Gene Ther. 1999; 6:91–97.

    Article  CAS  PubMed  Google Scholar 

  111. Lille ST, Lefler SR, Mowlavi A, et al. Inhibition of the initial wave of NF-κB activity in rat muscle reduces ischemia/reperfusion injury. Muscle Nerve 2001; 24:534–541.

    Article  CAS  PubMed  Google Scholar 

  112. Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC. Activation of an alternative NF-κB pathway in skeletal muscle during disuse atrophy. FASEB J. 2002; 16:529–538.

    Article  CAS  PubMed  Google Scholar 

  113. Kumar A, Lnu S, Malya R, et al. Mechanical stretch activates nuclear factor-κB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: implications in asthma. FASEB J. 2003; 17:1800–1811.

    Article  CAS  PubMed  Google Scholar 

  114. Baghdiguian S, Richard I, Martin M, et al. Pathophysiology of limb girdle muscular dystrophy type 2A: hypothesis and new insights into the IκBalpha/NF-κB survival pathway in skeletal muscle. J. Mol. Med. 2001; 79:254–261.

    Article  CAS  PubMed  Google Scholar 

  115. Spiegelman BM, Hotamisligil GS. Through thick and thin: wasting, obesity, and TNF alpha. Cell 1993; 73:625–627.

    Article  CAS  PubMed  Google Scholar 

  116. Goodman MN. Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Amer. J. Physiol. 1991; 260:E727–E730.

    CAS  PubMed  Google Scholar 

  117. Moldawer LL, Svaninger G, Gelin J, Lundholm KG. Interleukin 1 and tumor necrosis factor do not regulate protein balance in skeletal muscle. Am. J. Physiol. 1987; 253:C766–C773.

    CAS  PubMed  Google Scholar 

  118. Ladner KJ, Caligiuri MA, Guttridge DC. Tumor necrosis factor-regulated biphasic activation of NF-κ B is required for cytokine-induced loss of skeletal muscle gene products. J. Biol. Chem. 2003; 278:2294–2303.

    Article  CAS  PubMed  Google Scholar 

  119. Barton BE. IL-6-like cytokines and cancer cachexia: consequences of chronic inflammation. Immunol. Res. 2001; 23:41–58.

    Article  CAS  PubMed  Google Scholar 

  120. Cahlin C, Korner A, Axelsson H, Wang W, Lundholm K, Svanberg E. Experimental cancer cachexia: the role of host-derived cytokines interleukin (IL)-6, IL-12, interferon-gamma, and tumor necrosis factor alpha evaluated in gene knockout, tumor-bearing mice on C57 Bl background and eicosanoiddependent cachexia. Cancer Res. 2000; 60:5488–5493.

    CAS  PubMed  Google Scholar 

  121. Matthys P, Dijkmans R, Proost P, et al. Severe cachexia in mice inoculated with interferon-gammaproducing tumor cells. Int. J. Cancer 1991; 49:77–82.

    Article  CAS  PubMed  Google Scholar 

  122. Mori M, Yamaguchi K, Honda S, et al. Cancer cachexia syndrome developed in nude mice bearing melanoma cells producing leukemia-inhibitory factor. Cancer R. 1991; 51:6656–6659.

    CAS  Google Scholar 

  123. Acharyya S, Ladner KJ, Nelsen LL, et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 2004; 114:370–378.

    Article  CAS  PubMed  Google Scholar 

  124. Suryaprasad AG, Prindiville T. The biology of TNF blockade. Autoimm. Rev. 2003; 2:346–357.

    Article  CAS  Google Scholar 

  125. Burke JR, Pattoli MA, Gregor KR, et al. BMS-345541 is a highly selective inhibitor of I κ B kinase that binds at an allosteric site of the enzyme and blocks NF-κ B-dependent transcription in mice. J. Biol. Chem. 2003; 278:1450–1456.

    Article  CAS  PubMed  Google Scholar 

  126. Castro AC, Dang LC, Soucy F, et al. Novel IKK inhibitors: beta-carbolines. Bioorg. Med. Chem. Lett. 2003; 13:2419–2422.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Guttridge, D.C. (2007). The Biology of Cancer Cachexia and the Role of TNF-α. In: Caligiuri, M.A., Lotze, M.T. (eds) Cytokines in the Genesis and Treatment of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-455-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-455-1_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-820-2

  • Online ISBN: 978-1-59745-455-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics