Skip to main content

Chemokine and Receptor Expression in Tumor Progression

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Chemotactic cytokines (chemokines) are a family of small proteins (8–10 kDa) inducing directed cell migration (chemotaxis) along a chemical gradient (1–5). Chemokines tightly regulate the positioning of leukocytes in secondary lymphoid organs (e.g., in lymph nodes and thymus), and are key determinants of the recruitment of leukocytes at sites of inflammation and tumor tissues. Besides hematopoietic cells, chemokines affect several other cell types, such as epithelial and endothelial cells, fibroblasts and tumor cells. Chemokines play an important role in immune and inflammatory reactions; in addition most of these molecules affect other important cell functions such as angiogenesis, collagen production, activation of enzymes and regulation of cell growth and apoptosis. Forty-seven chemokines have been identified so far in man. Based on a cystein motif, different subfamilies: CXC, CC, C and CX3C have been classified (Table 1). The chemokine scaffold consists of an N-terminal loop connected via Cys bonds to the more structured core of the molecule (three b sheets) with a C terminal a helix (1–4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18:217–242.

    CAS  PubMed  Google Scholar 

  2. Mantovani A. The chemokine system: redundancy for robust outputs. Immunol Today 1999; 20: 254–257.

    CAS  PubMed  Google Scholar 

  3. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52:145–176.

    CAS  PubMed  Google Scholar 

  4. Rollins BJ. Chemokines. Blood 1997; 90:909–928.

    CAS  PubMed  Google Scholar 

  5. Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol 2001; 2:95–101.

    CAS  PubMed  Google Scholar 

  6. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12:121–127.

    CAS  PubMed  Google Scholar 

  7. Bottazzi B, Polentarutti N, Acero R, et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science 1983; 220:210–212.

    CAS  PubMed  Google Scholar 

  8. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4:540–550.

    CAS  PubMed  Google Scholar 

  9. Meltzer MS, Stevenson MM, Leonard EJ. Characterization of macrophage chemotaxins in tumor cell cultures and comparison with lymphocyte-derived chemotactic factors. Cancer Res 1977; 37:721–815.

    CAS  PubMed  Google Scholar 

  10. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23:549–555.

    CAS  PubMed  Google Scholar 

  11. Mantovani A. Chemokines in neoplastic progression. Semin Cancer Biol 2004; 14.

    Google Scholar 

  12. Mrowietz U, Schwenk U, Maune S, et al. The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer 1999; 79: 1025–1031.

    CAS  PubMed  Google Scholar 

  13. Luboshits G, Shina S, Kaplan O, et al. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 1999; 59:4681–4687.

    CAS  PubMed  Google Scholar 

  14. Azenshtein E, Luboshits G, Shina S, et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002; 62:1093–1102.

    CAS  PubMed  Google Scholar 

  15. Haghnegahdar H, Du J, Wang D, et al. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J Leukoc Biol 2000; 67:53–62.

    CAS  PubMed  Google Scholar 

  16. Richmond A, Thomas HG. Purification of melanoma growth stimulatory activity. J Cell Physiol 1986; 129:375–384.

    CAS  PubMed  Google Scholar 

  17. Bordoni R, Fine R, Murray D, Richmond A. Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J Cell Biochem 1990; 44:207–219.

    CAS  PubMed  Google Scholar 

  18. Norgauer J, Metzner B, Schraufstatter I. Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol 1996; 156:1132–1137.

    CAS  PubMed  Google Scholar 

  19. Balentien E, Mufson BE, Shattuck RL, Derynck R, Richmond A. Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene 1991; 6:1115–1124.

    CAS  PubMed  Google Scholar 

  20. Owen JD, Strieter R, Burdick M, et al. Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int J Cancer 1997; 73:94–103.

    CAS  PubMed  Google Scholar 

  21. Richards BL, Eisma RJ, Spiro JD, Lindquist RL, Kreutzer DL. Coexpression of interleukin-8 receptors in head and neck squamous cell carcinoma. Am J Surg 1997; 174:507–512.

    CAS  PubMed  Google Scholar 

  22. Takamori H, Oades ZG, Hoch OC, Burger M, Schraufstatter IU. Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas 2000; 21:52–56.

    CAS  PubMed  Google Scholar 

  23. Olbina G, Cieslak D, Ruzdijic S, et al. Reversible inhibition of IL-8 receptor B mRNA expression and proliferation in non-small cell lung cancer by antisense oligonucleotides. Anticancer Res 1996; 16: 3525–3530.

    CAS  PubMed  Google Scholar 

  24. Kleeff J, Kusama T, Rossi DL, et al. Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer 1999; 81:650–657.

    CAS  PubMed  Google Scholar 

  25. Mazzucchelli L, Blaser A, Rappeler A, et al. BCA-1 is highly expressed in Helicobacter pyloriinduced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest 1999; 104:R49–R54.

    CAS  PubMed  Google Scholar 

  26. Yang J, Richmond A. Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 2001; 61:4901–4909.

    CAS  PubMed  Google Scholar 

  27. Dhawan P, Richmond A. A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002; 277:7920–7928.

    CAS  PubMed  Google Scholar 

  28. Richmond A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2002; 2:664–674.

    CAS  PubMed  Google Scholar 

  29. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today 1992; 13:265–270.

    CAS  PubMed  Google Scholar 

  30. Negus RP, Stamp GW, Hadley J, Balkwill FR. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 1997; 150:1723–1734.

    CAS  PubMed  Google Scholar 

  31. Negus RP, Stamp GW, Relf MG, et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 1995; 95:2391–2396.

    CAS  PubMed  Google Scholar 

  32. Monti P, Leone BE, Marchesi F, et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63:7451–7461.

    CAS  PubMed  Google Scholar 

  33. Valkovic T, Lucin K, Krstulja M, Dobi-Babic R, Jonjic N. Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract 1998; 194:335–340.

    CAS  PubMed  Google Scholar 

  34. Ueno T, Toi M, Saji H, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 2000; 6:3282–3289.

    CAS  PubMed  Google Scholar 

  35. Silzle T, Kreutz M, Dobler MA, Brockhoff G, Knuechel R, Kunz-Schughart LA. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol 2003; 33:1311–1320.

    CAS  PubMed  Google Scholar 

  36. Van Damme J, Proost P, Lenaerts JP, Opdenakker G. Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med 1992; 176:59–65.

    PubMed  Google Scholar 

  37. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357:539–545.

    CAS  PubMed  Google Scholar 

  38. Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol 1992; 148:1280–1285.

    CAS  PubMed  Google Scholar 

  39. Jonjic N, Valkovic T, Lucin K, et al. Comparison of microvessel density with tumor associated macrophages in invasive breast carcinoma. Anticancer Res 1998; 18:3767–3770.

    CAS  PubMed  Google Scholar 

  40. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996; 56: 4625–4629.

    CAS  PubMed  Google Scholar 

  41. Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 1998; 64:275–290.

    CAS  PubMed  Google Scholar 

  42. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4:71–78.

    CAS  PubMed  Google Scholar 

  43. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196:254–265.

    CAS  PubMed  Google Scholar 

  44. Hoshino Y, Hatake K, Kasahara T, et al. Monocyte chemoattractant protein-1 stimulates tumor necrosis and recruitment of macrophages into tumors in tumor-bearing nude mice: increased granulocyte and macrophage progenitors in murine bone marrow. Exp Hematol 1995; 23:1035–1039.

    CAS  PubMed  Google Scholar 

  45. Huang S, Singh RK, Xie K, et al. Expression of the JE/MCP-1 gene suppresses metastatic potential in murine colon carcinoma cells. Cancer Immunol Immunother 1994; 39:231–238.

    CAS  PubMed  Google Scholar 

  46. Rollins BJ, Sunday ME. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol 1991; 11:3125–3131.

    CAS  PubMed  Google Scholar 

  47. Nakashima E, Mukaida N, Kubota Y, et al. Human MCAF gene transfer enhances the metastatic capacity of a mouse cachectic adenocarcinoma cell line in vivo. Pharm Res 1995; 12:1598–1604.

    CAS  PubMed  Google Scholar 

  48. Nesbit M, Schaider H, Miller TH, Herlyn M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 2001; 166:6483–6490.

    CAS  PubMed  Google Scholar 

  49. Schutyser E, Struyf S, Proost P, et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem 2002; 277:24584–24593.

    CAS  PubMed  Google Scholar 

  50. Strieter RM, Belperio JA, Phillips RJ, Keane MP. Chemokines: angiogenesis and metastases in lung cancer. Novartis Found Symp 2004; 256:173–184; discussion 184–188, 259–269.

    CAS  PubMed  Google Scholar 

  51. Bonecchi R, Facchetti F, Dusi S, et al. Induction of functional IL-8 receptors by IL-4 and IL-13 in human monocytes. J Immunol 2000; 164:3862–3869.

    CAS  PubMed  Google Scholar 

  52. Mule JJ, Custer M, Averbook B, et al. RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations. Hum Gene Ther 1996; 7:1545–1553.

    CAS  PubMed  Google Scholar 

  53. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A. Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 2001; 7:285–289.

    CAS  PubMed  Google Scholar 

  54. Kunz M, Toksoy A, Goebeler M, Engelhardt E, Brocker E, Gillitzer R. Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol 1999; 189:552–558.

    CAS  PubMed  Google Scholar 

  55. Luster AD, Leder P. IP-10, a-C-X-C-chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med 1993; 178:1057–1065.

    CAS  PubMed  Google Scholar 

  56. Dobrzanski MJ, Reome JB, Dutton RW. Immunopotentiating role of IFN-γ in early and late stages of type 1 CD8 effector cell-mediated tumor rejection. Clin Immunol 2001; 98:70–84.

    CAS  PubMed  Google Scholar 

  57. Sun H, Kundu N, Dorsey R, Jackson MJ, Fulton AM. Expression of the Chemokines IP-10 and Mig in IL-10 Transduced Tumors. J Immunother 2001; 24:138–143.

    CAS  Google Scholar 

  58. Pertl U, Luster AD, Varki NM, et al. IFN-γ-inducible protein-10 is essential for the generation of a protective tumor-specific CD8 T cell response induced by single-chain IL-12 gene therapy. J Immunol 2001; 166:6944–6951.

    CAS  PubMed  Google Scholar 

  59. Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 1999; 93:1612–1621.

    CAS  PubMed  Google Scholar 

  60. Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol 2000; 165:1992–2000.

    CAS  PubMed  Google Scholar 

  61. Nomura T, Hasegawa H, Kohno M, Sasaki M, Fujita S. Enhancement of anti-tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI-1-ligand chemokine and stromal cell-derived factor-lalpha chemokine genes. Int J Cancer 2001; 91:597–606.

    CAS  PubMed  Google Scholar 

  62. Sharma S, Stolina M, Luo J, et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164:4558–4563.

    CAS  PubMed  Google Scholar 

  63. Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, et al. T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 2001; 61:2062–2070.

    CAS  PubMed  Google Scholar 

  64. Braun SE, Chen K, Foster RG, et al. The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 2000; 164:4025–4031.

    CAS  PubMed  Google Scholar 

  65. Watanabe K, Jose PJ, Rankin SM. Eotaxin-2 generation is differentially regulated by lipopolysaccharide and IL-4 in monocytes and macrophages. J Immunol 2002; 168:1911–1918.

    CAS  PubMed  Google Scholar 

  66. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998; 187:129–134.

    CAS  PubMed  Google Scholar 

  67. Gu L, Tseng S, Horner RM, Tarn C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404:407–411.

    CAS  PubMed  Google Scholar 

  68. Cossman J, Annunziata CM, Barash S, et al. Reed-Sternberg cell genome expression supports a B-cell lineage. Blood 1999; 94:411–416.

    CAS  PubMed  Google Scholar 

  69. van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin’s lymphoma. Am J Pathol 1999; 154:1685–1691.

    PubMed  Google Scholar 

  70. Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001; 194:847–853.

    CAS  PubMed  Google Scholar 

  71. Yang TY, Chen SC, Leach MW, et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 2000; 191:445–454.

    CAS  PubMed  Google Scholar 

  72. Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 2003; 3:36–50.

    CAS  PubMed  Google Scholar 

  73. Sozzani S, Allavena P, D’Amico G, et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 1998; 161:1083–1086.

    CAS  PubMed  Google Scholar 

  74. Steinman RM, Hawiger D, MC. N. Tolerogenic dendritic cells. Annu Rev Immunol. 2003; 21:685–711.

    CAS  PubMed  Google Scholar 

  75. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nature Rev Immunol 2002; 2: 151–161.

    CAS  Google Scholar 

  76. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106: 263–266.

    CAS  PubMed  Google Scholar 

  77. Banchereau J, Paczesny S, Blanco P, et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci 2003; 987:180–187.

    CAS  PubMed  Google Scholar 

  78. Allavena P, Sica A, Vecchi A, Locati M, Sozzani S, Mantovani A. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev 2000; 177:141–149.

    CAS  PubMed  Google Scholar 

  79. Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev 2002; 13:143–154.

    CAS  PubMed  Google Scholar 

  80. Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 1999; 190:1417–1426.

    CAS  PubMed  Google Scholar 

  81. Giannini A, Bianchi S, Messerini L, et al. Prognostic significance of accessory cells and lymphocytes in nasopharyngeal carcinoma. Pathol Res Pract 1991; 187:496–502.

    CAS  PubMed  Google Scholar 

  82. Zeid NA, Muller HK. S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology 1993; 25:338–343.

    CAS  PubMed  Google Scholar 

  83. Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 1997; 73:309–316.

    CAS  PubMed  Google Scholar 

  84. Troy A, Davidson P, Atkinson C, Hart D. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol 1998; 160:214–219.

    CAS  PubMed  Google Scholar 

  85. Scarpino S, Stoppacciaro A, Ballerini F, et al. Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol 2000; 156:831–837.

    CAS  PubMed  Google Scholar 

  86. Schwaab T, Schned AR, Heaney JA, et al. In vivo description of dendritic cells in human renal cell carcinoma. J Urol 1999; 162:567–573.

    CAS  PubMed  Google Scholar 

  87. Tsujitani S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimachi K. Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer 1990; 66:2012–2016.

    CAS  PubMed  Google Scholar 

  88. Lespagnard L, Gancberg D, Rouas G, et al. Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer 1999; 84:309–314.

    CAS  PubMed  Google Scholar 

  89. Zou W, Machelon V, Coulomb-L’Hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7:1339–1346.

    CAS  PubMed  Google Scholar 

  90. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414:105–111.

    CAS  PubMed  Google Scholar 

  91. Vermi W, Bonecchi R, Facchetti F, et al. Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 2003; 200:255–268.

    PubMed  Google Scholar 

  92. Salio M, Cella M, Vermi W, et al. Plasmacytoid dendritic cells prime IFN-γ-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 2003; 33:1052–1062.

    CAS  PubMed  Google Scholar 

  93. Ardavin C, Amigorena S, Reis e Sousa C. Dendritic cells: immunobiology and cancer immunotherapy. Immunity 2004; 20:17–23.

    CAS  PubMed  Google Scholar 

  94. Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15:138–147.

    CAS  PubMed  Google Scholar 

  95. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685–711.

    CAS  PubMed  Google Scholar 

  96. Vicari AP, Caux C, Trinchieri G. Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 2002; 12:33–42.

    CAS  PubMed  Google Scholar 

  97. Fioretti F, Fradelizi D, Stoppacciaro A, et al. Reduced tumorigenicity and augmented leukocyte infiltration after monocyte chemotactic protein-3 (MCP-3) gene transfer: perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor. J Immunol 1998; 161:342–346.

    CAS  PubMed  Google Scholar 

  98. Fushimi T, Kojima A, Moore MA, Crystal RG. Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest 2000; 105:1383–1393.

    CAS  PubMed  Google Scholar 

  99. Giovarelli M, Cappello P, Forni G, et al. Tumor rejection and immune memory elicited by locally released LEC chemokine are associated with an impressive recruitment of APCs, lymphocytes, and granulocytes. J Immunol 2000; 164:3200–3206.

    CAS  PubMed  Google Scholar 

  100. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2:161–174.

    CAS  PubMed  Google Scholar 

  101. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274:21491–21494.

    CAS  PubMed  Google Scholar 

  102. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 2002; 37:375–536.

    PubMed  Google Scholar 

  103. Nagakawa Y, Aoki T, Kasuya K, Tsuchida A, Koyanagi Y. Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer. Pancreas 2002; 24:169–178.

    PubMed  Google Scholar 

  104. Krecicki T, Zalesska-Krecicka M, Jelen M, Szkudlarek T, Horobiowska M. Expression of type IV collagen and matrix metalloproteinase-2 (type IV collagenase) in relation to nodal status in laryngeal cancer. Clin Otolaryngol 2001; 26:469–472.

    CAS  PubMed  Google Scholar 

  105. Locati M, Deuschle U, Massardi ML, et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 2002; 168:3557–3562.

    CAS  PubMed  Google Scholar 

  106. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 2003; 10:136–141.

    CAS  PubMed  Google Scholar 

  107. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokinemediated angiogenesis. J Biol Chem 1995; 270:27348–27357.

    CAS  PubMed  Google Scholar 

  108. Luster AD. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338:436–445.

    CAS  PubMed  Google Scholar 

  109. Strieter RM, Belperio JA, Phillips RJ, Keane MP. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 2004; 14:195–200.

    CAS  PubMed  Google Scholar 

  110. Heidemann J, Ogawa H, Dwinell MB, et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 2003; 278: 8508–8515.

    CAS  PubMed  Google Scholar 

  111. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 2002; 62:7203–7206.

    CAS  PubMed  Google Scholar 

  112. Salcedo R, Wasserman K, Young HA, et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1 alpha. Am J Pathol 1999; 154:1125–1135.

    CAS  PubMed  Google Scholar 

  113. Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 1998; 90:447–454.

    CAS  PubMed  Google Scholar 

  114. Gawrychowski K, Skopinska-Rozewska E, Barcz E, et al. Angiogenic activity and interleukin-8 content of human ovarian cancer ascites. Eur J Gynaecol Oncol 1998; 19:262–264.

    CAS  PubMed  Google Scholar 

  115. Arenberg DA, Keane MP, DiGiovine B, et al. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest 1998; 102:465–472.

    CAS  PubMed  Google Scholar 

  116. Veltri RW, Miller MC, Zhao G, et al. Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 1999; 53:139–147.

    CAS  PubMed  Google Scholar 

  117. Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003; 197:1537–1549.

    CAS  PubMed  Google Scholar 

  118. Sgadari C, Angiolillo AL, Cherney BW, et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A 1996; 93:13791–13796.

    CAS  PubMed  Google Scholar 

  119. Sgadari C, Farber JM, Angiolillo AL, et al. Mig, the monokine induced by interferon-γ, promotes tumor necrosis in vivo. Blood 1997; 89:2635–2643.

    CAS  PubMed  Google Scholar 

  120. Addison CL, Arenberg DA, Morris SB, et al. The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 2000; 11:247–261.

    CAS  PubMed  Google Scholar 

  121. Feldman AL, Friedl J, Lans TE, et al. Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts. Int J Cancer 2002; 99:149–153.

    CAS  PubMed  Google Scholar 

  122. Menten P, Saccani A, Dillen C, et al. Role of the autocrine chemokines MIP-lalpha and MIP-lbeta in the metastatic behavior of murine T cell lymphoma. J Leukoc Biol 2002; 72:780–789.

    CAS  PubMed  Google Scholar 

  123. Youngs SJ, Ali SA, Taub DD, Rees RC. Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 1997; 71:257–266.

    CAS  PubMed  Google Scholar 

  124. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410:50–56.

    CAS  PubMed  Google Scholar 

  125. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002; 62:2937–2941.

    CAS  PubMed  Google Scholar 

  126. Yan C, Zhu ZG, Yu YY, et al. Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol 2004; 10:783–790.

    CAS  PubMed  Google Scholar 

  127. Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer 2003; 105:186–189.

    CAS  PubMed  Google Scholar 

  128. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001; 93:1638–1643.

    CAS  PubMed  Google Scholar 

  129. Murakami T, Maki W, Cardones AR, et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 2002; 62:7328–7334.

    CAS  PubMed  Google Scholar 

  130. Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res 2002; 62: 6304–6311.

    CAS  PubMed  Google Scholar 

  131. Oonakahara K, Matsuyama W, Higashimoto I, Kawabata M, Arimura K, Osame M. Stromal-derived factor-1alpha/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am J Respir Cell Mol Biol 2004; 30:671–677.

    CAS  PubMed  Google Scholar 

  132. Spano JP, Andre F, Morat L, et al. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: pattern of expression and correlation with outcome. Ann Oncol 2004; 15:613–617.

    PubMed  Google Scholar 

  133. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003; 167:1676–1686.

    PubMed  Google Scholar 

  134. Proudfoot AE, Buser R, Borlat F, et al. Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J Biol Chem 1999; 274:32478–32485.

    CAS  PubMed  Google Scholar 

  135. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 2003; 63:8360–8365.

    CAS  PubMed  Google Scholar 

  136. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. J Clin Invest 2001; 108:269–277.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Allavena, P., Marchesi, F., Mantovani, A. (2007). Chemokine and Receptor Expression in Tumor Progression. In: Caligiuri, M.A., Lotze, M.T. (eds) Cytokines in the Genesis and Treatment of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-455-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-455-1_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-820-2

  • Online ISBN: 978-1-59745-455-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics