Skip to main content

Aging and the Decline of Androgen Production

  • Chapter
The Leydig Cell in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Human male aging is associated with progressive decreases in serum concentrations of testosterone, which are not in response to decreased circulating basal luteinizing hormone (LH) concentrations, suggesting that reduced testosterone results from a primary deficit at the gonadal rather than the hypothalamic-pituitary level. This also is true of Brown Norway rats, a strain that has become widely used for studies of Leydig cell aging. Age-related reduced testosterone was found to result from reduced Leydig cell steroidogenesiss, but not by their loss. This chapter deals with the cellular changes, which are associated with reduced testosterone, and their causes. Age-related reductions have been reported in Leydig cell LH receptor numbers, intracellular cyclic adenosine monophosphate (cAMP) formation, steroidogenic acute regulatory protein, peripheral benzodiazapine receptor, the conversion of cholesterol to pregnenolone within the mitochondria and the subsequent conversion of pregnenolone to progesterone, 17a-hydroxyprogesterone, androstenedione, and ultimately testosterone in the smooth endoplasmic reticulum. Culturing isolated Leydig cells with LH maintained high levels of testosterone production by young cells but did not restore old cells to “young” levels. In contrast, culturing old cells with dibutyryl cAMP restored testosterone production to high levels, suggesting a deficit in the signal transduction mechanism between the LH receptor and cAMP production. Long-term suppression of steroidogenesis, accomplished by administering exogenous testosterone to middle-aged rats, prevented the steroidogenic aging of the cells, suggesting that ultimately steroidogenesis itself might result in age-related reductions in steroidogenesis. As measured with lucigenin, reactive oxygen production by old Leydig cells was found to be significantly more than by young Leydig cells. Microarray and Northern blot analysis revealed that the expression of genes for Cu-Zn Superoxide dismutase 1, Cu-Zn Superoxide dismutase 2, catalase, and glutathione peroxidase, the products of which protect Leydig cells from oxidative stress, are reduced as the Leydig cells age, as does their activities and protein levels. Depletion of glutathione with buthionine sulfoximine resulted in reduced testosterone production by young adult Leydig cells. Incubation of the cells with vitamin E delayed reduced testosterone production. Taken together, the available data suggests that changes in reactive oxygen and thus, an altered redox environment in aging Leydig cells might cause the changes in Leydig cells that result in age-related reduced testosterone production, and that the reactive oxygen might derive, at least in part, from steroidogenesis itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001;86:724–731.

    PubMed  CAS  Google Scholar 

  2. Swerdloff RS, Wang C. Androgens and the ageing male. Clin Endocrinol Metab 2004;18:349–362.

    CAS  Google Scholar 

  3. Matsumoto AM. Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J Gerontol 2002;57:M76–M99.

    Google Scholar 

  4. Ghanadian R, Lewis JG, Chisholm GD. Serum testosterone and dihydrotestosterone changes with age in rat. Steroids 1975;25:753–762.

    PubMed  CAS  Google Scholar 

  5. Gray GD. Changes in the levels of luteinizing hormone and testosterone in the circulation of ageing male rats. J Endocrinol 1978;76:551–552.

    PubMed  CAS  Google Scholar 

  6. Simpkins JW, Kalra PS, Kalra SP. Alterations in daily rhythms of testosterone and progesterone in old male rats. Exp Aging Res 1981;7:25–32.

    PubMed  CAS  Google Scholar 

  7. Steiner RA, Bremner WJ, Clifton DK, Dorsa DM. Reduced pulsatile luteinizing hormone and testosterone secretion with aging in the male rat. Biol Reprod 1984;31:251–258.

    PubMed  CAS  Google Scholar 

  8. Wang C, Leung A, Sinha-Hikim AP. Reproductive aging in the male brown-Norway rat: a model for the human. Endocrinology 1993;133:2773–2781.

    PubMed  CAS  Google Scholar 

  9. Zirkin BR, Santulli R, Strandberg JD, Wright WW, and Ewing LL. Testicular steroidogenesis in the aging brown Norway rat. J Androl 1993;14:118–123.

    PubMed  CAS  Google Scholar 

  10. Gruenewald DA, Naai MA, Hess DL, Matsumoto AM. The Brown Norway rat as a model of male reproductive aging: evidence for both primary and secondary testicular failure. J Gerontol 1994;49:B42–B50.

    PubMed  CAS  Google Scholar 

  11. Ellis GB, Desjardins C, Fraser HM. Control of pulsatile LH release in male rats. Neuroendocrinol 1983;37:177–183.

    CAS  Google Scholar 

  12. Bremner WJ, Bagatell CJ, Christensen RB, Matsumoto AM. Neuroendocrine aspects of the control of gonadotropin secretion in men. In: Whitcomb, RW, and Zirkin BR eds. Understanding Male Infertility: Basic and Clinical Aspects. Raven Press, New York, 1993; pp. 29–41.

    Google Scholar 

  13. Ewing LL, Zirkin BR. Leydig cell structure and steroidogenic function. Rec Progr Horm Res 1983;39:599–635.

    PubMed  CAS  Google Scholar 

  14. Ewing LL, Keeney DS. Leydig cells: structure and function. In: Desjardins C, and Ewing LL eds. Cell and Molecular Biology of the Testis. Oxford University Press, New York, 1993;pp.l37–165.

    Google Scholar 

  15. Dufau ML, Baukal AJ, Catt KJ. Hormone-induced guanyl nucleotide binding and activation of adenylate cyclase in the Leydig cell. Proc Natl Acad Sci 1980;77:5837–5841.

    PubMed  CAS  Google Scholar 

  16. Dufau ML. The luteinizing hormone receptor. Ann Rev Physiol 1998;60:461–496.

    CAS  Google Scholar 

  17. Payne AH, Youngblood GL. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod 1995; 52:217–225.

    PubMed  CAS  Google Scholar 

  18. Haider SG. Cell biology of Leydig cells in the testis. Int Rev Cytol 2004;233:181–241.

    PubMed  CAS  Google Scholar 

  19. Conti M. Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol Endocrinol 2000;14:1317–1327.

    PubMed  CAS  Google Scholar 

  20. Conti M, Jin S-LC. The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol 2000;63:1–37.

    CAS  Google Scholar 

  21. Spiegel AM. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol 1987;49:1–16.

    PubMed  CAS  Google Scholar 

  22. Kishi M, Liu X, Hirakawa T, Reczek D, Bretscher A, Ascoli M. Identification of two distinct structural motifs that, when added to the C-terminal tail of the rat LH receptor, redirect the internalized hormone-receptor complex from a degradation to a recycling pathway. Mol Endocrin 2001;15:1624–1635.

    CAS  Google Scholar 

  23. Richard FJ, Tsafriri A, Conti M. Role of phosphodiesterase Type 3A in rat oocyte maturation. Biol Reprod 2001;65:1444–1451.

    PubMed  CAS  Google Scholar 

  24. Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein a-subunit mutations and role of genomic imprinting. Endocrine Rev 2001;22:675–705.

    CAS  Google Scholar 

  25. Marinero JJ, Ropero S, Colas B, Prieto JC, Lopez-Ruiz MP. Modulation of guanosine triphosphatase activity of G proteins by arachidonic acid in rat Leydig cell membranes. Endocrinology 2000; 141:1093–1099.

    PubMed  CAS  Google Scholar 

  26. Catt KJ, Harwood JP, Clayton RN, et al. Regulation of peptide hormone receptors and gonadal steroidogenesis. Rec Prog Horm Res 1980;36:557–662.

    PubMed  CAS  Google Scholar 

  27. Simpson ER, Waterman MR. Regulation by ACTH of steroid hormone biosynthesis in the adrenal cortex. Can J Biochem Cell Biol 1983;61:692–707.

    PubMed  CAS  Google Scholar 

  28. Jefcoate CR. High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. J Clin Invest 2002; 110:881–890.

    PubMed  CAS  Google Scholar 

  29. Hansson V, Skalhegg BS, Tasken K. Cyclic-AMP-dependent protein kinase (PKA) in testicular cells. Cell specific expression, differential regulation and targeting of subunits of PKA. J Steroid Biochem 1999;69:367–378.

    CAS  Google Scholar 

  30. Kimura T. Transduction of ACTH signal from plasma membrane to mitochondria in adrenocortical steroidogenesis. Effects of peptide, phospholid, and calcium. J Steroid Biochem 1986;25:711–716.

    PubMed  CAS  Google Scholar 

  31. Browne ES, Bhalla VK. Does gonadotropin receptor complex have an amplifying role in cAMP/testosterone production in Leydig cells? J Androl 1991;12:132–139.

    PubMed  CAS  Google Scholar 

  32. Moger WH. Evidence for compartmentalization of adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinases in rat Leydig cells using site-selective cAMP analogs. Endocrinology 1991;128:1414–1418.

    PubMed  CAS  Google Scholar 

  33. Reaven EL, Zhan A, Nomoto S, Leers-Sucheta, Azhar S. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and a selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res 2000;41:343–356.

    PubMed  CAS  Google Scholar 

  34. Azhar S, Reaven E. Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol 2002;195:1–26.

    PubMed  CAS  Google Scholar 

  35. Azhar S, Leers-Sucheta S, Reaven E. Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and’ selective’ pathway connection. Front Biosci 2003;8:998–1029.

    Google Scholar 

  36. Jewell WT, Miller MG. Identification of a carboxylesterase as the major protein bound by molinate. Toxicol Appl Pharmacol 1998;49:226–234.

    Google Scholar 

  37. Shen WJ, Patel S, Natu V, et al. Interaction of hormonesensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J Biol Chem 2003;278:43,870–43,876.

    CAS  Google Scholar 

  38. Kraemer FB, Shen WJ, Harada K, et al. Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol 2004;18:549–557.

    PubMed  CAS  Google Scholar 

  39. Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocrinol Rev 1993;14:222–240.

    CAS  Google Scholar 

  40. Papadopoulos V. Structure and function of the peripheral-type benzodiazepine receptor in steroidogenic cells. Proc Soc Exper Biol Med 1998;217:130–142.

    CAS  Google Scholar 

  41. Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 1999;51:629–650.

    PubMed  CAS  Google Scholar 

  42. Papadopoulos V, Amri H, Boujrad H, Li N, Vidic B, Gamier M. Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. J Biol Chem 1997;272:32,129–32,135.

    CAS  Google Scholar 

  43. Gazouli M, Han Z, Papadopoulos V. Identification of a peptide antagonist to the peripheral-type benzodiazepine receptor (PBR) that inhibits hormone-stimulated Leydig cell steroid formation. J Pharm Exper Ther 2002;303:627–632.

    CAS  Google Scholar 

  44. Snyder SH, Verma A, Trifiletti RR. The peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membrane utilizing porphyrins as endogonous ligands. FASEB J 1987;1:282–288.

    PubMed  CAS  Google Scholar 

  45. Gamier M, Boujrad N, Ogwuegbu SL, Hudson JR, Papadopoulos V. The polypeptide diazepam binding inhibitor and a higher affinity peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line. J Biol Chem 1994;269:22,105–22, 112.

    Google Scholar 

  46. Strauss JF, III, Callen CB, Christenson LK, et al. The steroidogenic acute regulatory protein (StAR): A window into the complexities of intracellular cholesterol trafficking. Rec Progr Horm Res 1999;54:369–394.

    PubMed  CAS  Google Scholar 

  47. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 2001;63:193–213.

    PubMed  CAS  Google Scholar 

  48. Lin D, Sugawara T, Strauss JF, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995;267:1828–1831.

    PubMed  CAS  Google Scholar 

  49. Arkane F, King SR, Du Y, et al. Phorphorylation of steroidogenic acute regulatory protein modulates its steroidogenic activity. J Biol Chem 1997;272:32,656–32,662.

    Google Scholar 

  50. Bose HS, Lingappa VR, Miller WL. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 2002;417:87–91.

    PubMed  CAS  Google Scholar 

  51. Arakane, F, Sugawara T, Nishino H, et al. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: Implications for the mechanism of StAR action. Proc Natl Acad Sci 1996;93:13,731–13,736.

    CAS  Google Scholar 

  52. King SR, Walsh LP, Stocco DM. Nigericin inhibits accumulation of the steroidogenic acute regulatory protein but not steroidogenesis. Mol Cell Endocr 2000;166:147–153.

    CAS  Google Scholar 

  53. West LA, Horvat RD, Roess DA, Barisas GB, Juengel JL, Niswender GD. Steroidogenic acute regulatory protein and peripheral-type benzodiazepine receptor associate at the mitochondrial membrane. Endocrinology 2001;142:502–505.

    PubMed  CAS  Google Scholar 

  54. Hauet T, Yao ZX, Bose HS, et al. Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into Leydig cell mitochondria. Mol Endocrinol 2005;19:540–554.

    PubMed  CAS  Google Scholar 

  55. Mathieu AP, Fleury A, Ducharme L, Lavigne P, LeHoux JG. Insights into steroidogenic acute regulatory protein (StAR)dependent cholesterol transfer in mitochondria: evidence from molecular modeling and structure-based thermodynamics supporting the existence of partially unfolded states of StAR. J Mol Endocrinol 2002;29:327–345.

    PubMed  CAS  Google Scholar 

  56. Li H, Degenhardt B, Tobin D, Yao Z, Tasken K, Papadopoulos V. Novel element in hormonal regulation of steroidogenesis. PAP7: a peripheral-type benzodiazepine receptorand protein kinase A (RIα)-associated protein. Mol Endocrinol 2001;15:2211–2228.

    PubMed  CAS  Google Scholar 

  57. Liu J, Li H, Papadopoulos V. PAP7, a PBR/PKA-RIalphaassociated protein: a new element in the relay of the hormonal induction of steroidogenesis. J Steroid Biochem Mol Biol 2003;85:275–283.

    PubMed  CAS  Google Scholar 

  58. Deslypere JP, Vermeulen A. Leydig cell function in normal men: effect of age, life-style, residence, diet, and activity. J Clin Endocrinol Metabl984;59:955–962.

    Google Scholar 

  59. Dabbs JM, Jr. Age and seasonal variation in serum testosterone concentration among men. Chronobiol Int 1990;7: 245–249.

    PubMed  CAS  Google Scholar 

  60. Gray A, Feldman HA, McKinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab 1991;73:1016–1025.

    PubMed  CAS  Google Scholar 

  61. Simon D, Preziosi P, Barrett-Connor E, et al. The influence of aging on plasma sex hormones in men: the Telecom Study. Am J Epidemiol 1992;135:783–791.

    PubMed  CAS  Google Scholar 

  62. Belanger A, Candas B, Dupont A, et al. Changes in serum concentrations of conjugated and unconjugated steroids in 40to 80-year-old men. J Clin Endocrinol Metab 1994;79: 1086–1090.

    PubMed  CAS  Google Scholar 

  63. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001;86:724–731.

    PubMed  CAS  Google Scholar 

  64. Vermeulen A, Rubens R, Verdonck L. Testosterone secretion and metabolism in male senescence. J Clin Endocrinol Metab 1972;34:730–735.

    PubMed  CAS  Google Scholar 

  65. Baker HW, Burger HG, de Kretser DM, et al. Changes in the pituitary-testicular system with age. Clin Endocrinol 1976;5: 349–372.

    CAS  Google Scholar 

  66. Rubens R, Dhont M, Vermeulen M. Further studies on Leydig cell function in old age. J Clin Endocrinol Metab 1974;39: 40–45.

    PubMed  CAS  Google Scholar 

  67. Stearns EL, MacDonnell JA, Kaufman BJ, et al. Declining testicular function with age. Hormonal and clinical correlates. Am J Med 1974;57:761–766.

    PubMed  CAS  Google Scholar 

  68. Harman SM, Tsitouras PD. Reproductive hormones in aging men. I. Measurement of sex steroids, basal luteinizing hormone, and Leydig cell response to human chorionic gonadotropin. J Clin Endocrinol Metab 1980;51:35–40.

    PubMed  CAS  Google Scholar 

  69. Winters SJ, Troen P. Episodic luteinizing hormone (LH) secretion and the response of LH and follicle-stimulating hormone to LH-releasing hormone in aged men: evidence for coexistent primary testicular insufficiency and an impairment in gonadotropin secretion. J Clin Endocrinol Metab 1982;55:560–565.

    PubMed  CAS  Google Scholar 

  70. Neaves WB, Johnson L, Porter JC, Parker CR, Jr., Petty CS. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab 1984;59:756–763.

    PubMed  CAS  Google Scholar 

  71. Nankin HR. Fertility in aging men. Maturitas 1985;7: 259–265.

    PubMed  CAS  Google Scholar 

  72. Tenover JS, Matsumoto AM, Plymate SR, Bremner WJ. The effects of aging in normal men on bioavailable testosterone and luteinizing hormone secretion: response to clomiphene citrate. J Clin Endocrinol Metab 1987;65:1118–1126.

    PubMed  CAS  Google Scholar 

  73. Kaufman JM, Giri M, Deslypere M, Thomas G, Vermeulen A. Influence of age on the responsiveness of the gonadotrophs to luteinizing hormone-releasing hormone in males. J Clin Endocrinol Metab 1991;72:1255–1260.

    PubMed  CAS  Google Scholar 

  74. Hami M, Tanaka S, Nishi Y, et al. Sertoli cell function declines earlier than Leydig cell function in aging Japanese men. Maturitas 1994;18:143–153.

    Google Scholar 

  75. Longcope C. The effect of human chorionic gonadotropin on plasma steroid levels in young and old men. Steroids 1973; 21:583–592.

    PubMed  CAS  Google Scholar 

  76. Rubens R, Dhondt M, Vermeulen A. Further studies on Leydig cell response to human choriogonadotropin. J Clin Endocrinol Metab 1976;39:40–45.

    Google Scholar 

  77. Nankin HR, Lin T, Murono EP. The aging Leydig cell. III. Gonadotropin stimulation in men. J Androl 1981;2:181–186.

    CAS  Google Scholar 

  78. Nieschlag E, Lammers U, Freischem CW, Langer K, Wickings EJ. Reproductive functions in young fathers and grandfathers. J Clin Endocrinol Metab 1982;55:676–681.

    PubMed  CAS  Google Scholar 

  79. Liu PY, Takahashi PY, Roebuck RD, Iranmanesh A, Veldhuis JD. Aging in healthy men impairs recombinant human luteinizing hormone (LH)-stimulated testosterone secretion monitored under a two-day intravenous pulsatile LH clamp. J Clin Endocrinol Metab 2005;90:5544–5550.

    PubMed  CAS  Google Scholar 

  80. Veldhuis JD, Veldhuis NJ, Keenan DM, Iranmanesh A. Age diminishes the testicular steroidogenic response to repeated intravenous pulses of recombinant human LH during acute GnRH-receptor blockade in healthy men. Am. J Physiol Endocrinol Metab 2005;288:E775–E781.

    PubMed  CAS  Google Scholar 

  81. Liu PY, Takahashi PY, Roebuck PD, Iranmanesh PD, Veldhuis JD. Age-specific changes in the regulation of LH-dependent testosterone secretion: assessing responsiveness to varying endogenous gonadotropin output in normal men. Am J Physiol Regul Integr Comp Physiol 2005;289:R721–R728.

    PubMed  CAS  Google Scholar 

  82. Veldhuis JD, Keenan DM, Iranmanesh A. Mechanisms of ensemble failure of the male gonadal axis in aging. J Endocrinol Invest 2005;28:8–13.

    PubMed  CAS  Google Scholar 

  83. Liu PY, Pincus SM, Takahashi PY, et al. Aging attenuates both the regularity and joint synchrony of LH and testosterone secretion in normal men: analyses via a model of graded GnRH receptor blockade. Am J Physiol Endocrinol Metab 2006; 290:E34–E41.

    PubMed  CAS  Google Scholar 

  84. Harbitz TB. Morphometric studies of the seminiferous tubules in elderly men with special reference to the histology of the prostate. An analysis in an autopsy series. Acta Pathol Microbiol Scand 2006;81:843–856.

    Google Scholar 

  85. Kaler LW, Neaves WB. Attrition of the human Leydig cell population with advancing age. Anat Rec 1978;192:513–518.

    PubMed  CAS  Google Scholar 

  86. Paniagua R, Amat P, Nistal M, Martin A. Ultrastructure of Leydig cells in human ageing testes. J Anat 1986; 146: 173–183.

    PubMed  CAS  Google Scholar 

  87. Paniagua R, Nistal M, Saez FJ, Fraile B. Ultrastructure of the aging human testis. J Electron Microsc Tech 1991;19:241–260.

    PubMed  CAS  Google Scholar 

  88. Axelrod LR. Metabolic patterns of steroid biosynthesis in young and aged human testes. Biochim Biophys Acta 1965;97:551–556.

    PubMed  CAS  Google Scholar 

  89. Giusti G, Gonnelli P, Borrelli D, et al. Age-related secretion of androstenedione, testosterone and dihydrotestosterone by the human testis. Exp Gerontol 1975;10:241–245.

    PubMed  CAS  Google Scholar 

  90. Pirke KM, Sintermann R, Vogt HJ. Testosterone and testosterone precursors in the spermatic vein and in the testicular tissue of old men. Reduced oxygen supply may explain the relative increase of testicular progesterone and 17 alphahydroxyprogesterone content and production in old age. Gerontology 1980;26:221–230.

    PubMed  CAS  Google Scholar 

  91. Purifoy FE, Koopmans LH, Mayes DM. Age differences in serum androgen levels in normal adult males. Hum Biol 1981;53:499–511.

    PubMed  CAS  Google Scholar 

  92. Yoshida K, LaNasa JA, Jr., Takahashi J, Winters SJ, Oshima H, Troen P. Studies of the human testis. XVI. Evaluation of multiple indexes of testicular function in relation to advanced age, idiopathic oligospermia, or varicocele. Fertil Steril 1982;38:712–720.

    PubMed  CAS  Google Scholar 

  93. Hammar M, Berg AA. Impaired Leydig cell function in vitro in testicular tissue from human males with “Sertoli cell only” syndrome. Andrologia 1985;17:37–41.

    PubMed  CAS  Google Scholar 

  94. Takahashi J, Higashi Y, LaNasa JA, et al. Studies of the human testis. XVIII. Simultaneous measurement of nine intratesticular steroids: evidence for reduced mitochondrial function in testis of elderly men. J Clin Endocrinol Metab 1983; 56:1178–1187.

    PubMed  CAS  Google Scholar 

  95. Parkening TA, Collins TJ, Au WW. Paternal age and its effects on reproduction in C57BL/6NNia mice. J Gerontol 1988;43: B79–B84.

    PubMed  CAS  Google Scholar 

  96. Flood JF, Morley PM, Morley JE. Age-related changes in learning, memory, and lipofuscin as a function of the percentage of SAMP8 genes. Physiol Behav 1995;58:819–822.

    PubMed  CAS  Google Scholar 

  97. Perrot-Sinal TS, Kavaliers M, Ossenkopp KP. Spatial learning and hippocampal volume in male deer mice: relations to age, testosterone and adrenal gland weight. Neuroscience 1998;86:1089–1099.

    PubMed  CAS  Google Scholar 

  98. Ruffoli R, Giambelluca MA, Giannessi F, et al. Ultrastructural localization of the NADPH-diaphorase activity in the Leydig cells of aging mice. Anat Embryol 2001;203:383–391.

    PubMed  CAS  Google Scholar 

  99. Jara M, Carballada R, Esponda P. Age-induced apoptosis in the male genital tract of the mouse. Reproduction 127:359–366.

    Google Scholar 

  100. Chen H, Luo L, Zirkin BR. Leydig cell structure and function during aging. In: The Leydig Cell. Payne A, Hardy MP, Russell LD, eds. Cache River Press, 1996; pp. 221–230.

    Google Scholar 

  101. Zirkin BR, Chen H. Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 2000;63:977–981.

    PubMed  CAS  Google Scholar 

  102. Rosenstrauch A, Weil S, Degen AA, Friedlander M. Leydig cell functional structure and plasma androgen level during the decline in fertility in aging roosters. Gen Comp Endocrinol 1998;109:251–258.

    PubMed  CAS  Google Scholar 

  103. Pirke KM, Geiss M, Sintermann R. A quantitative study on feedback control of LH by testosterone in young adult and old male rats. Acta Endocrinol 1978;89:789–795.

    PubMed  CAS  Google Scholar 

  104. Riegle GD, Meites J, Miller AE, Wood SM. Effect of aging on hypothalamic LH-releasing and prolactin inhibiting activities and pituitary responsiveness to LHRH in the male laboratory rat. J Gerontol 1977;32:13–18.

    PubMed  CAS  Google Scholar 

  105. Harman SM, Danner RL, Roth GS. Testosterone secretion in the rat in response to chorionic gonadotrophin: alterations with age. Endocrinology 1978; 102:540–544.

    PubMed  CAS  Google Scholar 

  106. Miller AE, Riegle GD. Serum testosterone and testicular response to HCG in young and aged male rats. J Gerontol 1978;33:197–203.

    PubMed  CAS  Google Scholar 

  107. Pirke KM, Bofilias I, Sintermann R, Langhammer H, Wolf I, Pabst HW. Relative capillary blood flow and Leydig cell function in old rats. Endocrinology 1979;105:842–845.

    PubMed  CAS  Google Scholar 

  108. Chen H, Hardy MP, Huhtaniemi I, Zirkin BR. Age-related decreased Leydig cell testosterone production in the Brown Norway rat. J Androl 1994;15:551–557.

    PubMed  CAS  Google Scholar 

  109. Chen H, Huhtaniemi I, Zirkin BR. Depletion and repopulation of Leydig cells in the testes of aging Brown Norway rats. Endocrinology 1996;137:3447–3452.

    PubMed  CAS  Google Scholar 

  110. Pirke KM, Vogt HJ, Geiss M. In vitro and in vivo studies on Leydig cell function in old rats. Acta Endocrinol 1978; 89:393–403.

    PubMed  CAS  Google Scholar 

  111. Kaler LW, Neaves WB. The androgen status of aging male rats. Endocrinology 1981;108:712–719.

    PubMed  CAS  Google Scholar 

  112. Ichihara I, Kawamura H, Pelliniemi LJ. Ultrastructure and morphometry of testicular Leydig cells and the interstitial components correlated with testosterone in aging rats. Cell Tissue Res 1993;271:241–255.

    PubMed  CAS  Google Scholar 

  113. Lin T, Murono E, Osterman J, Allen DO, Nankin HR. The aging Leydig cell: 1. Testosterone and adenosine 3′,5′monophosphate responses to gonadotropin stimulation in rats. Steroids 1980;35:653–663.

    PubMed  CAS  Google Scholar 

  114. Geisthovel F, Brabant G, Wickings EJ, Nieschlag E. Changes in testicular hCG binding and Leydig cell function in rats throughout life. Horm Res 1981;14:47–55.

    PubMed  CAS  Google Scholar 

  115. Tsitouras PD. Effects of age on testicular function. Endocrinol Metab Clin North Am 1987;16:1045–1059.

    PubMed  CAS  Google Scholar 

  116. Liao C, Reaven E, Azhar S. Age-related decline in the steroidogenic capacity of isolated rat Leydig cells: a defect in cholesterol mobilization and processing. J Steroid Biochem Mol Biol 1993;6:39–47.

    Google Scholar 

  117. Chen H, Hardy MP, Zirkin BR. Age-related decreases in Leydig cell testosterone production cannot be restored by exposure to LH in vitro. Endocrinology 2002; 143:1637–1642.

    PubMed  CAS  Google Scholar 

  118. Lin T, Vinson NE, Murono EP, Osterman J, Nankin HR. The aging Leydig cell. VIII. Protein kinase activity. J Androl 1983;4:324–330.

    PubMed  CAS  Google Scholar 

  119. Culty M, Luo L, Yao ZX, Chen H, Papadopoulos V, Zirkin BR. Cholesterol transport, peripheral benzodiazepine receptor, and steroidogenesis in aging Leydig cells. J Androl 2002;23:439–447.

    PubMed  CAS  Google Scholar 

  120. Luo L, Chen H, Zirkin BR. Leydig cell aging: Steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme. J Androl 2001;22:149–156.

    PubMed  Google Scholar 

  121. Leers-Sucheta S, Stocco DM, Azhar S. Down-regulation of steroidogenic acute regulatory (StAR) protein in rat Leydig cells: implications for regulation of testosterone production during aging. Mech Ageing Dev 1999;107:197–203.

    PubMed  CAS  Google Scholar 

  122. Luo L, Chen H, Zirkin BR. Are Leydig cell steroidogenic enzymes differentially regulated with aging? J. Androl 1996; 17:509–515.

    PubMed  CAS  Google Scholar 

  123. Chen H, Irizarry RA, Luo L, Zirkin BR. Leydig cell gene expression: effects of age and caloric restriction. Exp Gerontol 2004;39:31–43.

    PubMed  CAS  Google Scholar 

  124. Ivell R, Bathgate RA. Reproductive biology of the relaxinlike factor (RLF/INSL3). Biol Reprod 2002;67:699–705.

    PubMed  CAS  Google Scholar 

  125. Paust HJ, Wessels J, Ivell R, Mukhopadhyay AK. The expression of the RLF/INSL3 gene is reduced in Leydig cells of the aging rat testis. Exp Gerontol 2002;37:1461–1467.

    PubMed  CAS  Google Scholar 

  126. Bonavera JJ, Swerdloff RS, Leung A, et al. In the BrownNorway male rat, reproductive aging is associated with decreased LH pulse amplitude and area. J Androl 1997;18: 359–365.

    PubMed  CAS  Google Scholar 

  127. Bonavera JJ, Swerdloff RS, Sinha Hikim AP, Yan HL, Wang C. Aging results in attenuated gonadotropin releasing hormone — luteinizing hormone axis responsiveness to glutamate receptor agonist N-methyl-D-aspartate. J Neuroendocrinol 1998; 10: 93–99.

    PubMed  CAS  Google Scholar 

  128. Grzywacz FW, Chen H, Allegretti J, Zirkin BR. Does ageassociated reduced Leydig cell testosterone production in Brown Norway rats result from under-stimulation by luteinizing hormone? J Androl 1998;19:625–630.

    PubMed  CAS  Google Scholar 

  129. Wang C, Sinha Hikim AP, Lue YH, Leung A, Baravarian S, Swerdloff RS. Reproductive aging in the Brown Norway rat is characterized by accelerated germ cell apoptosis and is not altered by luteinizing hormone replacement. J Androl 1999;20:509–518.

    PubMed  CAS  Google Scholar 

  130. Chen H, Liu J, Luo L, Zirkin BR. Dibutyryl cyclic adenosine monophosphate restores the ability of aged Leydig cells to produce testosterone at the high levels characteristic of young cells. Endocrinology 2004;145:4441–4446.

    PubMed  CAS  Google Scholar 

  131. Martin GM. Genetics and the pathobiology of ageing. Philos Trans R Soc London B Biol Sci 1997;352:1773–1780.

    PubMed  CAS  Google Scholar 

  132. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78:547–581.

    PubMed  CAS  Google Scholar 

  133. Ohyama Y, Kurabayashi M, Masuda H, et al. Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun 1998;251:920–925.

    PubMed  CAS  Google Scholar 

  134. Franceschi C, Valensin S, Bonafe M, et al. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 2000;35:879–896.

    PubMed  CAS  Google Scholar 

  135. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–247.

    PubMed  CAS  Google Scholar 

  136. Klapper W, Parwaresch R, Krupp G. Telomere biology in human aging and aging syndromes. Mech Ageing Dev 2001;122:695–712.

    PubMed  CAS  Google Scholar 

  137. Hall PF. Testicular steroid synthesis: Organization and regulation. In: The Physiology of Reproduction. Knobil E, Neill JD, eds. Raven Press, NY, 1994; pp. 1335–1362.

    Google Scholar 

  138. Peltola V, Huhtaniemi I, Metsa-Ketela T, Ahotupa M. Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology 1996;137:105–112.

    PubMed  CAS  Google Scholar 

  139. Georgiou M, Perkins LM, Payne AH. Steroid synthesisdependent, oxygen-mediated damage of mitochondrial and microsomal cytochrome P-450 enzymes in rat Leydig cell cultures. Endocrinology 1987; 121:1390–1399.

    PubMed  CAS  Google Scholar 

  140. Stocco DM, Wells J, Clark BJ. The effects of hydrogen peroxide on steroidogenesis in mouse Leydig tumor cells. Endocrinology 1993;133:2827–2832.

    PubMed  CAS  Google Scholar 

  141. Diemer T, Allen JA, Hales KH, Hales DB. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 2003;144:2882–2891.

    PubMed  CAS  Google Scholar 

  142. Tsai SC, Lu CC, Lin CS, Wang PS. Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells. J Cell Biochem 2003;90:1276–1286.

    PubMed  CAS  Google Scholar 

  143. Asgar M, Banday AA, Fardoun RZ, Lokhandwala MF. Hydrogen peroxide causes uncoupling of dopamine D1-like receptors from G proteins via a mechanism involving protein kinase C and G-protein-coupled receptor kinase 2. Free Rad Biol Med 2006;40:13–20.

    Google Scholar 

  144. Chen H, Cangello D, Benson S, et al. Age-related increase in mitochondrial Superoxide generation in the testosteroneproducing cells of Brown Norway rat testes: relationship to reduced steroidogenic function? Exp Gerontol 2001;36: 1361–1373.

    PubMed  CAS  Google Scholar 

  145. Chen H, Zirkin BR. Long-term suppression of Leydig cell steroidogenesis prevents Leydig cell aging. Proc Nat Acad Sci 1999;96:14,877–14,881.

    CAS  Google Scholar 

  146. Azhar S, Cao L, Reaven E. Alteration of the adrenal antioxidant defense system during aging in rats. J Clin Invest 1995;96:1414–1424.

    PubMed  CAS  Google Scholar 

  147. Cao L, Leers-Sucheta S, Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol 2004;88:61–67.

    PubMed  CAS  Google Scholar 

  148. Luo L, Chen H, Trush MA, Show MD, Anway MD, Zirkin BR. Aging and the Brown Norway rat Leydig cell antioxidant defense system. J Androl Nov 22 [Epub ahead of print] 2005.

    Google Scholar 

  149. Kolena J, Blazicek P, Horkovics-Kovats S, Ondrias K, Sebokova E. Modulation of rat testicular LH/hCG receptors by membrane lipid fluidity. Mol Cell Endocrinol 1986;44:69–76.

    PubMed  CAS  Google Scholar 

  150. Wu X, Yao K, Carlson JC. Plasma membrane changes in the rat corpus luteum induced by oxygen radical generation. Endocrinology 1993;133:491–495.

    PubMed  CAS  Google Scholar 

  151. Abidi P, Leers-Sucheta S, Azhar S. Suppression of steroidogenesis and activator protein-1 transcription factor activity in rat adrenals by vitamin E deficiency-induced chronic oxidative stress. J Nutr Biochem 2004;15:210–219.

    PubMed  CAS  Google Scholar 

  152. Chen H, Liu J, Luo L, Baig MU, Kim JM, Zirkin BR. Vitamin E, aging and Leydig cell steroidogenesis. Exp Gerontol 2005;40:728–736.

    PubMed  CAS  Google Scholar 

  153. Cooke BA, Dirami G, Chaudry L, Choi MS, Abayasekara DR, Phipp L. Release of arachidonic acid and the effects of corticosteroids on steroidogenesis in rat testis Leydig cells. J Steroid Biochem Mol Biol 1991;40:465–471.

    PubMed  CAS  Google Scholar 

  154. Finkielstein C, Maloberti P, Mendez CF, et al. An adrenocorticotropin-regulated phosphoprotein intermediary in steroid synthesis is similar to an acyl-CoA thioesterase enzyme. Eur J Biochem 1998;256:60–66.

    PubMed  CAS  Google Scholar 

  155. Ronco AM, Moraga PF, Llanos MN. Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production. J Endocrinol 2002;172:95–104.

    PubMed  CAS  Google Scholar 

  156. Wang XJ, Dyson MT, Mondillo C, Patrignani Z, Pignataro O, Stocco DM. Interaction between arachidonic acid and cAMP signaling pathways enhances steroidogenesis and StAR gene expression in MA-10 Leydig tumor cells. Mol Cell Endocrinol 2002;188:55–63.

    PubMed  CAS  Google Scholar 

  157. Castilla R, Maloberti P, Castillo F, et al. Arachidonic acid regulation of steroid synthesis: new partners in the signaling pathway of steroidogenic hormones. Endocr Res 2004;30: 599–606.

    PubMed  CAS  Google Scholar 

  158. Cornejo MF, Maloberti P, Neuman I, et al. An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. J Mol Endocrinol 2005;34:655–666.

    Google Scholar 

  159. Syntin P, Chen H, Zirkin BR, Robaire B. Gene expression in Brown Norway rat Leydig cells: effects of age and of agerelated germ cell loss. Endocrinology 2001;42:5277–5285.

    Google Scholar 

  160. Wang X, Shen CL, Dyson MT, et al. Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology 2005; 146:4202–4208.

    PubMed  CAS  Google Scholar 

  161. IveU R, Balvers M, Anand RJ, Paust HJ, McKinnell C, Sharpe R. Differentiation-dependent expression of 17beta-hydroxysteroid dehydrogenase, type 10, in the rodent testis: effect of aging in Leydig cells. Endocrinology 2003;144:3130–3137.

    Google Scholar 

  162. Banerjee PP, Banerjee S, Brown TR. Increased androgen receptor expression correlates with development of agedependent, lobe-specific spontaneous hyperplasia of the brown Norway rat prostate. Endocrinology 2001;142:4066–4075.

    PubMed  CAS  Google Scholar 

  163. Majdic G, Sharpe RM, O’Shaughnessy PJ, Saunders PT. Expression of cytochrome P450 17-hydroxylase/C17-20 lyase in the fetal rat testis is reduced by maternal exposure to exogenous estrogens. Endocrinology 1996;137:1063–1070.

    PubMed  CAS  Google Scholar 

  164. Qian YM, Sun XJ, Tong MH, Li XP, Richa J, Song WC. Targeted disruption of the mouse estrogen sulfotransferase gene reveals a role of estrogen metabolism in intracrine and paracrine estrogen regulation. Endocrinology 2001;142:5342–5350.

    PubMed  CAS  Google Scholar 

  165. Tong MH, Christenson LK, Song WC. Aberrant cholesterol transport and impaired steroidogenesis in Leydig cells lacking estrogen sulfotransferase. Endocrinology 2004; 145: 2487–2497.

    PubMed  CAS  Google Scholar 

  166. Chandrashekar V, Zaczek D, Bartke A. The consequences of altered somatotropic system on reproduction. Biol Reprod 2004;71:17–27.

    PubMed  CAS  Google Scholar 

  167. Veldhuis JD, Iranmanesh A, Mulligan T, Bowers CY. Mechanisms of conjoint failure of the somatotropic and gonadal axes in ageing men. Novartis Found Symp 2002;242:98–118.

    PubMed  CAS  Google Scholar 

  168. Carani C, Granata AR, De Rosa M, et al. The effect of chronic treatment with GH on gonadal function in men with isolated GH deficiency. Eur J Endocrinol 1999;140:224–230.

    PubMed  CAS  Google Scholar 

  169. Bebakar WM, Honour JW, Foster D, Liu YL, Jacobs HS. Regulation of testicular function by insulin and transforming growth factor-β. Steroids 1990;55:266–269.

    PubMed  CAS  Google Scholar 

  170. Pitteloud N, Hardin M, Dwyer AA, et al. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab 2005;90:2636–2641.

    PubMed  CAS  Google Scholar 

  171. Murray FT, Cameron DF, Orth JM, Katovich MJ. Gonadal dysfunction in the spontaneously diabetic BB rat: alterations of testes morphology, serum testosterone and LH. Horm Metab Res 1985;17:495–501.

    PubMed  CAS  Google Scholar 

  172. Benitez A, Perez Diaz J. Effect of streptozotocin-diabetes and insulin treatment on regulation of Leydig cell function in the rat. Horm Metab Res 1985; 17:5–7.

    PubMed  CAS  Google Scholar 

  173. Pitteloud N, Mootha VK, Dwyer AA, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 2005;28:1636–1642.

    PubMed  CAS  Google Scholar 

  174. Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 2002;57:3–18.

    PubMed  CAS  Google Scholar 

  175. Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp Gerontol 2004;39:687–699.

    PubMed  CAS  Google Scholar 

  176. Giannessi F, Giambelluca MA, Scavuzzo MC, Ruffoli R. Ultrastructure of testicular macrophages in aging mice. J Morphol 2005;263:39–46.

    PubMed  Google Scholar 

  177. Nagata M. Inflammatory cells and oxygen radicals. Curr Drug Targets Inflamm Allergy 2005;4:503–504.

    PubMed  CAS  Google Scholar 

  178. Allen JA, Diemer T, Janus P, Hales KH, Hales DB. Bacterial endotoxin lipopolysaccharide and reactive oxygen species inhibit Leydig cell steroidogenesis via perturbation of mitochondria. Endocrine 2004;25:265–275.

    PubMed  CAS  Google Scholar 

  179. Weissman BA, Niu E, Ge R, et al. Paracrine modulation of androgen synthesis in rat Leydig cells by nitric oxide. J Androl 2005;26:369–378.

    PubMed  CAS  Google Scholar 

  180. Ruffoli R, Giambelluca MA, Giannessi F, et al. Ultrastructural localization of the NADPH-diaphorase activity in the Leydig cells of aging mice. Anat Embryol 2001;203:383–391.

    PubMed  CAS  Google Scholar 

  181. Hikim AP, Vera Y, Vernet D, et al. Involvement of nitric oxidemediated intrinsic pathway signaling in age-related increase in germ cell apoptosis in male Brown-Norway rats. J Gerontol A Biol Sci Med Sci 2005;60:702–708.

    PubMed  Google Scholar 

  182. Mendis-Handagama CM, Gelber SJ. Signs of aging are apparent in the testis interstitium of Sprague Dawley rats at 6 months of age. Tissue Cell 1995;27:689–699.

    PubMed  CAS  Google Scholar 

  183. Alexander CM, Werb Z. Proteinases and extracellular matrix remodeling. Curr Opin Cell Biol 1989;1:974–982.

    PubMed  CAS  Google Scholar 

  184. Anbalagan M, Rao AJ. Collagen IV-mediated signaling is involved in progenitor Leydig cell proliferation. Reprod Biomed Online 2004;9:391–403.

    PubMed  CAS  Google Scholar 

  185. Diaz ES, Pellizzari E, Meroni S, Cigorraga S, Lustig L, Denduchis B. Effect of extracellular matrix proteins on in vitro testosterone production by rat Leydig cells. Mol Reprod Dev 2002;61:493–503.

    PubMed  CAS  Google Scholar 

  186. Vernon RB, Lane TF, Angello JC, Sage H. Adhesion, shape, proliferation, and gene expression of mouse Leydig cells are influenced by extracellular matrix in vitro. Biol Reprod 1991;44:157–170.

    PubMed  CAS  Google Scholar 

  187. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191–1212.

    PubMed  CAS  Google Scholar 

  188. Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I. Estradiol in elderly men. Aging Male 2002;598–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chen, H., Midzak, A., Luo, Ld., Zirkin, B.R. (2007). Aging and the Decline of Androgen Production. In: Payne, A.H., Hardy, M.P. (eds) The Leydig Cell in Health and Disease. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-453-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-453-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-754-9

  • Online ISBN: 978-1-59745-453-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics