Skip to main content

Clinical Evaluation of Leydig Cell Function

  • Chapter
Book cover The Leydig Cell in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Disorders of Leydig Cell function can be primary or secondary to abnormal secretion of LH and FSH. These disorders can be congenital or acquired. The clinical manifestations depend on: (1) location of the defect; (2) age at onset of the disorder; and (3) the nature of associated nonreproductive problems. Because of the critical role of intratesticular testosterone in germ cell maturation, Leydig cell dysfunction often leads to infertility. Testosterone replacement therapy is required for androgen deficient males with primary Leydig cell under-function. Males with hypogonadotropic hypogonadism may be treated with testosterone to normalize serum testosterone levels, but reversal of infertility requires gonadotropin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang C, Catlin DH, Starcevic B, et al. Testosterone metabolic clearance and production rates determined by stable isotope dilution/tandem mass spectrometry in normal men: influence of ethnicity and age. J Clin Endocrinol Metab 2004;89(6):2936–2941.

    Article  PubMed  CAS  Google Scholar 

  2. Weihua Z, Makela S, Andersson LC, et al. A role for estrogen receptor-β in the regulation of growth of the ventral prostate. Proc Natl Acad Sci USA 2001;98(11):6330–6335.

    Article  PubMed  CAS  Google Scholar 

  3. Swerdloff RS, Odell WD. Hormonal mechanisms in the onset of puberty. Postgrad Med J 1975;51(594):200–208.

    Article  PubMed  CAS  Google Scholar 

  4. Dunkel L, Alfthan H, Stenman UH, Selstam G, Rosberg S, bertsson-Wikland K. Developmental changes in 24-hour profiles of luteinizing hormone and follicle-stimulating hormone from prepuberty to midstages of puberty in boys. J Clin Endocrinol Metab 1992;74(4):890–897.

    Article  PubMed  CAS  Google Scholar 

  5. Boyar R, Finkelstein J, Roffwarg H, Kapen S, Weitzman E, Hellman L. Synchronization of augmented luteinizing hormone secretion with sleep during puberty. N Engl J Med 1972;287(12):582–586.

    Article  PubMed  CAS  Google Scholar 

  6. Wu FC, Butler GE, Kelnar CJ, Sellar RE. Patterns of pulsatile luteinizing hormone secretion before and during the onset of puberty in boys: a study using an immunoradiometric assay. J Clin Endocrinol Metab 1990;70(3):629–637.

    PubMed  CAS  Google Scholar 

  7. Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349(17): 1614–1627.

    Article  PubMed  CAS  Google Scholar 

  8. Baldelli R, Dieguez C, Casanueva FF. The role of leptin in reproduction: experimental and clinical aspects. Ann Med 2002;34(1):5–18.

    Article  PubMed  CAS  Google Scholar 

  9. Baker HW, Burger HG, deKretser DM, et al. Changes in the pituitary-testicular system with age. Clin Endocrinol (Oxf) 1976;5(4):349–372.

    CAS  Google Scholar 

  10. Vermeulen A. Clinical review 24: Androgens in the aging male. J Clin Endocrinol Metab 1991;73(2):221–224.

    PubMed  CAS  Google Scholar 

  11. Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 2002;87(2): 589–598.

    Article  PubMed  CAS  Google Scholar 

  12. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001;86(2):724–731.

    Article  PubMed  CAS  Google Scholar 

  13. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab 1983;56(6):1278–1281.

    Article  PubMed  CAS  Google Scholar 

  14. Taieb J, Mathian B, Millot F, et al. Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatographymass spectrometry in sera from 116 men, women, and children. Clin Chem 2003;49(8):1381–1395.

    Article  PubMed  CAS  Google Scholar 

  15. Wang C, Catlin DH, Demers LM, Starcevic B, Swerdloff RS. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 2004;89(2):534–543.

    Article  PubMed  CAS  Google Scholar 

  16. Sikaris K, McLachlan RI, Kazlauskas R, de KD, Holden CA, Handelsman DJ. Reproductive hormone reference intervals for healthy fertile young men: evaluation of automated platform assays. J Clin Endocrinol Metab 2005;90(11):5928–5936.

    Article  PubMed  CAS  Google Scholar 

  17. Elhaji YA, Wu JH, Gottlieb B, et al. An examination of how different mutations at arginine 855 of the androgen receptor result in different androgen insensitivity phenotypes. Mol Endocrinol 2004;18(8):1876–1886.

    Article  PubMed  CAS  Google Scholar 

  18. Brown TR, Lubahn DB, Wilson EM, Joseph DR, French FS, Migeon CJ. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: evidence for further genetic heterogeneity in this syndrome. Proc Natl Acad Sci USA 1988;85(21):8151–8155.

    Article  PubMed  CAS  Google Scholar 

  19. Marcelli M, Tilley WD, Zoppi S, Griffin JE, Wilson JD, McPhaul MJ. Androgen resistance associated with a mutation of the androgen receptor at amino acid 772 (Arg-Cys) results from a combination of decreased messenger ribonucleic acid levels and impairment of receptor function. J Clin Endocrinol Metab 1991;73(2):318–325.

    PubMed  CAS  Google Scholar 

  20. World Health Organization. Laboratory Manual for the Examination of Human Semen and Sperm Cervical Mucus Interaction. Fourth Editioned. Cmbridge University Press, 1999.

    Google Scholar 

  21. Guzick DS, Overstreet JW, Factor-Litvak P, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 2001;345(19):1388–1393.

    Article  PubMed  CAS  Google Scholar 

  22. Swan SH, Kruse RL, Liu F, et al. Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect 2003;111(12): 1478–1484.

    Article  PubMed  CAS  Google Scholar 

  23. Wang C, Swerdloff RS. Evaluation of testicular function. Baillieres Clin Endocrinol Metab 1992;6(2):405–434.

    Article  PubMed  CAS  Google Scholar 

  24. Williams Textbook of Endocrinology. 10th ed. Philadelphia: Saunders, 2003.

    Google Scholar 

  25. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet 2004;364(9430):273–283.

    Article  PubMed  CAS  Google Scholar 

  26. Itti E, Gaw GI, Boone KB, et al. Functional neuroimaging provides evidence of anomalous cerebral laterality in adults with Klinefelter’s syndrome. Ann Neurol 2003;54(5): 669–673.

    Article  PubMed  Google Scholar 

  27. Patwardhan AJ, Eliez S, Bender B, Linden MG, Reiss AL. Brain morphology in Klinefelter syndrome: extra X chromosome and testosterone supplementation. Neurology 2000; 54(12):2218–2223.

    PubMed  CAS  Google Scholar 

  28. Lue Y, Rao PN, Sinha Hikim AP, et al. XXY male mice: an experimental model for Klinefelter syndrome. Endocrinology 2001;142(4):1461–1470.

    Article  PubMed  CAS  Google Scholar 

  29. Lue Y, Jentsch JD, Wang C, et al. XXY mice exhibit gonadal and behavioral phenotypes similar to Klinefelter syndrome. Endocrinology 2005;146(9):4148–4154.

    Article  PubMed  CAS  Google Scholar 

  30. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 2004;89(12): 6208–6217.

    Article  PubMed  CAS  Google Scholar 

  31. Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995;55(9):1937–1940.

    PubMed  CAS  Google Scholar 

  32. Beitel LK, Scanlon T, Gottlieb B, Trifiro MA. Progress in Spinobulbar muscular atrophy research: insights into neuronal dysfunction caused by the polyglutamine-expanded androgen receptor. Neurotox Res 2005;7(3):219–230.

    PubMed  CAS  Google Scholar 

  33. Gonzalo ITG, Swerdloff RS, Nelson AL, et al. Levonorgestrel Implants (Norplant II) for Male Contraception Clinical Trials: Combination with Transdermal and Injectable Testosterone. J Clin Endocrinol Metab 2002;87(8):3562–3572.

    Article  PubMed  CAS  Google Scholar 

  34. Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE. Steroid 5α-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 1974;186(4170): 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  35. Wang C, Wang XH, Nelson AL, et al. Levonorgestrel Implants Enhanced the Suppression of Spermatogenesis by Testosterone Implants: Comparison between Chinese and Non-Chinese Men*. J Clin Endocrinol Metab 2005.

    Google Scholar 

  36. Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol Cell Endocrinol 2002;198(1–2):51–59.

    Article  PubMed  CAS  Google Scholar 

  37. Kallman FJ, Schonfeld WA, Barrera W. The genetic aspects of primary eunuchoidism. Am J Ment Def 1944;48: 203–236.

    Google Scholar 

  38. Karges B, de Roux N. Molecular genetics of isolated hypogonadotropic hypogonadism and Kallmann syndrome. Endocr Dev 2005;8:67–80.

    Article  PubMed  Google Scholar 

  39. Allen NE, Appleby PN, Davey GK, Key TJ. Lifestyle and nutritional determinants of bioavailable androgens and related hormones in British men. Cancer Causes Control 2002; 13(4):353–363.

    Article  PubMed  Google Scholar 

  40. Corrales JJ, Burgo RM, Garca-Berrocal B, et al. Partial androgen deficiency in aging type 2 diabetic men and its relationship to glycemic control. Metabolism 2004;53(5):666–672.

    CAS  Google Scholar 

  41. Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab 2004;89(11):5462–5468.

    Article  PubMed  CAS  Google Scholar 

  42. Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab 1977; 45(6):1211–1219.

    PubMed  CAS  Google Scholar 

  43. Qoubaitary A, Swerdloff RS, Wang C. Advances in male hormone substitution therapy. Expert Opin Pharmacother 2005;6(9):1493–1506.

    Article  PubMed  CAS  Google Scholar 

  44. Wang C, Swerdloff RS. Androgen replacement therapy in hypogonadal men. In: Winters SJ, editor. Male Hypogonadism: Basic, Clinical and Therapeutic Principles. Totowa: The Humana Press, 2003;353–370.

    Google Scholar 

  45. Bhasin S, Woodhouse L, Casaburi R, et al. Testosterone doseresponse relationships in healthy young men. Am J Physiol Endocrinol Metab 2001;281(6):E1172–E1181.

    PubMed  CAS  Google Scholar 

  46. Bhasin S, Woodhouse L, Casaburi R, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab 2005;90(2):678–688.

    Article  PubMed  CAS  Google Scholar 

  47. Liverman CT, Blazer DG. Testosterone and Aging: Clinical Research Directions. Washington, DC: National Academies Press, 2004.

    Google Scholar 

  48. Nieschlag E, Swerdloff R, Behre HM, et al. Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations. Int J Androl 2005;28(3):125–127.

    Article  PubMed  CAS  Google Scholar 

  49. Amory JK, Scriba GK, Amory DW, Bremner WJ. Oral testosterone-triglyceride conjugate in rabbits: single-dose pharmacokinetics and comparison with oral testosterone undecanoate. J Androl 2003;24(5):716–720.

    PubMed  CAS  Google Scholar 

  50. Wang C, Swerdloff RS. Male hormonal contraception. Am J Obstet Gynecol 2004;190(4 Suppl):S60–S68.

    Article  PubMed  CAS  Google Scholar 

  51. Page ST, Amory JK, Bowman FD, et al. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J Clin Endocrinol Metab 2005;90(3): 1502–1510.

    PubMed  CAS  Google Scholar 

  52. Amory JK, Watts NB, Easley KA, et al. Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab 2004;89(2):503–510.

    Article  PubMed  CAS  Google Scholar 

  53. Wang C, Cunningham G, Dobs A, et al. Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab 2004;89(5):2085–2098.

    Article  PubMed  CAS  Google Scholar 

  54. Carani C, Qin K, Simoni M, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997;337(2):91–95.

    Article  PubMed  CAS  Google Scholar 

  55. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995;80(12):3689–3698.

    Article  PubMed  CAS  Google Scholar 

  56. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man [see comments] [published erratum appears in N Engl J Med 1995 Jan 12;332(2):131]. N Engl J Med 1994);331(16):1056–1061.

    Article  Google Scholar 

  57. Di LL, Romanelli F, Lenzi A. Androgenic-anabolic steroids abuse in males. J Endocrinol Invest 2005;28(3 Suppl):81–84.

    Google Scholar 

  58. Bahrke MS, Yesalis CE. Abuse of anabolic androgenic steroids and related substances in sport and exercise. Curr Opin Pharmacol 2004;4(6):614–620.

    Article  PubMed  CAS  Google Scholar 

  59. Nieschlag E, Behre HM, Bouchard P, et al. Testosterone replacement therapy: current trends and future directions. Hum Reprod Update 2004;10(5):409–419.

    Article  PubMed  CAS  Google Scholar 

  60. Nieschlag E, Behre HM. Testosterone: Acion, Deficiency, Substitution. Third ed. Cmbridge: Cambridge University Pressm, 2004.

    Google Scholar 

  61. Wang C, Swedloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. Testosterone Gel Study Group. J Clin Endocrinol Metab 2000;85(8):2839–2853.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Swerdloff, R.S., Wang, C. (2007). Clinical Evaluation of Leydig Cell Function. In: Payne, A.H., Hardy, M.P. (eds) The Leydig Cell in Health and Disease. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-453-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-453-7_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-754-9

  • Online ISBN: 978-1-59745-453-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics