Skip to main content

Transcription Factors as Regulators of Gene Expression During Leydig Cell Differentiation and Function

  • Chapter
The Leydig Cell in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Transcription factors are at the center stage of several cellular processes, in which they play essential roles as receivers, interpreters, and conveyers of numerous extracellular signals. These signals are the cues to which cells must respond and transcription factors are indispensable to translate these signals into a genomic response. Depending on the signal, different transcription factors will be solicited leading to unique combinatorial interactions, or codes, required for the activation of specific sets of genes ultimately, triggering cell proliferation, specification, differentiation, function, or death. As for most cell types found throughout the body, testicular Leydig cells have a unique function; they produce the hormones (insulin-like 3 and testosterone) required for fertility and maleness in men. Several signals, such as hormones and signaling molecules, have been identified as important regulators of Leydig cell differentiation and function. Downstream of these signals are transcription factors. The aim of this chapter is to provide a description of the various families of transcription factors, which have been identified as regulators of Leydig cell gene expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Habert R, Lejeune H, Saez JM. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 2001;179:47–74.

    Article  PubMed  CAS  Google Scholar 

  2. Haider SG. Cell biology of Leydig cells in the testis. Int Rev Cytol 2004;233:181–241.

    PubMed  CAS  Google Scholar 

  3. Latchman DS. Eukaryotic transcription factors. 4 edn. Academic Press, Elsevier, New York, 2004.

    Google Scholar 

  4. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002;4:E131–E136.

    Article  PubMed  CAS  Google Scholar 

  5. Li X, Hales KH, Watanabe G, Lee RJ, Pestell RG, Hales DB. The effect of tumor necrosis factor-alpha and cAMP on induction of AP-1 activity in MA-10 tumor Leydig cells. Endocrine 1997;6:317–324.

    PubMed  CAS  Google Scholar 

  6. Manna PR, Eubank DW, Stocco DM. Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol 2004;18:558–573.

    Article  PubMed  CAS  Google Scholar 

  7. De CD, Sassone-Corsi P. Transcriptional regulation by cyclic AMP-responsive factors. Prog Nucleic Acid Res Mol Biol 2000;64:343–369.

    Article  Google Scholar 

  8. Manna PR, Dyson MT, Eubank DW, et al. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 2002;16:184–199.

    Article  PubMed  CAS  Google Scholar 

  9. Clem BF, Hudson EA, Clark BJ. Cyclic adenosine 3′,5′-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology 2005;146:1348–1356.

    Article  PubMed  CAS  Google Scholar 

  10. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002;365:561–575.

    PubMed  CAS  Google Scholar 

  11. Nalbant D, Williams SC, Stocco DM, Khan SA. Luteinizing hormone-dependent gene regulation in Leydig cells may be mediated by CCAAT/enhancer-binding protein-beta. Endocrinology 1998;139:272–279.

    Article  PubMed  CAS  Google Scholar 

  12. Reinhart AJ, Williams SC, Clark BJ, Stocco DM. SF-1 (steroidogenic factor-1) and C/EBP beta (CCAAT/enhancer binding protein-beta) cooperate to regulate the murine StAR (steroidogenic acute regulatory) promoter. Mol Endocrinol 1999;13:729–741.

    Article  PubMed  CAS  Google Scholar 

  13. Tremblay JJ, Hamel F, Viger RS. Protein kinase A-dependent cooperation between GATA and C/EBP transcription factors regulates StAR promoter activity. Endocrinology 2002;143:3935–3945.

    Article  PubMed  CAS  Google Scholar 

  14. Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000;20:429–440.

    Article  PubMed  CAS  Google Scholar 

  15. Yamada K, Kawata H, Mizutani T, et al. Gene expression of basic helix-loop-helix transcription factor, SHARP-2, is regulated by gonadotropins in the rat ovary and MA-10 cells. Biol Reprod 2004;70:76–82.

    Article  PubMed  CAS  Google Scholar 

  16. Hsu SH, Shyu HW, Hsieh-Li HM, Li H. Spzl, a novel bHLH-Zip protein, is specifically expressed in testis. Mech Dev 2001;100:177–187.

    Article  PubMed  CAS  Google Scholar 

  17. Sirito M, Walker S, Lin Q, Kozlowski MT, Klein WH, Sawadogo M. Members of the USF family of helix-loop-helix proteins bind DNA as homoas well as heterodimers. Gene Expr 1992;2:231–240.

    PubMed  CAS  Google Scholar 

  18. Scherrer SP, Rice DA, Heckert LL. Expression of steroidogenic factor 1 in the testis requires an interactive array of elements within its proximal promoter. Biol Reprod 2002;67: 1509–1521.

    Article  PubMed  CAS  Google Scholar 

  19. Tremblay JJ, Viger RS. GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 2001;142:977–986.

    Article  PubMed  CAS  Google Scholar 

  20. Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci USA 1998;95: 3758–3763.

    Article  PubMed  CAS  Google Scholar 

  21. Shea-Eaton WK, Trinidad MJ, Lopez D, Nackley A, McLean MP. Sterol regulatory element binding protein-1α regulation of the steroidogenic acute regulatory protein gene. Endocrinology 2001;142:1525–1533.

    Article  PubMed  CAS  Google Scholar 

  22. Giguere V. Orphan nuclear receptors: from gene to function. Endocr Rev 1999;20:689–725.

    Article  PubMed  CAS  Google Scholar 

  23. Lala DS, Rice DA, Parker KL. Steroidogenic factor 1, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 1992;6:1249–1258.

    Article  PubMed  CAS  Google Scholar 

  24. Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 1993;268:7494–7502.

    PubMed  CAS  Google Scholar 

  25. Rust W, Stedronsky K, Tillmann G, Morley S, Walther N, Ivell R. The role of SF-l/Ad4BP in the control of the bovine gene for the steroidogenic acute regulatory (StAR) protein. J Mol Endocrinol 1998;21:189–200.

    Article  PubMed  CAS  Google Scholar 

  26. Sandhoff TW, Hales DB, Hales KH, McLean MP. Transcriptional regulation of the rat steroidogenic acute regulatory protein gene by steroidogenic factor 1. Endocrinology 1998;139:4820–4831.

    Article  PubMed  CAS  Google Scholar 

  27. Sugawara T, Holt JA, Kiriakidou M, Strauss JF, III. Steroidogenic factor 1-dependent promoter activity of the human steroidogenic acute regulatory protein (StAR) gene. Biochemistry 1996;35:9052–9059.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Z, Simpson ER. Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Mol Endocrinol 1997;11:127–137.

    Article  PubMed  CAS  Google Scholar 

  29. Chau YM, Crawford PA, Woodson KG, Polish JA, Olson LM, Sadovsky Y Role of steroidogenic-factor 1 in basal and 3′,5′-cyclic adenosine monophosphate-mediated regulation of cytochrome P450 side-chain cleavage enzyme in the mouse. Biol Reprod 1997;57:765–771.

    Article  PubMed  CAS  Google Scholar 

  30. Clemens JW, Lala DS, Parker KL, Richards JS. Steroidogenic factor-1 binding and transcriptional activity of the cholesterol side-chain cleavage promoter in rat granulosa cells. Endocrinology 1994; 134:1499–1508.

    Article  PubMed  CAS  Google Scholar 

  31. Hu MC, Hsu NC, Pai CI, Wang CK, Chung B. Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol Endocrinol 2001;15:812–818.

    Article  PubMed  CAS  Google Scholar 

  32. Leers-Sucheta S, Morohashi K, Mason JI, Meiner MH. Synergistic activation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase promoter by the transcription factor steroidogenic factor-1/adrenal 4-binding protein and phorbol ester. J Biol Chem 1997;272: 7960–7967.

    Article  PubMed  CAS  Google Scholar 

  33. Martin LJ, Taniguchi H, Robert NM, Simard J, Tremblay JJ, Viger RS. GATA factors and the nuclear receptors, steroidogenic factor 1/liver receptor homolog 1, are key mutual partners in the regulation of the human 3β-hydroxysteroid dehydrogenase type 2 promoter. Mol Endocrinol 2005;19: 2358–2370.

    Article  PubMed  CAS  Google Scholar 

  34. Bakke M, Lund J. Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3′,5′-monophosphate-responsive sequence in the bovine CYP17 gene. Mol Endocrinol 1995;9:327–339.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang P, Mellon SH. The orphan nuclear receptor steroidogenic factor-1 regulates the cyclic adenosine 3′,5′-monophosphate-mediated transcriptional activation of rat cytochrome P450cl7 (17 alpha-hydroxylase/cl7-20 lyase). Mol Endocrinol 1996;10:147–158.

    Article  PubMed  CAS  Google Scholar 

  36. Sewer MB, Nguyen VQ, Huang CJ, Tucker PW, Kagawa N, Waterman MR. Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology 2002; 143:1280–1290.

    Article  PubMed  CAS  Google Scholar 

  37. Carlone DL, Richards JS. Functional interactions, phosphorylation, and levels of 3′,5′-cyclic adenosine monophosphateregulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol Endocrinol 1997;11:292–304.

    Article  PubMed  CAS  Google Scholar 

  38. Lynch JP, Lala DS, Peluso JJ, Luo W, Parker KL, White BA. Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues. Mol Endocrinol 1993;7:776–786.

    Article  PubMed  CAS  Google Scholar 

  39. Young M, McPhaul MJ. A steroidogenic factor-1-binding site and cyclic adenosine 3′,5′-monophosphate response elementlike elements are required for the activity of the rat aromatase promoter in rat Leydig tumor cell lines. Endocrinology 1998; 139:5082–5093.

    Article  PubMed  CAS  Google Scholar 

  40. Michael MD, Kilgore MW, Morohashi K, Simpson ER. Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem 1995;270: 13,561–13,566.

    CAS  Google Scholar 

  41. Chen S, Shi H, Liu X, Segaloff DL. Multiple elements and protein factors coordinate the basal and cyclic adenosine 3′,5′-monophosphate-induced transcription of the lutropin receptor gene in rat granulosa cells. Endocrinology 1999;140:2100–2109.

    Article  PubMed  CAS  Google Scholar 

  42. Hu Z, Zhuang L, Guan X, Meng J, Dufau ML. Steroidogenic factor-1 is an essential transcriptional activator for gonadspecific expression of promoter I of the rat prolactin receptor gene. J Biol Chem 1997;272:14,263–14,271.

    CAS  Google Scholar 

  43. Teixeira J, Kehas DJ, Antun R, Donahoe PK. Transcriptional regulation of the rat Mullerian inhibiting substance type II receptor in rodent Leydig cells. Proc Natl Acad Sci USA 1999;96:13,831–13,838.

    Article  CAS  Google Scholar 

  44. Wilson MJ, Jeyasuria P, Parker KL, Koopman P. The transcription factors steroidogenic factor-1 and SOX9 regulate expression of Vanin-1 during mouse testis development. J Biol Chem 2005;280:5917–5923.

    Article  PubMed  CAS  Google Scholar 

  45. Koskimies P, Levallet J, Sipila P, Huhtaniemi I, Poutanen M. Murine relaxin-like factor promoter: functional characterization and regulation by transcription factors steroidogenic factor 1 and DAX-1. Endocrinology 2002;143:909–919.

    Article  PubMed  CAS  Google Scholar 

  46. Zimmermann S, Schwarzler A, Buth S, Engel W, Adham IM. Transcription of the Leydig insulin-like gene is mediated by steroidogenic factor-1. Mol Endocrinol 1998;12: 706–713.

    Article  PubMed  CAS  Google Scholar 

  47. Robert NM, Martin LJ, Tremblay JJ. The orphan nuclear receptor NR4A1 regulates insulin-like 3 gene transcription in Leydig cells. Biol Reprod 2006;74:322–330.

    Article  PubMed  CAS  Google Scholar 

  48. Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A. SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 2003;l:8.

    Article  Google Scholar 

  49. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77:481–490.

    Article  PubMed  CAS  Google Scholar 

  50. Sadovsky Y, Crawford PA, Woodson KG, et al. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA 1995;92:10,939–10,943.

    Article  CAS  Google Scholar 

  51. Jameson JL. Of mice and men: The tale of steroidogenic factor-1. J Clin Endocrinol Metab 2004;89:5927–5929.

    Article  PubMed  CAS  Google Scholar 

  52. Jeyasuria P, Ikeda Y, Jamin SP, et al. Cell-specific Knockout of Steroidogenic Factor 1 Reveals Its Essential Roles in Gonadal Function. Mol Endocrinol 2004;18:1610–1619.

    Article  PubMed  CAS  Google Scholar 

  53. Pezzi V, Sirianni R, Chimento A, et al. Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-l)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression. Endocrinology 2004;145:2186–2196.

    Article  PubMed  CAS  Google Scholar 

  54. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 2004; 14:250–260.

    Article  PubMed  CAS  Google Scholar 

  55. Sirianni R, Seely JB, Attia G, et al. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol 2002;174:R13–R17.

    Article  PubMed  CAS  Google Scholar 

  56. Kim JW, Havelock JC, Carr BR, Attia GR. The orphan nuclear receptor, liver receptor homolog-1, regulates cholesterol side-chain cleavage cytochrome p450 enzyme in human granulosa cells. J Clin Endocrinol Metab 2005;90: 1678–1685.

    Article  PubMed  CAS  Google Scholar 

  57. Martin LJ, Tremblay JJ. The human 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase type 2 promoter is a novel target for the immediate early orphan nuclear receptor Nur77 in steroidogenic cells. Endocrinology 2005;146:861–869.

    Article  PubMed  CAS  Google Scholar 

  58. Peng N, Kim JW, Rainey WE, Carr BR, Attia GR. The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol Metab 2003;88: 6020–6028.

    Article  PubMed  CAS  Google Scholar 

  59. Pare JF, Malenfant D, Courtemanche C, et al. The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J Biol Chem 2004;279:21,206–21,216.

    Article  CAS  Google Scholar 

  60. Eells JB, Witta J, Otridge JB, Zuffova E, Nikodem VM. Structure and function of the Nur77 receptor subfamily, a unique class of hormone nuclear receptor. Curr Genomics 2000;l:135–152.

    Article  Google Scholar 

  61. Song KH, Park JI, Lee MO, Soh J, Lee K, Choi HS. LH induces orphan nuclear receptor Nur77 gene expression in testicular Leydig cells. Endocrinology 2001;142:5116–5123.

    Article  PubMed  CAS  Google Scholar 

  62. Davis IJ, Lau LF. Endocrine and neurogenic regulation of the orphan nuclear receptors Nur77 and Nurr-1 in the adrenal glands. Mol Cell Biol 1994; 14:3469–3483.

    PubMed  CAS  Google Scholar 

  63. Park JI, Park HJ, Choi HS, Lee K, Lee WK, Chun SY. Gonadotropin regulation of NGFI-B messenger ribonucleic acid expression during ovarian follicle development in the rat. Endocrinology 2001; 142:3051–3059.

    Article  PubMed  CAS  Google Scholar 

  64. Park JI, Park HJ, Lee YI, Seo YM, Chun SY. Regulation of NGFI-B expression during the ovulatory process. Mol Cell Endocrinol 2003;202:25–29.

    PubMed  CAS  Google Scholar 

  65. Wilson TE, Fahrner TJ, Milbrandt J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol Cell Biol 1993;13:5794–5804.

    PubMed  CAS  Google Scholar 

  66. Philips A, Lesage S, Gingras R, et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 1997;17:5946–5951.

    PubMed  CAS  Google Scholar 

  67. Maira M, Martens C, Philips A, Drouin J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol 1999;19:7549–7557.

    PubMed  CAS  Google Scholar 

  68. Zetterstrom RH, Solomin L, Mitsiadis T, Olson L, Perlmann T. Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurrl, and Norl. Mol Endocrinol 1996;10:1656–1666.

    Article  PubMed  CAS  Google Scholar 

  69. Hong CY, Park JH, Ahn RS, et al. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 2004;24: 2593–2604.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang P, Mellon SH. Multiple orphan nuclear receptors converge to regulate rat P450c17 gene transcription: novel mechanisms for orphan nuclear receptor action. Mol Endocrinol 1997;11:891–904.

    Article  PubMed  CAS  Google Scholar 

  71. Crawford PA, Sadovsky Y, Woodson K, Lee SL, Milbrandt J. Adrenocortical function and regulation of the steroid 21hydroxylase gene in NGFI-B-deficient mice. Mol Cell Biol 1995;15:4331–5316.

    PubMed  CAS  Google Scholar 

  72. Lee SL, Wesselschmidt RL, Linette GP, Kanagawa O, Russell JH, Milbrandt J. Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 1995;269:532–535.

    Article  PubMed  CAS  Google Scholar 

  73. Cheng LE, Chan FK, Cado D, Winoto A. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J 1997;16:1865–1875.

    Article  PubMed  CAS  Google Scholar 

  74. LaVoie HA. The role of GATA in mammalian reproduction. Exp Biol Med (Maywood) 2003;228:1282–1290.

    CAS  Google Scholar 

  75. Molkentin JD. The zinc finger-containing transcription factors GATA-4,-5, and-6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 2000;275: 38,949–38,952.

    Article  CAS  Google Scholar 

  76. Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 2002;12:416–422.

    Article  PubMed  CAS  Google Scholar 

  77. Peterkin T, Gibson A, Loose M, Patient R. The roles of GATA-4,-5 and-6 in vertebrate heart development. Semin Cell Dev Biol 2005;16:83–94.

    Article  PubMed  CAS  Google Scholar 

  78. Shimizu R, Yamamoto M. Gene expression regulation and domain function of hematopoietic GATA factors. Semin Cell Dev Biol 2005; 16:129–136.

    Article  PubMed  CAS  Google Scholar 

  79. Tremblay JJ, Viger RS. Novel roles for GATA transcription factors in the regulation of steroidogenesis. J Steroid Biochem Mol Biol 2003;85:291–298.

    Article  PubMed  CAS  Google Scholar 

  80. Viger RS, Taniguchi H, Robert NM, Tremblay JJ. Role of the GATA family of transcription factors in andrology. J Androl 2004;25:441–452.

    PubMed  CAS  Google Scholar 

  81. Ketola I, Rahman N, Toppari J, et al. Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 1999;140:1470–1480.

    Article  PubMed  CAS  Google Scholar 

  82. Ketola I, Pentikainen V, Vaskivuo T, et al. Expression of transcription factor GATA-4 during human testicular development and disease. J Clin Endocrinol Metab 2000;85: 3925–3931.

    Article  PubMed  CAS  Google Scholar 

  83. McCoard SA, Wise TH, Fahrenkrug SC, Ford JJ. Temporal and spatial localization patterns of GATA-4 during porcine gonadogenesis. Biol Reprod 2001;65:366–374.

    Article  PubMed  CAS  Google Scholar 

  84. Viger RS, Mertineit C, Trasler JM, Nemer M. Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Müllerian inhibiting substance promoter. Development 1998;125:2665–2675.

    PubMed  CAS  Google Scholar 

  85. Jimenez P, Saner K, Mayhew B, Rainey WE. GATA-6 is expressed in the human adrenal and regulates transcription of genes required for adrenal androgen biosynthesis. Endocrinology 2003;144:4285–4288.

    Article  PubMed  CAS  Google Scholar 

  86. Tremblay JJ, Viger RS. Transcription factor GATA-4 is activated by phosphorylation of serine 261 via the cAMP/PKA pathway in gonadal ceUs. J Biol Chem 2003;278:22, 128–22,135.

    CAS  Google Scholar 

  87. Wood JR, Nelson VL, Ho C, et al. The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem 2003;278:26,380–26,390.

    CAS  Google Scholar 

  88. Fluck CE, Miller WL. GATA-4 and GATA-6 modulate tissuespecific transcription of the human gene for P450cl7 by direct interaction with Spl. Mol Endocrinol 2004; 18:1144–1157.

    Article  PubMed  CAS  Google Scholar 

  89. Silverman E, Eimerl S, Orly J. CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J Biol Chem 1999;274:17,987–17,996.

    CAS  Google Scholar 

  90. Wooton-Kee CR, Clark BJ. Steroidogenic factor-1 influences protein-deoxyribonucleic acid interactions within the cyclic adenosine 3,5-monophosphate-responsive regions of the murine steroidogenic acute regulatory protein gene. Endocrinology 2000;141:1345–1355.

    Article  PubMed  CAS  Google Scholar 

  91. LaVoie HA, Singh D, Hui YY. Concerted regulation of the porcine StAR gene promoter activity by FSH and IGF-I in granulosa cells involves GATA-4 and C/EBPβ. Endocrinology 2004;145:3122–3134.

    Article  PubMed  CAS  Google Scholar 

  92. Kuo CT, Morrisey EE, Anandappa R, et al. GATA-4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 1997;11:1048–1060.

    Article  PubMed  CAS  Google Scholar 

  93. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA-4 for heart tube formation and ventral morphogenesis. Genes Dev 1997;11:1061–1072.

    Article  PubMed  CAS  Google Scholar 

  94. Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 2002;129:4627–4634.

    PubMed  CAS  Google Scholar 

  95. Iuchi S. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 2001;58:625–635.

    Article  PubMed  CAS  Google Scholar 

  96. Mizutani T, Yamada K, Minegishi T, Miyamoto K. Transcriptional regulation of rat scavenger receptor class B type I gene. J Biol Chem 2000;275:22,512–22,519.

    CAS  Google Scholar 

  97. Nikula H, Koskimies P, El-Hefnawy T, Huhtaniemi I. Functional characterization of the basal promoter of the murine LH receptor gene in immortalized mouse Leydig tumor cells. J Mol Endocrinol 2001;26:21–29.

    Article  PubMed  CAS  Google Scholar 

  98. Giatzakis C, Papadopoulos V. Differential utilization of the promoter of peripheral-type benzodiazepine receptor by steroidogenic versus nonsteroidogenic cell lines and the role of Sp1 and Sp3 in the regulation of basal activity. Endocrinology 2004;145:1113–1123.

    Article  PubMed  CAS  Google Scholar 

  99. Schwarzenbach H, Chakrabarti G, Paust HJ, Mukhopadhyay AK. Gonadotropin-mediated regulation of the murine VEGF expression in MA-10 Leydig cells. J Androl 2004;25: 128–139.

    PubMed  CAS  Google Scholar 

  100. Marin M, Karis A, Visser P, Grosveld F, Philipsen S. Transcription factor Spl is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 1997;89:619–628.

    Article  PubMed  CAS  Google Scholar 

  101. Mizutani T, Yamada K, Yazawa T, Okada T, Minegishi T, Miyamoto K. Cloning and characterization of gonadotropininducible ovarian transcription factors (GIOT1 and-2) that are novel members of the (Cys)(2)-(His)(2)-type zinc finger protein family. Mol Endocrinol 2001;15:1693–1705.

    Article  PubMed  CAS  Google Scholar 

  102. Gehring WJ, Qian YQ, Billeter M, et al. Homeodomain-DNA recognition. Cell 1994;78:211–223.

    Article  PubMed  CAS  Google Scholar 

  103. Wilson DS, Sheng G, Jun S, Desplan C. Conservation and diversification in homeodomain-DNA interactions: a comparative genetic analysis. Proc Natl Acad Sci USA 1996;93: 6886–6891.

    Article  PubMed  CAS  Google Scholar 

  104. Gehring WJ, Affolter M, Burglin T. Homeodomain proteins. Annu Rev Biochem 1994;63:487–526.

    Article  PubMed  CAS  Google Scholar 

  105. Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32:359–369.

    Article  PubMed  CAS  Google Scholar 

  106. Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004;23:147–159.

    Article  PubMed  CAS  Google Scholar 

  107. Uyanik G, Aigner L, Martin P, et al. ARX mutations in Xlinked lissencephaly with abnormal genitalia. Neurology 2003;61:232–235.

    PubMed  CAS  Google Scholar 

  108. Mazaud S, Oreal E, Guigon CJ, Carre-Eusebe D, Magre S. Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation. Gene Expr Patterns 2002;2: 373–377.

    Article  PubMed  CAS  Google Scholar 

  109. Birk OS, Casiano DE, Wassif CA, et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 2000;403:909–913.

    Article  PubMed  CAS  Google Scholar 

  110. Mann RS, Affolter M. Hox proteins meet more partners. Curr Opin Genet Dev 1998;8:423–429.

    Article  PubMed  CAS  Google Scholar 

  111. Schnabel CA, Selleri L, Jacobs Y, Warnke R, Cleary ML. Expression of Pbxlb during mammalian organogenesis. Mech Dev 2001;100:131–135.

    Article  PubMed  CAS  Google Scholar 

  112. Schnabel CA, Selleri L, Cleary ML. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis 2003;37:123–130.

    Article  PubMed  CAS  Google Scholar 

  113. Maclean JA, Chen MA, Wayne CM, et al. Rhox: a new homeobox gene cluster. Cell 2005;120:369–382.

    Article  PubMed  CAS  Google Scholar 

  114. Hayden MS, Ghosh S. Signaling to NF-kappa B. Genes Dev 2004;18:2195–2224.

    Article  PubMed  CAS  Google Scholar 

  115. Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 2002;57:3–18.

    Article  PubMed  CAS  Google Scholar 

  116. Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002;3:651–662.

    Article  PubMed  CAS  Google Scholar 

  117. Horvath CM. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000;25:496–502.

    Article  PubMed  CAS  Google Scholar 

  118. Kanzaki M, Morris PL. Growth hormone regulates steroidogenic acute regulatory protein expression and steroidogenesis in Leydig cell progenitors. Endocrinology 1999;140: 1681–1686.

    Article  PubMed  CAS  Google Scholar 

  119. Yamazaki T, Kanzaki M, Kamidono S, Fujisawa M. Effect of erythropoietin on Leydig cell is associated with the activation of Stat5 pathway. Mol Cell Endocrinol 2004;213:193–198.

    Article  PubMed  CAS  Google Scholar 

  120. Feltus FA, Groner B, Meiner MH. Stat5-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5delta4 isomerase gene: activation by prolactin. Mol Endocrinol 1999;13:1084–1093.

    Article  PubMed  CAS  Google Scholar 

  121. Nikula H, Koskimies P, El-Hefnawy T, Huhtaniemi I. Functional characterization of the basal promoter of the murine LH receptor gene in immortalized mouse Leydig tumor cells. J Mol Endocrinol 2001;26:21–29.

    Article  PubMed  CAS  Google Scholar 

  122. Tsai-Morris CH, Geng Y, Xie XZ, Buczko E, Dufau ML. Transcriptional protein binding domains governing basal expression of the rat luteinizing hormone receptor gene. J Biol Chem 1994;269:15,868–15,875.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tremblay, J.J. (2007). Transcription Factors as Regulators of Gene Expression During Leydig Cell Differentiation and Function. In: Payne, A.H., Hardy, M.P. (eds) The Leydig Cell in Health and Disease. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-453-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-453-7_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-754-9

  • Online ISBN: 978-1-59745-453-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics