RNA Processing and Translation

  • Christina Karamboulas
  • Nadine Wiper-Bergeron
  • Ilona S. SkerjancEmail author


The information that codes for all proteins in a cell is found on specific segments within the DNA. When a cell requires the function of a particular protein, it must initiate the steps involved in the synthesis of this protein. The overall process is termed gene expression. Transcription is the process whereby the cell makes a copy of the genetic information required to build that particular protein. Transcription yields the copy of a particular gene termed the primary transcript, which undergoes several processing events to generate the mature messenger RNA (mRNA). The mRNA molecule is then transported to the cytoplasm where it associates with the ribosome. Here, the information within the transcript is decoded into a polypeptide chain of amino acids to give rise to a particular protein with a specific function. The details of RNA processing and translation are discussed in this chapter.


RNA Processing Protein Translation Amino acids Genetic code Ribosome 


  1. 1.
    Gu M LC. Processing the message: structural insights into capping and decapping mRNA. Current Opinion in Structural Biology 2005; 15:99–106.CrossRefPubMedGoogle Scholar
  2. 2.
    Shatkin AJ. Capping of eukaryotic mRNAs. Cell 1976; 9:645–653.CrossRefPubMedGoogle Scholar
  3. 3.
    Christofori G KW. 3' cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 1988; 54:875–889.CrossRefPubMedGoogle Scholar
  4. 4.
    Hirose Y MJ. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 1998; 395:93–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Lavigueur A LBH, Kornblihtt AR, Chabot B. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes and Development 1993; 7:2405–2017.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsukahara T CC, Helfman DM. Alternative splicing of beta-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 5'- and 3'-splice sites of the nonmuscle/smooth muscle exon 6. Nucleic Acids Research 1994; 22:2318–2325.CrossRefPubMedGoogle Scholar
  7. 7.
    Jurica MS MM. Pre-mRNA splicing: awash in a sea of proteins. Molecular Cell 2003; 12:5–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Bentley D. The mRNA assembly line: transcription and processing machines in the same factory. Current Opinion in Cell Biology 2002; 14:336–342.CrossRefPubMedGoogle Scholar
  9. 9.
    Proudfoot NJ, A Furger, and MJ Dye. Integrating mRNA processing with transcription. Cell 2002; 108:501–512.CrossRefPubMedGoogle Scholar
  10. 10.
    Graveley BR. Sorting out the complexity of SR protein functions. RNA 2000; 6:1197–1211.CrossRefPubMedGoogle Scholar
  11. 11.
    Das R YJ, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R. SR Proteins Function in Coupling RNAP II Transcription to Pre-mRNA Splicing. Molecular Cell 2007; 26:867–881.CrossRefPubMedGoogle Scholar
  12. 12.
    Crispino JD BB, Sharp PA. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science 1994; 265:1866–1869.CrossRefPubMedGoogle Scholar
  13. 13.
    Raj Bhandary UL KC. Early days of tRNA research: discovery, function, purification and sequence analysis. Journal of Biosciences 2006; 31:439–451.CrossRefGoogle Scholar
  14. 14.
    Cavarelli J MD. Recognition of tRNAs by aminoacyl-tRNA synthetases. Federation of American Societies for Experimental Biology 1993; 7:79–86.Google Scholar
  15. 15.
    Vasil'eva IA MN. Interaction of Aminoacyl-tRNA Synthetases with tRNA: General Principles and Distinguishing Characteristics of the High-Molecular-Weight Substrate Recognition. Biochemistry (Mosc) 2007; 72:247–263.CrossRefGoogle Scholar
  16. 16.
    Agris PF VF, Graham WD. tRNA's wobble decoding of the genome: 40 years of modification. Journal of Molecular Biology 2007; 366:1–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Berk V ZW, Pai RD, Cate JH. Structural basis for mRNA and tRNA positioning on the ribosome. Proceedings of the National Academy of Sciences of the United States of America 2006; 103:15830–15834.Google Scholar
  18. 18.
    Selmer M DC, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 2006; 313:1935–1942.CrossRefPubMedGoogle Scholar
  19. 19.
    Korostelev A TS, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 2006; 126:1065–1077.CrossRefPubMedGoogle Scholar
  20. 20.
    Schuwirth BS BM, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH. Structures of the bacterial ribosome at 3.5 A resolution. Science 2005; 310:827–834.CrossRefPubMedGoogle Scholar
  21. 21.
    Cate JH YM, Yusupova GZ, Earnest TN, Noller HF. X-ray crystal structures of 70S ribosome functional complexes. Science 1999; 285:2095–2104.CrossRefPubMedGoogle Scholar
  22. 22.
    Kozak M. Initiation of translation in prokaryotes and eukaryotes. Genes and Development 1999; 234:187–208.Google Scholar
  23. 23.
    Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Genes and Development 2005; 361:13–37.Google Scholar
  24. 24.
    Pestova TV KV. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes and Development 2002; 16:2906–2922.CrossRefPubMedGoogle Scholar
  25. 25.
    Jackson R. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochemical Society transactions 2005; 33:1231–1241.CrossRefPubMedGoogle Scholar
  26. 26.
    Mignone F GC, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome biology 2002; 3:4.1–4.10.CrossRefGoogle Scholar
  27. 27.
    Pelletier J SN. Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 1985; 40:515–526.CrossRefPubMedGoogle Scholar
  28. 28.
    Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Molecular and cellular biology 1989; 9:5134–5142.PubMedGoogle Scholar
  29. 29.
    van der Velden AW TA. The international journal of biochemistry & cell biology 1999; 31:87–106.Google Scholar
  30. 30.
    Chendrimada TP FK, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R. MicroRNA silencing through RISC recruitment of eIF6. Nature 2007; 447:823–828.CrossRefPubMedGoogle Scholar
  31. 31.
    John B SC, Marks DS. Prediction of human microRNA targets. Methods in molecular biology 2006; 342:101–113.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christina Karamboulas
    • 1
  • Nadine Wiper-Bergeron
    • 1
  • Ilona S. Skerjanc
    • 2
    Email author
  1. 1.University of OttawaOttawaCanada
  2. 2.Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada

Personalised recommendations