Population Genetics

  • Jill S. Barnholtz-SloanEmail author
  • Hemant K. Tiwari


Population genetics is the study of evolutionary genetics at the population level focusing on the exchange of alleles and genes within and between populations as well as the forces that cause or maintain these exchanges. This exchange of genes and alleles causes changes in the specific allele and hence genotype frequencies within and between populations. Studying this evolution helps us to better understand how to use human populations as a data set to clarify genetic predisposition to disease.

Even with all these discoveries in the field of population genetics and in the characteristics that cause population-based changes and their consequences (e.g., how genetics can affect human disease susceptibility), until recently, the advances in molecular biology and genetics had only enabled genotypes to be assessed one at a time by a technician in a laboratory. Now with the advent of the gene chips or microarrays, these methods can be automated and carried out at a much larger scale, i.e., 1 million genotypes per person on a single gene chip. The faster techniques will allow all genes to be tested for polymorphism within and between populations for many individuals in a population at a time and many populations at a time. The new technology will allow an even greater insight into the relationship between evolutionary forces and genetic changes in human populations.


Hardy-Weinberg equilibrium SNPchip genotype Disease Populations 


  1. 1.
    Hardy GH. Mendelian proportions in a mixed population. Science 1908;28:449–450.CrossRefGoogle Scholar
  2. 2.
    Weinberg W. Uber den Nachweis der Vererbung biem Menschen. Jh. Verein f. vaterl. Naturk. in Wurttemberg 1908;64:368–382.Google Scholar
  3. 3.
    Weinberg W. Uber Verebungsgestze beim Menschen. Ztschr. Abst. U. Vererb. 1909;1:277–330.Google Scholar
  4. 4.
    Zaykin D, Zhivotovsky L, Weir BS. Exact tests for association between alleles at arbitrary numbers of loci. Genetica 1995;96(1–2):169–178.CrossRefPubMedGoogle Scholar
  5. 5.
    Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992;48(2):361–372.CrossRefPubMedGoogle Scholar
  6. 6.
    Nei M. Molecular evolutionary genetics. New York, New York: Columbia University Press; 1987.Google Scholar
  7. 7.
    Li CC. Population Genetics: 1st Edition. Chicago: The University of Chicago Press; 1955.Google Scholar
  8. 8.
    Hill WG. Estimation of linkage disequilibrium in randomly mating populations. Heredity 1974;33(2):229–239.CrossRefPubMedGoogle Scholar
  9. 9.
    Hill WG. Disequilibrium among several linked neutral genes in finite population 1. mean changes in disequilibrium. Theor Popul Biol 1974;5(3):366–392.CrossRefPubMedGoogle Scholar
  10. 10.
    Weir BS. Genetic Data Analysis II. Sunderland, Massachusetts: Sinauer Associates, Inc.; 1996.Google Scholar
  11. 11.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921.CrossRefPubMedGoogle Scholar
  12. 12.
    Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. A haplotype map of the human genome. Nature 2005;437(7063):1299–1320.CrossRefGoogle Scholar
  13. 13.
    Morton NE. Linkage disequilibrium maps and association mapping. J Clin Invest 2005;115(6):1425–1430.CrossRefPubMedGoogle Scholar
  14. 14.
    Collins A, Morton NE. Mapping a disease locus by allelic association. Proc Natl Acad Sci U S A 1998;95(4):1741–1745.CrossRefPubMedGoogle Scholar
  15. 15.
    Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999;55(4):997–1004.CrossRefPubMedGoogle Scholar
  16. 16.
    Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999;65(1):220–228.CrossRefPubMedGoogle Scholar
  17. 17.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155(2):945–959.PubMedGoogle Scholar
  18. 18.
    Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001;293(5529):489–493.CrossRefPubMedGoogle Scholar
  19. 19.
    Choudhry S, Coyle NE, Tang H, Salari K, Lind D, Clark SL, et al. Population stratification confounds genetic association studies among Latinos. Hum Genet 2006;118(5):652–664.CrossRefPubMedGoogle Scholar
  20. 20.
    Salari K, Choudhry S, Tang H, Naqvi M, Lind D, Avila PC, et al. Genetic admixture and asthma-related phenotypes in Mexican American and Puerto Rican asthmatics. Genet Epidemiol 2005;29(1):76–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Hanis CL, Chakraborty R, Ferrell RE, Schull WJ. Individual admixture estimates: disease associations and individual risk of diabetes and gallbladder disease among Mexican-Americans in Starr County, Texas. Am J Phys Anthropol 1986;70(4):433–441.CrossRefPubMedGoogle Scholar
  22. 22.
    Shriver MD, Mei R, Parra EJ, Sonpar V, Halder I, Tishkoff SA, et al. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation. Hum Genomics 2005;2(2):81–89.PubMedGoogle Scholar
  23. 23.
    Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, et al. Demonstrating stratification in a European American population. Nat Genet 2005;37(8):868–872.CrossRefPubMedGoogle Scholar
  24. 24.
    Seldin MF, Shigeta R, Villoslada P, Selmi C, Tuomilehto J, Silva G, et al. European population substructure: clustering of northern and southern populations. PLoS Genet 2006;2(9):e143.CrossRefPubMedGoogle Scholar
  25. 25.
    Bauchet M, McEvoy B, Pearson LN, Quillen EE, Sarkisian T, Hovhannesyan K, et al. Measuring European population stratification using microarray genotype data. American Journal of Human Genetics 2007; in press.Google Scholar
  26. 26.
    Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J, Stefansson K. An Icelandic example of the impact of population structure on association studies. Nat Genet 2005;37(1):90–95.PubMedGoogle Scholar
  27. 27.
    Chakraborty R, Weiss KM. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A 1988;85(23):9119–9123.CrossRefPubMedGoogle Scholar
  28. 28.
    Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 2000;92(14):1151–1158.CrossRefPubMedGoogle Scholar
  29. 29.
    Wacholder S, Rothman N, Caporaso N. Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev 2002;11(6):513–520.PubMedGoogle Scholar
  30. 30.
    Wang Y, Localio R, Rebbeck TR. Evaluating bias due to population stratification in case-control association studies of admixed populations. Genet Epidemiol 2004;27(1):14–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Y, Localio R, Rebbeck TR. Evaluating bias due to population stratification in epidemiologic studies of gene-gene or gene-environment interactions. Cancer Epidemiol Biomarkers Prev 2006;15(1):124–132.CrossRefPubMedGoogle Scholar
  32. 32.
    Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet 2004;36(5):512–517. Epub 2004 Mar 28.CrossRefPubMedGoogle Scholar
  33. 33.
    Reich DE, Goldstein DB. Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol 2001;20(1):4–16.CrossRefPubMedGoogle Scholar
  34. 34.
    Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 2002;11(6):505–512.PubMedGoogle Scholar
  35. 35.
    Pritchard JK, Donnelly P. Case-control studies of association in structured or admixed populations. Theor Popul Biol 2001;60(3):227–237.CrossRefPubMedGoogle Scholar
  36. 36.
    Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 2001;60(3):155–166.CrossRefPubMedGoogle Scholar
  37. 37.
    Dean M. Approaches to identify genes for complex human diseases: lessons from Mendelian disorders. Hum Mutat 2003;22(4):261–274.CrossRefPubMedGoogle Scholar
  38. 38.
    Ziv E, Burchard EG. Human population structure and genetic association studies. Pharmacogenomics 2003;4(4):431–441.CrossRefPubMedGoogle Scholar
  39. 39.
    Burnett MS, Strain KJ, Lesnick TG, de Andrade M, Rocca WA, Maraganore DM. Reliability of Self-reported Ancestry among Siblings: Implications for Genetic Association Studies. Am J Epidemiol 2006.Google Scholar
  40. 40.
    Smith MW, Lautenberger JA, Shin HD, Chretien JP, Shrestha S, Gilbert DA, et al. Markers for mapping by admixture linkage disequilibrium in African American and Hispanic populations. Am J Hum Genet 2001;69(5):1080–1094.CrossRefPubMedGoogle Scholar
  41. 41.
    Shriver MD, Smith MW, Jin L, Marcini A, Akey JM, Deka R, et al. Ethnic-affiliation estimation by use of population-specific DNA markers. Am J Hum Genet 1997;60(4):957–964.PubMedGoogle Scholar
  42. 42.
    Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a high-density SNP map for signatures of natural selection. Genome Res 2002;12(12):1805–1814.CrossRefPubMedGoogle Scholar
  43. 43.
    Williams RC, Long JC, Hanson RL, Sievers ML, Knowler WC. Individual estimates of European genetic admixture associated with lower body-mass index, plasma glucose, and prevalence of type 2 diabetes in Pima Indians. Am J Hum Genet 2000;66(2):527–538.CrossRefPubMedGoogle Scholar
  44. 44.
    Fernandez JR, Shriver MD, Beasley TM, Rafla-Demetrious N, Parra E, Albu J, et al. Association of African genetic admixture with resting metabolic rate and obesity among women. Obes Res 2003;11(7):904–911.CrossRefPubMedGoogle Scholar
  45. 45.
    Gower BA, Fernandez JR, Beasley TM, Shriver MD, Goran MI. Using genetic admixture to explain racial differences in insulin-related phenotypes. Diabetes 2003;52(4):1047–1051.CrossRefPubMedGoogle Scholar
  46. 46.
    Barnholtz-Sloan JS, Chakraborty R, Sellers TA, Schwartz AG. Examining population stratification via individual ancestry estimates versus self-reported race. Cancer Epidemiol Biomarkers Prev 2005;14(6):1545–1551.CrossRefPubMedGoogle Scholar
  47. 47.
    Ziv E, John EM, Choudhry S, Kho J, Lorizio W, Perez-Stable EJ, et al. Genetic ancestry and risk factors for breast cancer among Latinas in the San Francisco Bay Area. Cancer Epidemiol Biomarkers Prev 2006;15(10):1878–1885.CrossRefPubMedGoogle Scholar
  48. 48.
    Darwin C. On the Origin of Species. London: Murray; 1859.Google Scholar
  49. 49.
    Darwin C. The Descent of Man and Selection in Relation to Sex. New York: D. Appleton and Company; 1871.Google Scholar
  50. 50.
    Fisher RA. The Genetical Theory of Natural Selection. Oxford: Clarendon Press; 1930.Google Scholar
  51. 51.
    Wright S. Evolution in mendelian populations. Genetics 1931;16:97–159.PubMedGoogle Scholar
  52. 52.
    Haldane JBS. The Causes of Evolution. London: Longmans and Green; 1932.Google Scholar
  53. 53.
    Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171(4356):737–738.CrossRefPubMedGoogle Scholar
  54. 54.
    Weiss KM. Genetic Variation and Human Disease: Principles and Evolutionary Approaches. Cambridge: Cambridge University Press; 1993.Google Scholar
  55. 55.
    Vogel F, Motulsky AG. Human Genetics: Problems and Approaches, Third, Completely Revised Edition. Berlin: Springer-Verlag; 1997.Google Scholar
  56. 56.
    Ayala FJ, Kiger JA. Modern Genetics, 2nd Edition. California: The Benjamin/Cummings Publishing Company, Inc.; 1984.Google Scholar
  57. 57.
    Hartl DL, Clark AG. Principles of Population Genetics: Second Edition. Sunderland, Massachusetts: Sinauer Associates, Inc.;1989.Google Scholar
  58. 58.
    Harris H, Hopkinson DA. Average heterozygosity per locus in man: an estimate based on the incidence of enzyme polymorphisms. Ann Hum Genet 1972;36(1):9–20.CrossRefPubMedGoogle Scholar
  59. 59.
    Landsteiner K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentralbl Bakteriol 1900;27:357–362.Google Scholar
  60. 60.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002;296(5576):2225–2229.CrossRefPubMedGoogle Scholar
  61. 61.
    Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29(2):229–232.CrossRefPubMedGoogle Scholar
  62. 62.
    Wahlund S. Zuzammensetzung von populationen und korrelation-serscheinungen von stand pundt der vererbungslehre aus betrachtet. Hereditas 1928;11:65–106.CrossRefGoogle Scholar
  63. 63.
    Wright S. The genetic structure of populations. Ann Eugen 1951;15:323–354.Google Scholar
  64. 64.
    Wright S. Isolation by genetic distance. Genetics 1943;28:114–138.PubMedGoogle Scholar
  65. 65.
    Cockerham CC. Analyses of Gene Frequencies. Genetics 1973;74(4):679–700.PubMedGoogle Scholar
  66. 66.
    Cockerham CC. Analyses of Gene Frequencies of Mates. Genetics 1973;74(4):701–712.PubMedGoogle Scholar
  67. 67.
    Nei M. Genetic distance between populations. Am Nat 1972;106:283–292.CrossRefGoogle Scholar
  68. 68.
    Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen 1936;7:179–188.Google Scholar
  69. 69.
    Mahalanobis PC. On the generalized distance in statistics. Proc Natl Inst Sci India 1936;2:49–55.Google Scholar
  70. 70.
    Sanghvi LD. Comparison of genetical and morphological methods for a study of biological differences. Am J Phys Anthropol 1953;11(3):385–404.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandUSA
  2. 2.University of Alabama at BirminghamBirminghamUSA

Personalised recommendations