Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Race is an enigma, exhibiting no clear biological definition yet strong cultural and social meanings, particularly in the United States. However, the advent of molecular technology led to a new realization that within-group differences far exceeded between-group differences. Our knowledge of human genetic variation has grown enormously over the past few decades. Single-nucleotide polymorphisms (SNPs) are the most common form of DNA variation in the human genome. At present, there are more than 10 million SNPs in the human genome. At most genetic loci, African populations harbor some relatively common alleles that are absent in non-African populations; however, most of the alleles that are common in non-African populations are also common in African populations. Given the genetic data now available across diverse human populations, it is becoming increasingly clear that the frequency of most genetic markers do not vary much among the major continental populations. However, a number of studies that examine genetic variation across the genome have found that individuals with similar ancestral continental origins tend to cluster together, and in general, these clusters correspond to four continental groups: Sub-Saharan Africa, Europe/Western Asia, Asia, and the Americas.

Not withstanding the large amount of genetic variation shared across human groups there is a small but significant fraction of polymorphisms that are quite informative for estimating biogeographic ancestry. Interestingly, individuals self-report as African-American due to skin color and the historical classification schema referred to as the “one-drop” rule which denotes an individual with an African ancestor as Black. The first striking feature observed is that 98% of the European Americans had over 90% European ancestry, while only 34% of the African-Americans possessed over 90% West African ancestry. Variance in genetic background of study subjects is becoming more of an issue with the increasing number of genetic association studies on complex disease. Differences in genetic background among study individuals may impact the power and reliability of genetic association studies. We suggest that ancestry be used instead of race. Genetic ancestry has several salient features which are useful for biomedical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Risch N, Burchard E, Ziv E, Tang H. Categorization of humans in biomedical research: genes, race and disease. Genome Biol 2002; 3(7): comment 2007.

    Google Scholar 

  2. Burchard EG, Ziv E, Coyle N, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 2003; 348(12):1170–1175.

    Article  PubMed  Google Scholar 

  3. Kittles RA, Weiss KM. Race, ancestry, and genes: implications for defining disease risk. Annu Rev Genomics Hum Genet 2003; 4:33–67.

    Google Scholar 

  4. Rosenberg NA, Pritchard JK, Weber JL, et al. Genetic structure of human populations. Science 2002; 298(5602):2381–2385.

    Article  CAS  PubMed  Google Scholar 

  5. Serre D, Paabo S. Evidence for gradients of human genetic diversity within and among continents. Genome Res 2004; 14(9):1679.

    Article  CAS  PubMed  Google Scholar 

  6. Goodman AH. Why genes don’t count (for racial differences in health). Am J Public Health 2000; 90(11):1699–1702.

    Article  CAS  PubMed  Google Scholar 

  7. Crawford DC, Akey DT, Nickerson DA. The patterns of natural variation in human genes. Annu Rev Genomics Hum Genet 2005; 6:287–312.

    Google Scholar 

  8. Hinds DA, Stuve LL, Nilsen GB, et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307(5712):1072–1079.

    Article  CAS  PubMed  Google Scholar 

  9. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225–2259.

    Article  CAS  PubMed  Google Scholar 

  10. Guthery SL, Salisbury BA, Pungliya MS, Stephens JC, Bamshad M. The structure of common genetic variation in United States populations. Am J Hum Genet 2007; 81(6):1221–1231.

    Article  CAS  PubMed  Google Scholar 

  11. Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet 2003; 33(Suppl.):266–75.

    Google Scholar 

  12. Cockerham CC, Weir BS. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 1984; 40(1):157–164.

    Article  CAS  PubMed  Google Scholar 

  13. Weir BS, Hill WG. Estimating f-statistics. Annu Rev Genet 2002; 36:721–50.

    Google Scholar 

  14. Jobling MA, Hurles M, Tyler-Smith C. Human evolutionary genetics: origins, peoples & disease. New York: Garland Science; 2004.

    Google Scholar 

  15. Cooper RS, Kaufman JS, Ward R. Race and genomics. N Engl J Med 2003; 348(12): 1166–1170.

    Article  PubMed  Google Scholar 

  16. Lewontin RC. The apportionment of human diversity. Evol Biol 1972; 6:381–398.

    Google Scholar 

  17. Tang H, Quertermous T, Rodriguez B, et al. Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 2005; 76(2):268–275.

    Article  CAS  PubMed  Google Scholar 

  18. Collins FS. What we do and don’t know about ‘race’, ‘ethnicity’, genetics and health at the dawn of the genome era. Nat Genet 2004; 36(11 Suppl):S13–15.

    Article  CAS  PubMed  Google Scholar 

  19. Shriver MD, Kittles RA. Genetic ancestry and the search for personalized genetic histories. Nat Rev Genet 2004; 5(8):611–618.

    Article  CAS  PubMed  Google Scholar 

  20. Burchard EG, Borrell LN, Choudhry S, et al. Race, genetics, and health disparities. Latino populations: a unique opportunity for the study of race, genetics, and social environment in epidemiological research. Am J Pub Health 2005; 95(12):2161–8.

    Article  Google Scholar 

  21. Harris BK. Southern savory. Chapel Hill: University of North Carolina Press; 1964.

    Google Scholar 

  22. Bonilla C, Shriver MD, Parra EJ, Jones A, Fernandez JR. Ancestral proportions and their association with skin pigmentation and bone mineral density in Puerto Rican women from New York city. Hum Genet 2004; 115(1):57–68.

    Article  PubMed  Google Scholar 

  23. Shriver MD, Parra EJ, Dios S, et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 2003; 112(4):387–399.

    PubMed  Google Scholar 

  24. Parra EJ, Kittles RA, Shriver MD. Implications of correlations between skin color and genetic ancestry for biomedical research. Nat Genet 2004; 36(11 Suppl):S54–S60.

    Article  CAS  PubMed  Google Scholar 

  25. Choudhry S, Coyle NE, Tang H, et al. Population stratification confounds genetic association studies among Latinos. Hum Genet 2006; 118(5): 652–664.

    Article  PubMed  Google Scholar 

  26. Halder I, Shriver MD. Measuring and using admixture to study the genetics of complex diseases. Hum Genomics 2003; 1(1): 52–62.

    CAS  PubMed  Google Scholar 

  27. Tang H, Jorgenson E, Gadde M, et al. Racial admixture and its impact on BMI and blood pressure in African and Mexican Americans. Hum Genet 2006; 119(6):624–633.

    Article  PubMed  Google Scholar 

  28. Helgadottir A, Manolescu A, Helgason A, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 2006; 38(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  29. Salari K, Choudhry S, Tang H, et al. Genetic admixture and asthma-related phenotypes in Mexican American and Puerto Rican asthmatics. Genet Epidemiol 2005; 29(1):76–86.

    Article  PubMed  Google Scholar 

  30. McKeigue PM. Prospects for admixture mapping of complex traits. Am J Hum Genet 2005; 76(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Reich D, Patterson N. Will admixture mapping work to find disease genes? Philos Trans R Soc Lond B Biol Sci 2005; 360(1460):1605–1607.

    Article  CAS  PubMed  Google Scholar 

  32. Reich D, Patterson N, De Jager PL, et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 2005; 37(10):1113–1118.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu X, Luke A, Cooper RS, et al. Admixture mapping for hypertension loci with genome-scan markers. Nat Genet 2005; 37(2):177–181.

    Article  CAS  PubMed  Google Scholar 

  34. Freedman ML, Haiman CA, Patterson N, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A 2006; 103(38):14068–14073.

    Article  CAS  PubMed  Google Scholar 

  35. Akey JM, Eberle MA, Rieder MJ, et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2004; 2(10):e286.

    Article  PubMed  Google Scholar 

  36. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol 2006; 4(3):e72.

    Article  PubMed  Google Scholar 

  37. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM. Gene-expression variation within and among human populations. Am J Hum Genet 2007; 80(3):502–509.

    Article  CAS  PubMed  Google Scholar 

  38. Thompson EE, Kuttab-Boulos H, Yang L, Roe BA, Di Rienzo A. Sequence diversity and haplotype structure at the human CYP3A cluster. Pharmacogenomics J 2006; 6(2): 105–114.

    Article  CAS  PubMed  Google Scholar 

  39. DiRienzo A, Richard RH. An evolutionary framework for common disease: the ancestral-susceptibility model. Trends Genet 2005; 21(11):596–601.

    Article  CAS  Google Scholar 

  40. Young JH, Chang YP, Kim JD, et al. Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet 2005; 1(6):e82.

    Article  PubMed  Google Scholar 

  41. Keita SO, Kittles RA, Royal CD, et al. Conceptualizing human variation. Nat Genet 2004; 36(11 Suppl.):S17–S20.

    Article  CAS  PubMed  Google Scholar 

  42. LaVeist TA. Beyond dummy variables and sample selection: what health services researchers ought to know about race as a variable. Health Serv Res 1994; 29(1):1–16.

    CAS  PubMed  Google Scholar 

  43. Rebbeck TR, Sankar P. Ethnicity, ancestry, and race in molecular epidemiologic research. Cancer Epidemiol Biomarkers Prev 2005; 14(11 Pt 1):2467–2471.

    Article  PubMed  Google Scholar 

  44. Shields AE, Fortun M, Hammonds EM, et al. The use of race variables in genetic studies of complex traits and the goal of reducing health disparities: a transdisciplinary perspective. Am Psychol 2005; 60(1):77–103.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kittles, R.A., Benn-Torres, J. (2009). Race and Genetics. In: Ferdinand, K.C., Armani, A. (eds) Cardiovascular Disease in Racial and Ethnic Minorities. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-410-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-410-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-981-9

  • Online ISBN: 978-1-59745-410-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics