Nutrition and Polymyositis and Dermatomyositis

  • Ingela Loell
  • Ingrid Lundberg
Part of the Nutrition and Health book series (NH)

Summary

• Chronic muscle inflammation in polymyositis or dermatomyositis causes muscle weakness and fatigue.

• The chronic inflammation could lead to a catabolic state and additional loss of muscle mass.

• The chronic muscle inflammation could induce a metabolic myopathy.

• Body weight may not be reliable to measure muscle loss, rather measurement of body composition is recommended.

•For patients with polymyositis or dermatomyositis it is important to provide the body with the right amount of macronutrients and trace elements for maintenance and improvement of body functions.

• One recommendation is supplementation with calcium and vitamin D.

• Another recommendation is regular physical exercise that during limited periods can be combined with supplements such as creatine, if done under the care of a physician.

Key Words

Creatine supplement dermatomyositis exercise glutamine inflammatory myopathies polymyositis vitamin D 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hengstman G, van Venrooij W, Vencovsky J. The relative prevalence of dermatomyositis and polymyositis in Europe exhibits a latitudinal gradient. Ann Rheum Dis, 2000;59(2):141–142.PubMedCrossRefGoogle Scholar
  2. 2.
    Okada S, et al. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum 2003;48(8):2285–2293.PubMedCrossRefGoogle Scholar
  3. 3.
    Love LA, et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore), 1991;70(6):360–374.Google Scholar
  4. 4.
    Arnett FC, Targoff IN, Mimori T. Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of myositis. Arthritis Rheum 1996;39(9):1507–1518.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller FW. Humoral immunity and immunogenetics in the idiopathic inflammatory myopathies. Curr Opin Rheumatol 1991;3(6):902–910.PubMedCrossRefGoogle Scholar
  6. 6.
    Authier FJ, Chariot P, Gherardi RK. Skeletal muscle involvement in human immunodeficiency virus (HIV)-infected patients in the era of highly active antiretroviral therapy (HAART). Muscle Nerve 2005;32(3):247–260.PubMedCrossRefGoogle Scholar
  7. 7.
    Reveille JD, Williams FM. Infection and musculoskeletal conditions: Rheumatologic complications of HIV infection. Best Pract Res Clin Rheumatol 2006;20(6):1159–1179.PubMedCrossRefGoogle Scholar
  8. 8.
    Sheard C. Jr. Dermatomyositis. AMA Arch Intern Med 1951;88(5):640–658.PubMedGoogle Scholar
  9. 9.
    Logan RG, et al. Polymyositis: a clinical study. Ann Intern Med 1966;65(5):996–1007.PubMedGoogle Scholar
  10. 10.
    Pearson CM. Patterns of Polymyositis and Their Responses to Treatment. Ann Intern Med 1963;59:827–838.PubMedGoogle Scholar
  11. 11.
    Rose AL, Walton JN. Polymyositis: a survey of 89 cases with particular reference to treatment and prognosis. Brain 1966;89(4):747–768.PubMedCrossRefGoogle Scholar
  12. 12.
    Pearson CM, Bohan A. The spectrum of polymyositis and dermatomyositis. Med Clin North Am 1977;61(2):439–457.PubMedGoogle Scholar
  13. 13.
    Lundberg I, Brengman JM, Engel AG. Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. J Neuroimmunol 1995;63(1):9–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Lundberg I, et al. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum 1997;40(5):865–874.PubMedCrossRefGoogle Scholar
  15. 15.
    De Bleecker JL, Meire VI, Declercq W. Immunolocalization of tumor necrosis factor-alpha and its receptors in inflammatory myopathies. Neuromuscul Disord 1999;9(4):239–246.PubMedCrossRefGoogle Scholar
  16. 16.
    Nyberg P, et al. Increased expression of interleukin 1alpha and MHC class I in muscle tissue of patients with chronic, inactive polymyositis and dermatomyositis. J Rheumatol 2000;27(4):940–948.PubMedGoogle Scholar
  17. 17.
    Englund P, et al. Interleukin-1alpha expression in capillaries and major histocompatibility complex class I expression in type II muscle fibers from polymyositis and dermatomyositis patients: important pathogenic features independent of inflammatory cell clusters in muscle tissue. Arthritis Rheum 2002;46(4):1044–1055.PubMedCrossRefGoogle Scholar
  18. 18.
    Ulfgren A, et al. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum 2004;50(5):1586–1594.PubMedCrossRefGoogle Scholar
  19. 19.
    Figarella-Branger D, et al. Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 2003;28(6):659–682.PubMedCrossRefGoogle Scholar
  20. 20.
    Spate U, Schulze PC. Proinflammatory cytokines and skeletal muscle. Curr Opin Clin Nutr Metab Care 2004;7(3):265–269.PubMedCrossRefGoogle Scholar
  21. 21.
    Murakami M, Kudo I. Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 2004;43(1):3–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Tilley SL, Coffman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest 2001;108(1):15–23.PubMedGoogle Scholar
  23. 23.
    Harris SG, et al. Prostaglandins as modulators of immunity. Trends Immunol 2002;23(3):144–150.PubMedCrossRefGoogle Scholar
  24. 24.
    Karamouzis M, et al. The response of muscle interstitial prostaglandin E(2)(PGE(2)), prostacyclin I(2)(PGI(2)) and thromboxane A(2)(TXA(2)) levels during incremental dynamic exercise in humans determined by in vivo microdialysis. Prostaglandins Leukot Essent Fatty Acids 2001;64(4–5): 259–263.Google Scholar
  25. 25.
    Kalliokoski KK, Ryberg LH, Scheede-Bergdahl AK, Doessing C, Kjaer A, Boushel R. Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow. Am J Physiol Regul Integr Comp Physiol 2006(291): R803–R809.Google Scholar
  26. 26.
    Lundberg IE. The physiology of inflammatory myopathies: an overview. Acta Physiol Scand 2001;171(3):207–213.PubMedCrossRefGoogle Scholar
  27. 27.
    Taylor PC, Sivakumar B. Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rhematol 2005;17(3):293–298.CrossRefGoogle Scholar
  28. 28.
    Sultan SM, et al. Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality. Rheumatology 2002;41(1):22–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Danko K, et al. Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases. Medicine 2004;83(1):35–42.PubMedCrossRefGoogle Scholar
  30. 30.
    De Feo P, et al. Metabolic response to exercise. J Endocrinol Invest 2003;26(9):851–854.PubMedGoogle Scholar
  31. 31.
    Almawi WY, et al. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 1996;60(5):563–572.PubMedGoogle Scholar
  32. 32.
    Joyce DA, Gimblett G, Steer JH. Targets of glucocorticoid action on TNF-alpha release by macrophages. Inflamm Res 2001;50(7):337–340.PubMedCrossRefGoogle Scholar
  33. 33.
    Barnes PJ. Corticosteroid effects on cell signalling. Eur Respir J 2006;27(2):413–426.PubMedCrossRefGoogle Scholar
  34. 34.
    Ristimaki A, Narko K,Hla T. Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J 1996;318 (Pt 1):325–331.Google Scholar
  35. 35.
    Hasselgren PO. Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999;2(3):201–205.PubMedCrossRefGoogle Scholar
  36. 36.
    Horber FF, et al. Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab 1985;61(1):83–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Horber FF, et al. Impact of physical training on the ultrastructure of midthigh muscle in normal subjects and in patients treated with glucocorticoids. J Clin Invest 1987;79(4):1181–1190.PubMedCrossRefGoogle Scholar
  38. 38.
    Alexanderson H. Exercise: an important component of treatment in the idiopathic inflammatory myopathies. Curr Rheumatol Rep 2005;7(2):115–124.PubMedCrossRefGoogle Scholar
  39. 39.
    Alexanderson H, et al. The safety of a resistive home exercise program in patients with recent onset active polymyositis or dermatomyositis. Scand J Rheumatol 2000;29(5):295–301.PubMedCrossRefGoogle Scholar
  40. 40.
    Ryder JW, Chibalin AV, Zierath JR. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol Scand 2001;171(3):249–257.PubMedCrossRefGoogle Scholar
  41. 41.
    Christ-Roberts CY, Mandarino LJ. Glycogen synthase: key effect of exercise on insulin action. Exerc Sport Sci Rev 2004;32(3):90–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Wojtaszewski JF, et al. Insulin signalling: effects of prior exercise. Acta Physiologica Scandinavica 2003;178(4):321–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Gustafsson T, et al. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle.(see comment). Am J Physiol 1999;276(2 Pt 2):H679–H685.Google Scholar
  44. 44.
    Apor P, Radi A. [Vascular effects of physical activity]. Orv Hetil 2005;146(2):63–67.PubMedGoogle Scholar
  45. 45.
    Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol 2004;97(3):1119–1128.PubMedCrossRefGoogle Scholar
  46. 46.
    Mills PJ, et al. Physical fitness attenuates leukocyte–endothelial adhesion in response to acute exercise. J Appl Physiol 2006,101(3):785–788.Google Scholar
  47. 47.
    Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005;98(4):1154–1162.PubMedCrossRefGoogle Scholar
  48. 48.
    Hargreaves M, Cameron-Smith D. Exercise, diet, and skeletal muscle gene expression. Med Sci Sports Exerc 2002;34(9):1505–1508.PubMedCrossRefGoogle Scholar
  49. 49.
    Yarasheski KE. Exercise, aging, and muscle protein metabolism. J Gerontol A Biol Sci Med Sci 2003;58(10):M918–M922.Google Scholar
  50. 50.
    Blair SN, et al. How much physical activity is good for health? Annu Rev Public Health 1992;13: 99–126.PubMedGoogle Scholar
  51. 51.
    Alexanderson H, Stenstrom CH, Lundberg I. Safety of a home exercise programme in patients with polymyositis and dermatomyositis: a pilot study. Rheumatology 1999;38(7):608–611.PubMedCrossRefGoogle Scholar
  52. 52.
    Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 2000;20:457–483.PubMedCrossRefGoogle Scholar
  53. 53.
    Levenhagen DK, et al. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab 2001;280(6):E982–E993.Google Scholar
  54. 54.
    Wilborn CD, Willoughby DS. The role of dietary protein intake and resistance training on myosin heavy chain expression. J Int Soc Sports Nutr 2004;1(2):27–34.CrossRefPubMedGoogle Scholar
  55. 55.
    Becker W, et al. Nordic nutrition recommendations. Ugeskrift for Laeger 2006;168(1):76–77; author reply 77.PubMedGoogle Scholar
  56. 56.
    Gendek EG, Kedziora J, Gendek-KubiakH. Can tissue transglutaminase be a marker of idiopathic inflammatory myopathies? Immunol Lett 2005;97(2):245–249.PubMedCrossRefGoogle Scholar
  57. 57.
    Facchiano F, Facchiano A, Facchiano AM. The role of transglutaminase-2 and its substrates in human diseases. Front Biosci 2006;11:1758–1773.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim SY, New target against inflammatory diseases: transglutaminase 2. Arch Immunol Ther Exp (Warsz) 2004;52(5):332–337.Google Scholar
  59. 59.
    Selva-O’callaghan A, et al. Celiac disease and antibodies associated with celiac disease in patients with inflammatory myopathy. Muscle Nerve 2006;11.Google Scholar
  60. 60.
    Lombardo JA, Supplements and athletes. South Med J 2004;97(9):877–879.PubMedCrossRefGoogle Scholar
  61. 61.
    Demant TW, Rhodes EC. Effects of creatine supplementation on exercise performance. Sports Med 1999;28(1):49–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Williams MH, Branch JD. Creatine supplementation and exercise performance: an update.(see comment). J Am Coll Nutr 1998;17(3):216–234.PubMedGoogle Scholar
  63. 63.
    Mesa JL, et al. Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med 2002;32(14):903–944.PubMedCrossRefGoogle Scholar
  64. 64.
    Kreider RB, Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem 2003;244(1–2):89–94.Google Scholar
  65. 65.
    Volek JS, Rawson ES. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition 2004;20(7–8):609–614.Google Scholar
  66. 66.
    Park JH, et al. Use of magnetic resonance imaging and P-31 magnetic resonance spectroscopy to detect and quantify muscle dysfunction in the amyopathic and myopathic variants of dermatomyositis. Arthritis Rheum 1995;38(1):68–77.PubMedCrossRefGoogle Scholar
  67. 67.
    Park JH,Ryder VT, Hernanz-Schulman NM, Partain M, Price RR, Olsen %%NJ. Park JH, Vital TL, Ryder NM, Hernanz-Schulman M, Partain CL, Price RR, Olsen NJ. Magnetic resonance imaging and P-31 magnetic resonance spectroscopy provide unique quantitative data useful in the longitudinal management of patients with dermatomyositis. Arthritis Rheum 1994;37(5):736–746.PubMedCrossRefGoogle Scholar
  68. 68.
    Chung Y-L,Pipitone AH, MorrisonN, et al. Creatine supplements in patients with idiopathic inflammatory myopathies who are clinically weak after conventional pharmacologic treatment: Six-month, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 2007;15(57(4)):694–702.CrossRefGoogle Scholar
  69. 69.
    Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000;80(3): 1107–1213.PubMedGoogle Scholar
  70. 70.
    Chung Y-L,Pipitone AH, MorrisonN, et al. Creatine supplements improve muscle function in idiopathic inflammatory myopathies in a 6-month double blind, randomized placebo-controlled study. Arthritis Care Res 2006.Google Scholar
  71. 71.
    Nomura A, et al. Anti-inflammatory activity of creatine supplementation in endothelial cells in vitro. Br J Pharmacol 2003;139(4):715–720.PubMedCrossRefGoogle Scholar
  72. 72.
    DesJardins M Supplement use in the adolescent athlete. Curr Sports Med Rep 2002;1(6):369–373.PubMedCrossRefGoogle Scholar
  73. 73.
    Escolar DM, et al. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol 2005;58(1):151–155.PubMedCrossRefGoogle Scholar
  74. 74.
    Hartgens F,Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med 2004;34(8): 513–554.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Eenoo P, Delbeke FT. Metabolism and excretion of anabolic steroids in doping control–new steroids and new insights. J Steroid Biochem Mol Biol 2006;101(4–5):161–178.Google Scholar
  76. 76.
    Sheffield-Moore M et al. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab 1999;84(8):2705–2711.PubMedCrossRefGoogle Scholar
  77. 77.
    Rutkove SB, et al. A pilot randomized trial of oxandrolone in inclusion body myositis. Neurology 2002;58(7):1081–1087.PubMedGoogle Scholar
  78. 78.
    Fenichel GM, et al. A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology 2001;56(8):1075–1079.PubMedGoogle Scholar
  79. 79.
    Creutzberg EC et al. A role for anabolic steroids in the rehabilitation of patients with COPD? A double-blind, placebo-controlled, randomized trial. Chest 2003;124(5):1733–1742.PubMedCrossRefGoogle Scholar
  80. 80.
    Newsholme EA, Calder PC. The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 1997;13(7–8):728–730.Google Scholar
  81. 81.
    Biolo G, et al. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol 2005;37(10):2169–2179.PubMedCrossRefGoogle Scholar
  82. 82.
    Burnham EL, Moss M, Ziegler TR. Myopathies in critical illness: characterization and nutritional aspects. J Nutr 2005;135(7):1818S–1823S.Google Scholar
  83. 83.
    Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of NF-kappaB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis.Shock 2005;24(6):583–589.PubMedCrossRefGoogle Scholar
  84. 84.
    Burnham EL, Moss M, Ziegler TR. Myopathies in critical illness: characterization and nutritional aspects. J Nutr 2005;135(7):1818S–1823S.Google Scholar
  85. 85.
    Mok E, et al. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am J Clin Nutr 2006;83(4):823–828.PubMedGoogle Scholar
  86. 86.
    DeFilippisAP, Sperling LS. Understanding omega-3‘s. Am Heart J 2006;151(3):564–570.CrossRefGoogle Scholar
  87. 87.
    Doshi M, et al. Effect of dietary enrichment with n-3 polyunsaturated fatty acids (PUFA) or n-9 PUFA on arachidonate metabolism in vivo and experimentally induced inflammation in mice. Biol Pharm Bull 2004;27(3):319–323.PubMedCrossRefGoogle Scholar
  88. 88.
    Kelley VE, et al. A fish oil diet rich in eicosapentaenoic acid reduces cyclooxygenase metabolites, and suppresses lupus in MRL-lpr mice. J Immunol 1985;134(3):1914–1919.PubMedGoogle Scholar
  89. 89.
    Arterburn LM,Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 2006;83(6 suppl):1467S–1476S.Google Scholar
  90. 90.
    Simopoulos AP, Essential fatty acids in health and chronic diseases. Forum Nutr 2003;56:67–70.PubMedGoogle Scholar
  91. 91.
    Calder PC, n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006;83(6 suppl):1505S–1519S.Google Scholar
  92. 92.
    Pennisi P, Trombetti A, Rizzoli R. Glucocorticoid-induced osteoporosis and its treatment. Clin Orthop Relat Res 2006;443:39–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Cantorna MT, et al. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr, 2004;80(6 suppl):1717S–20S.Google Scholar
  94. 94.
    Alsufyani KA, et al. Bone mineral density in children and adolescents with systemic lupus erythematosus, juvenile dermatomyositis, and systemic vasculitis: relationship to disease duration, cumulative corticosteroid dose, calcium intake, and exercise. J Rheumatol 2005;32(4):729–733.PubMedGoogle Scholar
  95. 95.
    Cantorna MT, Mahon BD. D-hormone and the immune system. J Rheumatol Suppl 2005;76:11–20.PubMedGoogle Scholar
  96. 96.
    Zittermann A, Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr 2003;89(5):552–572.PubMedCrossRefGoogle Scholar
  97. 97.
    CantornaMT, Mahon BD. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med (Maywood) 2004;229(11):1136–1142.Google Scholar
  98. 98.
    Larsson P, et al. A vitamin D analogue (MC 1288) has immunomodulatory properties and suppresses collagen-induced arthritis (CIA) without causing hypercalcaemia. Clin Exp Immunol 1998;114(2):2772–83.CrossRefGoogle Scholar
  99. 99.
    Adorini L, Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell Immunol 2005;233(2):115–124.PubMedCrossRefGoogle Scholar
  100. 100.
    Grant WB, Holick MF. Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev 2005;10(2):94–111.PubMedGoogle Scholar
  101. 101.
    Schneider C, Chemistry and biology of vitamin E.Mol Nutr Fod Res 2005;49(1):7–30.CrossRefGoogle Scholar
  102. 102.
    Traber MG, Sies H. Vitamin E in humans: demand and delivery. Annu Rev Nutr 1996;16:321–347.PubMedCrossRefGoogle Scholar
  103. 103.
    Tomasi LG, Reversibility of human myopathy caused by vitamin E deficiency. Neurology 1979;29(8):1182–1186.PubMedGoogle Scholar
  104. 104.
    Osoegawa M, et al. [A patient with vitamin E deficient, myopathy presenting with amyotrophy]. Rinsho Shinkeigaku 2001;41(7):428–431.PubMedGoogle Scholar
  105. 105.
    Schneider C, Chemistry and biology of vitamin E. Mol Nutr Food Res 2005;49(1):7–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Sacheck JM, Blumberg JB. Role of vitamin E and oxidative stress in exercise. Nutrition 2001;17(10):809–814.PubMedCrossRefGoogle Scholar
  107. 107.
    Jackson MJ, et al. Vitamin E and the oxidative stress of exercise. Ann N Y Acad Sci 2004;1031: 158–168.PubMedCrossRefGoogle Scholar
  108. 108.
    Beaton LJ, et al. Contraction-induced muscle damage is unaffected by vitamin E supplementation. Med Sci Sports Exerc 2002;34(5):798–805.PubMedCrossRefGoogle Scholar
  109. 109.
    Haas DC, Vitamin E therapy in polymyositis. South Med J 1977;70(9):1148–1149.PubMedGoogle Scholar
  110. 110.
    Manach C, et al. Polyphenols: food sources and bioavailability. Am J ClinNutr 2004;79(5):727–747.Google Scholar
  111. 111.
    Nam NH, Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 2006;6(8):945–951.PubMedCrossRefGoogle Scholar
  112. 113.
    Dorchies OM, et al. Green tea extract and its major polyphenol (-)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 2006;290(2):C616–C625.Google Scholar
  113. 113.
    Moon Y, Lee M, Yang H. Involvement of early growth response gene 1 in the modulation of microsomal prostaglandin E synthase 1 by epigallocatechin gallate in A549 human pulmonary epithelial cells. Biochem Pharmacol 2007;73(1):125–135.PubMedCrossRefGoogle Scholar
  114. 114.
    Pugh N, et al. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 2001;67(8):737–742.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee AN, Werth VP. Activation of autoimmunity following use of immunostimulatory herbal supplements. Arch Dermatol 2004;140(6):723–727.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2008

Authors and Affiliations

  • Ingela Loell
  • Ingrid Lundberg

There are no affiliations available

Personalised recommendations