Skip to main content

Computational Modeling of Receptor-Ligand Binding and Cellular Signaling Processes

  • Chapter
  • First Online:

Part of the book series: Handbook of Modern Biophysics ((HBBT))

Many crucial cellular processes such as growth, death, cell division, as well as immune recognition and response to foreign pathogens crucially depend on receptor–ligand binding and subsequent cellular signaling [1]. However, such processes also tend to be very complex, typically involving a large number of components. It is not easy to develop a clear mechanistic understanding of such complex biological processes from experiments alone, and computational modeling can play a significant role in such an endeavor.

Mathematical and computational models of receptor–ligand dynamics may broadly be divided into two classes: (i) deterministic, differential equations-based models where molecular concentrations are treated as continuous functions, and (ii) Monte Carlo models where molecules are treated as discrete particles. Additionally, models may differ as to whether they consider spatial inhomogeneity in the distribution of receptor and signaling molecules. Thus, models may be classified into (i) continuous/nonspatial, (ii) continuous/spatial, (iii) discrete/nonspatial, and (iv) discrete/spatial, as shown in Figure 3.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lauffenburger DA, Linderman JJ. 1993. Models for binding, trafficking and signaling. Oxford: Oxford UP.

    Google Scholar 

  2. Wülfing C, Sjaastad MD, Davis MM. 1998. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci USA 95:6302–6307.

    Article  ADS  Google Scholar 

  3. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. 1998. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86.

    Article  ADS  Google Scholar 

  4. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227.

    Article  Google Scholar 

  5. Krummel MF, Sjaastad MD, Wülfing C, Davis MM. 2000. Differential clustering of CD4 and CD3zeta during T cell recognition. Science 289:1349–1352.

    Article  ADS  Google Scholar 

  6. Batista FD, Iber D, Neuberger MS. 2001. B cells acquire antigen from target cells after synapse formation. Nature 411:489–494.

    Article  ADS  MATH  Google Scholar 

  7. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD. 2004. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 20:589–599.

    Article  Google Scholar 

  8. Carrasco Y, Batista FD. 2006. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J 25:889–899.

    Article  Google Scholar 

  9. Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD. 2006. B cell ligand discrimination through a spreading and contracting response. Science 312:738–741.

    Article  ADS  Google Scholar 

  10. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, HollΣnder GA, Gascoigne NR, Palmer E. 2006. Thymic selection threshold defined by compartmentalization of Ras/MAPK signaling. Nature 444:724–729.

    Article  ADS  Google Scholar 

  11. Raychaudhuri S, Willgohs E, Nguyen TN, Khan EM, Goldkorn T. 2008. Monte Carlo simulation of cell death signaling predicts large cell-to-cell stochastic fluctuations through the type 2 pathway of apoptosis. Biophys J 95:3559–3562.

    Article  Google Scholar 

  12. Fall CP, Marland S, Wagner JM, Tyson JJ, eds. 2002. Computational cell biology. New York: Springer.

    MATH  Google Scholar 

  13. Segel IH. 1976. Biochemical calculations: how to solve mathematical problems in general biochemistry, 2nd ed. Hoboken, NJ: Wiley.

    Google Scholar 

  14. Qi SY, Groves JT, Chakraborty AK. 2001. Synaptic pattern formation during cellular recognition. Proc Natl Acad Sci USA 98:6548–6553.

    Article  ADS  Google Scholar 

  15. Burroughs NJ, Wülfing C. 2002. Differential segregation in a cell–cell contact interface: the dynamics of the immunological synapse. Biophys J 83:1784–1796.

    Article  Google Scholar 

  16. Lee SJE, Hori Y, Groves JT, Dustin ML, Chakraborty AK. 2002. Correlation of a dynamic model for immunological synapse formation with effector functions: two pathways to synapse formation. Trends Immunol 23:492–502.

    Article  Google Scholar 

  17. Raychaudhuri S, Chakraborty AK, Kardar M. 2003. Effective membrane model of the immunological synapse. Phys Rev Lett 91:(208101-1)–(208101-4).

    Article  ADS  Google Scholar 

  18. Coombs D, Dembo M, Wofsy C, Goldstein B. 2004. Equilibrium thermodynamics of cell–cell adhesion mediated by multiple ligand–receptor pairs. Biophys J 86:1408–1423.

    Article  Google Scholar 

  19. Lee KH, Dinner AR, Tu C, Campi G, Raychaudhri S, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS. 2003. The immunological synapse balances T cell receptor signaling and degradation. Science 302:1218–1222.

    Article  ADS  Google Scholar 

  20. Jansson A, Barnes E, Klenerman P, Harlen M, Sorensen P, Davis SJ, Nilsson P. 2005. A theoretical framework for quantitative analysis of the molecular basis of costimulation. J Immunol 175:1575–1585.

    Google Scholar 

  21. Weikl TR, Lipowsky R. 2004. Pattern formation during T-cell adhesion. Biophys J 87:3665–3678.

    Article  Google Scholar 

  22. Tsourkas P, Baumgarth N, Simon SI, Raychaudhuri S. 2007. Mechanisms of cell synapse formation predicted by Monte Carlo Simulation. Biophys J 92:4196–4208.

    Article  Google Scholar 

  23. Tsourkas P, Longo ML, Raychaudhuri S. 2008. Monte Carlo study of single molecule diffusion can elucidate the mechanism of B cell synapse formation. Biophys J 95:1118–1125.

    Article  Google Scholar 

  24. Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD. 2006. B cell ligand discrimination through a spreading and contracting response. Science 312:738–741.

    Article  ADS  Google Scholar 

  25. Gillespie DT. 1977. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361.

    Article  Google Scholar 

  26. McAdams HH, Arkin A. 1999. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15:65–69.

    Article  Google Scholar 

  27. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002. Regulation of noise in the expression of single gene. Nat Genet 31:69–73.

    Article  Google Scholar 

  28. http://xxx.lanl.gov/pdf/0704.1908.

  29. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092.

    Article  ADS  Google Scholar 

  30. Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–8.

    Article  MATH  Google Scholar 

  31. Guo C, Levine H. 2000. A statistical mechanics model for receptor clustering. J Biol Phys 26:219–234.

    Article  Google Scholar 

  32. Bray D, Levin MD, Morton-Firth CJ. 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88.

    Article  ADS  Google Scholar 

  33. Goldstein B, Faeder JR, Hlavacek WS. 2004. Mathematical and computational models of immune-receptor signaling. Nat Rev Immunol 4:445–456.

    Article  Google Scholar 

  34. Hammer D, Apte S. 1991. Simulation of cell rolling and adhesion of surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63:35–57.

    Article  Google Scholar 

  35. Bell, GI. 1983. Cell–cell adhesion in the immune system. Immunol Today 4:237–240.

    Article  Google Scholar 

  36. Newman MEJ, Barkema GT. 1999. Monte carlo methods in statistical physics. New York: Oxford UP.

    MATH  Google Scholar 

  37. Frenkel D, Smit B. 2001. Understanding molecular simulation, 2nd ed. Burlington, MA: Academic Press.

    Google Scholar 

  38. Halpin-Healy T, Zhang YC. 1995. Kinetic roughening phenomena, stochastic growth directed polymers and all that. Amsterdam: Elsevier.

    Google Scholar 

  39. Barabasi AL, Stanley HE. 1995. Fractal concepts in surface growth. Cambridge: Cambridge UP.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this chapter

Cite this chapter

Raychaudhuri, S., Raychaudhuri, P. (2009). Computational Modeling of Receptor-Ligand Binding and Cellular Signaling Processes. In: Jue, T. (eds) Fundamental Concepts in Biophysics. Handbook of Modern Biophysics. Humana Press. https://doi.org/10.1007/978-1-59745-397-4_3

Download citation

Publish with us

Policies and ethics