Advertisement

Regulation of Transport in the RPE

  • Adnan Dibas
  • Thomas Yorio
Part of the Ophthalmology Research book series (OPHRES)

Introduction

The retinal pigment epithelium (RPE) is a monolayer of post-mitotic pigmented epithelial cells juxtaposed between the neural retina and the choroid. It separates the outer surface of the neural retina from the choriocapillaris and functions as a part of the blood–retina barrier. The RPE's long apical microvilli surround the light-sensitive outer segments establishing a small extracellular domain known as the subretinal space, whereas the basolateral membrane faces Bruch's membrane, which separates the RPE from the choriocapillaris. The volume and chemical composition of the subretinal space fluctuates with the light and dark cycle. Such changes are attributed to the many volume and transport systems associated with RPE.

A healthy RPE is essential for photoreceptor survival, and maintenance of photoreceptor viability depends on viable RPE. The RPE functions both as a protective barrier and a nutrient controller for the photoreceptors. In fact, RPE regulates the transport of...

Keywords

Retinal Pigment Epithelium Apical Membrane Retinal Pigment Epithelium Cell Subretinal Space Human Retinal Pigment Epithelium Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by a grant from Texas Higher Education Coordinating Board for T. Yorio, and a grant from the National Glaucoma Foundation to A. Dibas.

References

  1. 1.
    1. Marmor MF. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 1999;97:239-249.PubMedGoogle Scholar
  2. 2.
    2. Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc Natl Acad Sci USA 1997;94:12932-12937.PubMedGoogle Scholar
  3. 3.
    3. Boulton M and Dayhaw-Baker P. The role of retinal pigment epithelium: topographical variation and ageing changes. Eye 2001;15:384-389.PubMedGoogle Scholar
  4. 4.
    4. Tanihara H, Inatani M, Honda Y. Growth factors and their receptors in the retina and pigment epithelium. Prog Retina Eye Res 1997;16:271-301.Google Scholar
  5. 5.
    5. Baehr W, Wu SM, Bird AC, Palczewski K. The retinoid cycle and retina disease. Vis Res 2003;43:2957-2958.PubMedGoogle Scholar
  6. 6.
    6. Pfeffer BA, Clark VM, Flannery JG, Bok D. Membrane receptors for retinal-binding protein in cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1986;27:1031-1040.PubMedGoogle Scholar
  7. 7.
    7. Bazan NG, Rodr Bazan NG, Bazan NG, Guez de Turco EB, Gordon WC. Pathways for the uptake and conservation of docosahexenoic acid in photoreceptors and synapses: biochemical and autoradiographic studies. Can J Physiol Pharmacol 1993;71:690-698.PubMedGoogle Scholar
  8. 8.
    8. Miller SS and Steinberg RH. Active transport of ions across frog retinal pigment epithelium. Exp Eye Res 1977;25:235-248.PubMedGoogle Scholar
  9. 9.
    9. Gallemore RP, Hughes BA, Miller SS. Light-induced responses of the retinal pigment epithelium. In: Marmor MF and Wolfensberger TJ, eds, The Retinal Pigment Epithelium. New York: Oxford University Press; 1998. p.175-198.Google Scholar
  10. 10.
    10. Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 2005;85:597-607.PubMedGoogle Scholar
  11. 11.
    11. Hageman GS and Mullins RF. Molecular composition of drusen as related to substructural phenotype. Mol Vis 1999;5:28.PubMedGoogle Scholar
  12. 12.
    12. Stalman P and Himpens B. Effect of increasing glucose concentrations and protein phosphorylation on intracellular communication in cultured rat retinal pigment epithelial cells. Invest Ophthalmol Vis Res 1997;38:1598-1609.Google Scholar
  13. 13.
    13. Rajasekaran SA, Hu J, Gopal J, Gallemore R, Ryazantsev S, Bok D, Rajasekaran AK. Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol 2003;284:C1497-C1507.PubMedGoogle Scholar
  14. 14.
    14. Hu JG, Gallemore RP, Bok D, Lee AY, Frambach DA. Localization of Na/K ATPase on cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1994;35:3582-3588.PubMedGoogle Scholar
  15. 15.
    15. Sugasawa K, Deguchi J, Okami T, Yamamoto A, Omori K, Uyama M, Tashiro Y. Immunocytochemical analyses of distributions of Na, K-ATPase and GLUT1, insulin and transferrin receptors in the developing retinal pigment epithelial cells. Cell Struct Funct 1994;19:21-28.PubMedGoogle Scholar
  16. 16.
    16. Frambach DA, Valentine JL, Weiter JJ. Precocious retinal adhesion is affected by furosemide and ouabain. Curr Eye Res 1989;8:553-556.PubMedGoogle Scholar
  17. 17.
    17. Crider JY, Yorio T, Sharif NA, Griffin BW. The effects of elevated glucose on Na+/K(+)-ATPase of cultured bovine retinal pigment epithelial cells measured by a new nonradioactive rubidium uptake assay. J Ocul Pharmacol Ther 1997;13:337-352.PubMedGoogle Scholar
  18. 18.
    18. Chandy KG and Gutman GA. Nomenclature for mammalian potassium channel genes. Trends in Pharmacol Sci 1991;14:434-435.Google Scholar
  19. 19.
    19. Yuan LL and Chen X. Diversity of potassium channels in neuronal dendrites. Prog Neurobiol 2006;78:374-389.PubMedGoogle Scholar
  20. 20.
    20. Ghatta S, Nimmagadda D, Xu X, O'Rourke ST. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 2006;110:103-116.PubMedGoogle Scholar
  21. 21.
    21. Doupnik CA, Davidson N, Lester HA. The inward rectifier potassium channel family. Curr Opin Neurobiol 1995;5:268-277.PubMedGoogle Scholar
  22. 22.
    22. Lu Z. Mechanism of rectification in inward-rectifier K+ channels. Annu Rev Physiol 2004;66:103-129.PubMedGoogle Scholar
  23. 23.
    23. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 2006;440: 470-476.PubMedGoogle Scholar
  24. 24.
    24. Pinto LH and Klupmm DJ. Localization of potassium channels in the retina. Prog Ret Eye Res 1998;17:207-230.Google Scholar
  25. 25.
    25. Wollmann G, Lenzner S, Berger W, Rosenthal R, Karl MO, Strauss O. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice. Vision Res 2006;46:688-698.PubMedGoogle Scholar
  26. 26.
    26. Takahira M and Hughes BA. Isolated bovine retinal pigment epithelial cells express delayed rectifier type and M-type K+ currents. Am J Physiol 1997;273:C790-C803.PubMedGoogle Scholar
  27. 27.
    Claydon TW, Boyett MR, Sivaprasadarao A, Ishii K, Owen JM, O’Beirne HA, Leach R, Komukai K, Orchard CH. J Physiol 2000;526:253–264.Google Scholar
  28. 28.
    28. Tao Q and Kelly ME. Calcium-activated potassium current in cultured rabbit retinal pigment epithelial cells. Curr Eye Res 1996;15:237-246.PubMedGoogle Scholar
  29. 29.
    29. Sheu SJ and Wu SN. Mechanism of inhibitory actions of oxidizing agents on calcium-activated potassium current in cultured pigment epithelial cells of the human retina. Invest Ophthalmol Vis Sci 2003;44:1237-1244.PubMedGoogle Scholar
  30. 30.
    30. Hughes BA and Takahira M. Inwardly rectifying K+ currents in isolated human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1996;37:1125-1139.PubMedGoogle Scholar
  31. 31.
    31. Strauss O, Richard G, Wienrich M. Voltage-dependent potassium currents in cultured human retinal pigment epithelial cells. Biochem Biophys Res Commun 1993;191:775-781.PubMedGoogle Scholar
  32. 32.
    32. Tao Q, Rafuse PE, Kelly ME. Potassium currents in cultured rabbit retinal pigment epithelial cells. J Membr Biol 1994;141:123-138.PubMedGoogle Scholar
  33. 33.
    33. Yang D, Pan A, Swaminathan A, Kumar G, Hughes BA. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 2003;44:3178-3185.PubMedGoogle Scholar
  34. 34.
    34. Kusaka S, Horio Y, Fujita A, Matsushita K, Inanobe A, Gotow T, Uchiyama Y, Tano Y, Kurachi Y. Expression and polarized distribution of an inwardly rectifying K+ channel, Kir4.1, in rat retinal pigment epithelium. J Physiol 1999;520:373-381.PubMedGoogle Scholar
  35. 35.
    35. Yuan Y, Shimura M, Hughes BA. Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 2003;549(Pt 2):429-438.PubMedGoogle Scholar
  36. 36.
    36. Hughes BA and Takahira M. ATP-dependent regulation of inwardly rectifying K+ current in bovine retinal pigment epithelial cells. Am J Physiol 1998;275:C1372-C1383.PubMedGoogle Scholar
  37. 37.
    37. Ettaiche M, Heurteaux C, Blondeau N, Borsotto M, Tinel N, Lazdunski M. ATP-sensitive potassium channels (KATP) in retina: a key role for delayed ischemic tolerance. Brain Res 2001;890:118-129.PubMedGoogle Scholar
  38. 38.
    38. Botchkin LM and Matthews G. Voltage-dependent sodium channels develop in rat retinal pigment epithelium cells in culture. Proc Natl Acad Sci USA 1994;91:4564-4568.PubMedGoogle Scholar
  39. 39.
    39. Eggermont J. Calcium-activated chloride channels. Unknown, unsolved. Proc Am Thorac Soc 2004;1:22-27.PubMedGoogle Scholar
  40. 40.
    40. Jentsch TJ, Valentin S, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2001;82:503-568.Google Scholar
  41. 41.
    41. Weng TX, Godley BF, Jin GF, Mangini NJ, Kennedy BG, Yu AS, Wills NK. Oxidant and antioxidant modulation of chloride channels expressed in human retinal pigment epithelium. Am J Physiol Cell Physiol 2002;283:C839-C849.PubMedGoogle Scholar
  42. 42.
    42. Wills NK, Weng T, Mo L, Hellmich HL, Yu A, Wang T, Buchheit S, Godley BF. Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress. Invest Ophthalmol Vis Sci 2000;41:247-255.Google Scholar
  43. 43.
    43. Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ. Embo J 2001;20:1289–1299.PubMedGoogle Scholar
  44. 44.
    44. Kurz LL, Klink H, Jacob I, Kuchenbecker M, Benz S, Lehman-Horn F, Rudel R. Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel. J Biol Chem 1999;274:11786-11692.Google Scholar
  45. 45.
    45. Silverstone BZ. Effects of zinc and copper metabolism in highly myopic patient. Ciba Found Symp 1990;155:210-217.PubMedGoogle Scholar
  46. 46.
    46. Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh MJ. Nucleoside triphosphate are required to open the CFTR chloride channel. Cell 1991;67:775-784.PubMedGoogle Scholar
  47. 47.
    47. Seibert FS, Chang XB, Aleksandrov AA, Clarke DM, Hanrahan JW, Riordan JR. Influence of phopshorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Biochim Biophys Acta 1999;1461:275-283.PubMedGoogle Scholar
  48. 48.
    48. Beitz E, Volkel H, Guo Y, Schultz JE. Adenylyl cyclase type 7 is the predominant isoform in the bovine retinal pigment epithelium. Acta Anat (Basel) 1998;162:157-162.Google Scholar
  49. 49.
    49. Blaug S, Quinn R, Quong J, Jalickee S, Miller SS. Retinal pigment epithelial function: a role for CFTR? Doc Ophthalmol 2003;106;4350.Google Scholar
  50. 50.
    Miller SS, Rabin J, Storng T, Iannuzzi M, Adam A, Collins F. Cystic fibrosis (CF) gene product is expressed in retinas and retinal pigment epithelium (abs). Invest Ophthalmol Vis Sci 1992;33(suppl).Google Scholar
  51. 51.
    51. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J. Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 2003;278:41114-41125.PubMedGoogle Scholar
  52. 52.
    52. O'Gorman S, Flaherty WA, Fishman GA, Berson EL. Histopathologic findings in Best's vitelliform macular dystrophy. Arch Ophthalmol 1988;106:1261-1268.PubMedGoogle Scholar
  53. 53.
    53. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 2002;99:4008-4013.PubMedGoogle Scholar
  54. 54.
    54. Eksandh L, Bakall B, Bauer B, Wadelius C, Anderson S. Best's vitelliform macular dystrophy caused by a news mutation (Val89Ala) in the VDM2 gene. Ophthalmic Genet 2001;22:107-115.PubMedGoogle Scholar
  55. 55.
    55. Kramer F, White K, Pauleikhoff D, Gehrig A, Passmore L, Rivera A, Rudloph G, Kellner U, Andrassi M, Lorenz B, Rohr-Schneider K, Blankenagel A, Jurklies B, Schilling H, Schutt F, Holz FG, Weber BH. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 2000;8:286-292.PubMedGoogle Scholar
  56. 56.
    56. Seddon JM, Afshari MA, Sharma S, Berstein PS, Chong S, Hutchinson A, Petrukhin K, Allikmets R. Assessment of mutations in the Best macular dystrophy (VMD2) gene in patients with adult-onset foveomacular vitelliform dystrophy, age-related maculopathy, and bull's-eye maculopathy. Ophthalmol 2001;108:2060-2067.Google Scholar
  57. 57.
    57. Marmorstein AD, Stanton JB, Yocom J, Bakall B, Schiavone MT, Wadelius C, Marmorstein LY, Peachey NS. A model of Best vitelliform macular dystrophy in rats. Invest Ophthalmol Vis Sci 2004;45:3733-3739.PubMedGoogle Scholar
  58. 58.
    58. Loewen ME, Smith NK, Hamilton DL, Grahn BH, Forsyth GW. CLCA protein and chloride transport in canine retinal pigment epithelium. Am J Physiol Cell Physiol 2003;285:C1314-C1321.PubMedGoogle Scholar
  59. 59.
    59. Qu Z, Fischmeister R, Hartzell C. Mouse bestrophin-2 is a bona fide Cl(-) channel: identification of a residue important in anion binding and conduction. J Gen Physiol 2004;123:327-340.PubMedGoogle Scholar
  60. 60.
    60. Fischmeister R and Hartzell HC. Volume sensitivity of the bestrophin family of chloride channels. J Physiol 2005;562:477-491.PubMedGoogle Scholar
  61. 61.
    61. Botchkin LM and Matthews G. Chloride current activated by swelling in retinal pigment epithelium cells. Am J Physiol 1993;265:C1037-C1045.PubMedGoogle Scholar
  62. 62.
    62. Loewen ME and Forsyth GW. Structure and function of CLCA proteins. Physiol Rev 2005;85:1961-10092.Google Scholar
  63. 63.
    63. Gruber BR, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU. Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl- channel proteins. Genomics 1998;54:200-214.PubMedGoogle Scholar
  64. 64.
    64. Evans SR, Thoreson WB, Beck CL. Molecular and Functional Analyses of Two New Calcium-activated Chloride Channel Family Members from Mouse Eye and Intestine. J Biol Chem 2004;279:41792-41800.PubMedGoogle Scholar
  65. 65.
    65. Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev 2004;56:633-654.PubMedGoogle Scholar
  66. 66.
    66. Schnetkamp PPM. The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond. Pflugers Arch 2004;447:683-688.PubMedGoogle Scholar
  67. 67.
    67. Loeffler KU and Mangini NJ. Immunohistochemical localization of Na+/Ca2+ exchanger in human retina and retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 1998;236:929-933.PubMedGoogle Scholar
  68. 68.
    68. Mangini NJ, Haugh-Scheidt L, Valle JE, Cragoe EJJr, Ripps H, Kennedy BG. Sodium-calcium exchanger in cultured human retinal pigment epithelium. Exp Eye Res 1997;65:821-834.PubMedGoogle Scholar
  69. 69.
    69. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 2005;85:423-493.PubMedGoogle Scholar
  70. 70.
    70. Lauf PK and Theg BE. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem Biophys Res Commun 1980;92:1422-1428.PubMedGoogle Scholar
  71. 71.
    71. Hu JG, Gallemore RP, Bok D, Frambach DA. Chloride transport in cultured fetal human retinal pigment epithelium. Exp Eye Res 1996;62:443-448.PubMedGoogle Scholar
  72. 72.
    72. Rymer J, Miller SS, Edelman JL. Epinephrine-induced increases in [Ca2+](in) and KCl-coupled fluid absorption in bovine RPE. Invest Ophthalmol Vis Sci 2001;42:1921-1929.PubMedGoogle Scholar
  73. 73.
    73. Kennedy BG. Volume regulation in cultured cells derived from human retinal pigment epithelium. Am J Physiol 1994;266:C676-C683.PubMedGoogle Scholar
  74. 74.
    74. Gross E and Kurtz I. Structural determinants and significance of regulation of electrogenic Na+-HCO3 - cotransporter stoichiometry. Am J Renal Physiol 2002;283:F876-F887.Google Scholar
  75. 75.
    75. Pushkin A and Kurtz I. SLC4 base HCO3 -, CO3 2-) transporters: classification, function, structure, genetic disease, and knockout models. Am J Physiol 2006;290:F580-F599.Google Scholar
  76. 76.
    76. Mount DB and Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 2004;477:710-721.Google Scholar
  77. 77.
    77. Alper SL, Chernova MN, Stewart AK. Regulation of Na+-independent Cl-/HCO3 - exchangers by pH. JOP 2001;2(4Suppl):171-175.PubMedGoogle Scholar
  78. 78.
    78. Romero MF. The electrogenic Na+/HCO3 - cotransporter, NBC. JOP 2001;2(4Suppl): 182-191.PubMedGoogle Scholar
  79. 79.
    79. Kurtz I, Petrasek D, Tatishchev S. Molecular mechanisms of electrogenic sodium bicarbonate cotransport: structural and equilibrium thermodynamic considerations. J Memb Biol 2004;197:77-90.Google Scholar
  80. 80.
    80. Gross E, Fedotoff O, Pushkin A, Abuladze N, Newman D, Kurtz I. Phosphorylation-induced modulation of pNBC1 function: distinct roles for the amino and carboxy-termini. J Physiol 2003;549:673-682.PubMedGoogle Scholar
  81. 81.
    Bok D, Schibler MJ, Pushkin A, Sassani P, Abuladze N, Naser Z, Kurtz I. Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. 2001;281:F920–F935.Google Scholar
  82. 82.
    82. Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, Huan W, Zhao S, Geske R, Montgomery C, Sligtenhorst I, Friddle C, Platt K, Sparks M, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu W, Kurtz I. Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 2003;34:313-319.PubMedGoogle Scholar
  83. 83.
    83. Edelman JL, Lin H, Miller SS. Potassium-induced chloride secretion across the frog retinal pigment epithelium. Am J Physiol 1997;266:C957-C966.Google Scholar
  84. 84.
    84. Edelman JL, Lin H, Miller SS. Acidification stimulates chloride and fluid absorption across frog retinal pigment epithelium. Am J Physiol 1994;266:C946-C956.PubMedGoogle Scholar
  85. 85.
    85. Segawa Y, Shirao Y, Kawasaki K. Retinal pigment epithelial origin of bicarbonate response. Jpn J Ophthalmol 1997;41:231-234.PubMedGoogle Scholar
  86. 86.
    86. Lin H and Miller SS. pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms. Am J Physiol 1991;261:C132-C142.PubMedGoogle Scholar
  87. 87.
    87. Hughes BA, Adorante JS, Miller SS, Lin H. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium. J Gen Physiol 1989;94:25-50.Google Scholar
  88. 88.
    88. Kenyon E, Maminishkis A, Joseph DP, Miller SS. Apical and basolateral membrane mechanisms that regulate pHi in bovine retinal pigment epithelium. Am J Physiol 1997;273:C456-C472.PubMedGoogle Scholar
  89. 89.
    89. Yang Z, Alvarez BV, Chakarova C, Jiang L, Karan G, Frederick JM, Zhao Y, Sauve Y, Li X, Zrenner E, Wissinger B, Hollander AI, Katz B, Baehr W, Cremers FP, Casey JR, Bhattacharya SS, Zhang K. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration. Hum Mol Genet 2005;14:255-265.PubMedGoogle Scholar
  90. 90.
    90. Vince JW and Reithmeier RAF. Carbonic anhydrase II binds to the carboxy-terminus of human band 3, the erythrocyte Cl-/HCO3 - exchanger. J Biol Chem 1998;273:28430-28437.PubMedGoogle Scholar
  91. 91.
    91. Vince JW and Reithmeier RAF. Identification of the carbonic anhydrase II binding site in the Cl-/HCO3 - anion exchanger AE1. Biochem 2000;39:5527-5533.Google Scholar
  92. 92.
    92. Vince JW, Carlsson U, Reithmeier RAF. Localization of the Cl-/HCO3 - anion exchanger binding site to the amino-terminal carbonic anhydrase. Biochem 2000;39:13344-13349.Google Scholar
  93. 93.
    93. Reithmeier RAF. A membrane metabolon linking carbonic anhydrase with chloride/bicarbonate anion exchangers. Blood Cell Mol Dis 2001;27:85-89.Google Scholar
  94. 94.
    94. Korte GE and Smith J. Carbonic anhydrase type II in regenerating retinal pigment epithelium. A histochemical study in the rabbit. Experientia 1993;49:789-791.PubMedGoogle Scholar
  95. 95.
    95. Alvarez BV, Loiselle FB, Supuran CT, Schwartz GJ, Casey JR. Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter. Biochem 2003;42:12321-12329.Google Scholar
  96. 96.
    96. Eichhorn M, Schreckenberger M, Tamm ER, Lutjen-Drecoll E. Carbonic anhydrase activity is increased in retinal pigmented epithelium and choriocapillaris of RCS rats. Graefes Arch Clin Exp Ophthalmol 1996;234:258-263.PubMedGoogle Scholar
  97. 97.
    97. Esbaugh AJ and Tufts BL. The structure and function of carbonic anhydrase isoenzymes in the respiratory system of vertebrates. Res Physiol Neurobiol; 2006;154:185-198.Google Scholar
  98. 98.
    98. Sun MK and Alkon DL. Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends in Pharmacol Sci 2002;23:83-89.Google Scholar
  99. 99.
    99. Pastroekova S, Parkkila A, Pastorek J, Supuran CT. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enz Inhib Med Chem 2004;3:199-229.Google Scholar
  100. 100.
    100. Biskobing DM. Dihydroxyvitamin D3 and phorbol ester acetate synergistically increase carbonic anhydrase II expression in a human myelomonocytic cell line. Endocrinol 1994;134:1493-1498.Google Scholar
  101. 101.
    101. Narumi S and Miyamoto E. Activation and phopshorylation of carbonic anhydrase by 3′,5′-monophosphate-dependent protein kinases. Biochim Biophys Acta 1974;350:215-224.PubMedGoogle Scholar
  102. 102.
    102. Wolfensberger TJ, Chiang RK, Takeuchi A, Marmor MF. Inhibition of membrane-bound carbonic anhydrase enhances subretinal fluid absorption and retinal adhesiveness. Graefes Arch Clin Exp Ophthalmol 2000;238:76-80.PubMedGoogle Scholar
  103. 103.
    103. Wolfensberger TJ, Mahieu I, Jarvis-Evans J, Boulton M, Carter ND, Nogradi A, Hollande E, Bird AC. Membrane-bound carbonic anhydrase in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1994;35:3401-3407.PubMedGoogle Scholar
  104. 104.
    104. Wolfensberger, TJ. The role of carbonic anhydrase inhibitors in the management of macular edema. Doc Ophthalmol 1999;97:387-397.PubMedGoogle Scholar
  105. 105.
    105. Nagelhus EA, Mathiisen TM, Bateman AC, Haug FM, Ottersen OP, Grubb JH, Waheed A, Sly WS. Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes. Proc Natl Acad Sci USA 2005;102:8030-8035.PubMedGoogle Scholar
  106. 106.
    106. Ochrietor JD, Clamp MF, Moroz TP, Grubb JH, Shah GN, Waheed A, Sly WS, Linser PJ. Carbonic anhydrase XIV identified as the membrane CA in mouse retina: strong expression in Muller cells and the RPE. Exp Eye Res 2005;81:492-500.PubMedGoogle Scholar
  107. 107.
    107. Wolfensberger TJ, Dmitriev AV, Govardovskii VI. Inhibition of membrane-bound carbonic anhydrase decreases subretinal pH and volume. Doc Ophthalmol 1999;97:261-271.PubMedGoogle Scholar
  108. 108.
    108. Hediger MA, Romero MF, Peng J, Rolfs A, Takanga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 2004;477:465-468.Google Scholar
  109. 109.
    109. Zadunaisky JA, Kinne-Saffran E, Kinne RA. Na/H exchange mechanism in apical membrane vesicles of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1989;30:2332-2340.PubMedGoogle Scholar
  110. 110.
    110. Adler AJ and Southwick RE. Distribution of glucose and lactate in the interphotoreceptor matrix. Ophthalmol Res 1992;24:243-252.Google Scholar
  111. 111.
    111. Philp NJ, Ochrieto JD, Rudoy C, Muramatsu T, Linser PJ. Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci 2003;44:1305-1311.PubMedGoogle Scholar
  112. 112.
    112. Ochrietor JD and Linser PJ. 5A11/Basigin gene products are necessary for proper maturation and function of the retina. Dev Neurosci 2004;26:380-387.PubMedGoogle Scholar
  113. 113.
    113. Clamp MF, Ochrietor JD, Moroz TP, Linser PJ. Developmental analyses of 5A11/Basigin, 5A11/Basigin-2 and their putative binding partner MCT1 in the mouse eye. Exp Eye Res 2004;78:777-789.PubMedGoogle Scholar
  114. 114.
    114. Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E. Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. Proc Natl Acad Sci USA 2005;102:16245-16250.PubMedGoogle Scholar
  115. 115.
    115. Philp NJ, Yoon H, Lombardi L. Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am J Physiol Cell Physiol 2001;280:C1319-C1326.PubMedGoogle Scholar
  116. 116.
    116. Kenyon E, Yu K, La Cour M, Miller SS. Lactate transport mechanisms at apical and basolateral membranes of bovine retinal pigment epithelium. Am J Physiol 1994;267:C1561-C1573.PubMedGoogle Scholar
  117. 117.
    117. Philp NJ, Wang D, Yoon H, Hjelmeland LM. Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells. Invest Ophthalmol Vis Sci 2003;44:1716-1721.PubMedGoogle Scholar
  118. 118.
    118. Ito A, Yamaguchi K, Onogawa T, Unno M, Suzuki T, Nishio T, Suzuki T, Sasano H, Abe T, Tamai M. Distribution of organic anion-transporting polypeptide 2 (oatp2) and oatp3 in the rat retina. Invest Ophthalmol Vis Sci 2002;43:858-863.PubMedGoogle Scholar
  119. 119.
    119. Gao B, Wenzel A, Grimm C, Vavricka SR, Benke D, Meier PJ, Reme CE. Localization of organic anion transport protein 2 in the apical region of rat retinal pigment epithelium. Invest Ophthalmol Vis Sci 2002;43:510-514.PubMedGoogle Scholar
  120. 120.
    120. Ito A, Yamaguchi K, Tomita H, Suzuki T, Onogawa T, Sato T, Mizutamari H, Mikkaichi T, Nishio T, Suzuki T, Unno M, Sasano H, Abe T, Tamai M. Distribution of rat organic anion transporting polypeptide-E (oatp-E) in the rat eye. Invest Ophthalmol Vis Sci 2003;44: 4877-4884.PubMedGoogle Scholar
  121. 121.
    121. Garcia DM and Burnside B. Suppression of cAMP-induced pigment granule aggregation in RPE by organic anion transport inhibitors. Invest Ophthalmol Vis Sci 1994;35: 178-188.PubMedGoogle Scholar
  122. 122.
    122. Stamer DW, Snyder RW, Smith BL, Agre P, Regan JW. Localization of aquaporin CHIP is the human eye: implications in the pathogenesis of glaucoma and other disorders of ocular fluid balance. Invest Ophthalmol Vis Sci 1994;35:3867-3872.PubMedGoogle Scholar
  123. 123.
    123. Nielsen S, Smith BL, Christensen EI, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 1993;90:7275-7279.PubMedGoogle Scholar
  124. 124.
    124. Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S. Am J Physiol 1998;274:C1332–C1345.PubMedGoogle Scholar
  125. 125.
    125. Stamer DW, Bok D, Hu J, Jaffe GJ, McKay BS. Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 2003;44:2803-2808.PubMedGoogle Scholar
  126. 126.
    126. Dibas A, Prasanna G, Yorio T. Characterization of endothelin system in Bovine optic nerve and retina. J Ocul Pharmacol Ther 2005;21:288-297PubMedGoogle Scholar
  127. 127.
    127. Yamamoto N, Sobue K, Miyachi T, Inagaki M, Miura Y, Katsuya H, Asai K. Differential regulation of aquaporin expression in astrocytes by protein kinase C. Brain Res Mol Brain Res 2001;95:110-116.PubMedGoogle Scholar
  128. 128.
    128. Khatami M, Stramm LE, Rockey JH. Ascorbate transport in cultured cat retinal pigment epithelial cells. Exp Eye Res 1986;43:607-615.PubMedGoogle Scholar
  129. 129.
    129. Karihaloo A, Kato K, Greene DA, Thomas TP. Protein kinase and Ca2+ modulation of myo-inositol transport in cultured retinal pigment epithelial cells. Am J Physiol 1997;273:C671-C678.PubMedGoogle Scholar
  130. 130.
    130. Yefimova MG, Jeanny JC, Guillonneau X, Keller N, Nguyen-Legros J, Sergeant C, Guillou F, Courtois Y. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci 2000;41:2343-2351.PubMedGoogle Scholar
  131. 131.
    131. Hahn P, Dentchev T, Qian Y, Rouault T, Harris ZL, Dunaief JL. Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina. Mol Vis 2004;10:598-607.PubMedGoogle Scholar
  132. 132.
    132. Said HM, Wang S, Ma TY. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway. J Physiol 2005;566:369-377.PubMedGoogle Scholar
  133. 133.
    133. Naggar H, Fei YJ, Ganapathy V, Smith SB. Regulation of reduced-folate transporter-1 (RFT-1) by homocysteine and identity of transport systems for homocysteine uptake in retinal pigment epithelial (RPE) cells. Exp Eye Res 2003;77:687-697.PubMedGoogle Scholar
  134. 134.
    134. Naggar H, Van Ells TK, Ganapathy V, Smith SB. Regulation of reduced-folate transporter-1 in retinal pigment epithelial cells by folate. Curr Eye Res 2005;1:35-44.Google Scholar
  135. 135.
    135. Chancy CD, Kekuda R, Huang W, Prasad PD, Kuhnel JM, Sirotnak FM, Roon P, Ganapathy V, Smith SB. Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium. J Biol Chem 2000;275:20676-20684.PubMedGoogle Scholar
  136. 136.
    136. Bridges CC, El-Sherbeny A, Ola MS, Ganapathy V, Smith SB. Transcellular transfer of folate across the retinal pigment epithelium. Curr Eye Res 2002;24:129-138.PubMedGoogle Scholar
  137. 137.
    137. Naggar H, Ola MS, Moore P, Huang W, Bridges CC, Ganapathy V, Smith SB. Downregulation of reduced-folate transporter by glucose in cultured RPE cells and in RPE of diabetic mice. Invest Ophthalmol Vis Sci 2002;43:556-563.PubMedGoogle Scholar
  138. 138.
    138. Peterson WM, Meggyesy C, Yu K, Miller SS. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 1997;17:2324-2337.PubMedGoogle Scholar
  139. 139.
    139. Takahashi J, Hikichi T, Mori F, Kawahara A, Yoshida A, Peterson WM. Effect of nucleotide P2Y2 receptor agonists on outward active transport of fluorescein across normal blood-retina barrier in rabbit. Exp Eye Res 2004;78:103-108.PubMedGoogle Scholar
  140. 140.
    140. Maminishkis A, Jalickee S, Blaug SA, Rymer J, Yerxa BR, Peterson WM, Miller SS. The P2Y(2) receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat. Invest Ophthalmol Vis Sci 2002;43:3555-3566.PubMedGoogle Scholar
  141. 141.
    141. Reigada D, Lu W, Zhang X, Friedman C, Pendrak K, McGlinn A, Stone RA, Laties AM, Mitchell CH. Degradation of extracellular ATP by the retinal pigment epithelium. Am J Cell Physiol 2005;289:C617-C624.Google Scholar
  142. 142.
    142. Mitchell CH. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol 2001;534:193-202.PubMedGoogle Scholar
  143. 143.
    143. Ammar DA, Hughes BA, Thompson DA. Neuropeptide Y and the retinal pigment epithelium: receptor subtypes, signaling, and bioelectrical responses. Invest Ophthalmol Vis Sci 1998;39:1870-1878.PubMedGoogle Scholar
  144. 144.
    144. Bragadottir, R., Kato, M., and Jarkman, S. Serotonin elevates the c-wave of the electroretinogram of the rabbit eye by increasing the transepithelial potential. Vis Res 1997:37: 2495-2503.PubMedGoogle Scholar
  145. 145.
    145. Kawahara A, Hikichi T, Kitaya N, Takahashi J, Mori F, Yoshida A. Adenosine agonist regulation of outward active transport of fluorescein across retinal pigment epithelium in rabbits. Exp Eye Res 2005;80:493-499.PubMedGoogle Scholar
  146. 146.
    146. Koh SM. VIP enhances the differentiation of retinal pigment epithelium in culture: from cAMP and pp60(c-src) to melanogenesis and development of fluid transport capacity. Prog Retin Eye Res 2000;19:669-688.PubMedGoogle Scholar
  147. 147.
    147. Fujiseki Y, Omori K, Omori K, Mikami Y, Suzukawa J, Okugawa G, Uyama M, Inagaki C. Natriuretic peptide receptors, NPR-A and NPR-B, in cultured rabbit retinal pigment epithelium cells. Jpn J Pharmacol 1999;79:359-368.PubMedGoogle Scholar
  148. 148.
    148. Mikami Y, Hara M, Yasukura T, Uyama M, Minato A, Inagaki C. Artial natriuretic peptide stimulates Cl- transport in retinal pigment epithelial cells. Curr Eye Res 1995;14:391-397.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Adnan Dibas
    • 1
  • Thomas Yorio
    • 1
  1. 1.Department of Pharmacology and NeuroscienceUniversity of North Texas Health Science CenterFort WorthUSA

Personalised recommendations