Advertisement

Ca2+ Channels in the Retinal Pigment Epithelium

Modulators of Retinal Pigment Epithelium Function and Communication with Neighboring Tissues
  • Olaf Strauss
Part of the Ophthalmology Research book series (OPHRES)

Calcium

Ca2+ has a high affinity for proteins (1, 2, 3, 4). Ca2+ binding to proteins subsequently results in three-dimensional changes in the protein structure and function (1, 2, 3, 4). With respect to these properties, Ca2+ ions differ from many other ions. Thus, Ca2+ can regulate protein and cell function, and can serve as a second messenger in regulatory signalling pathways (2,3,5, 6, 7). To fulfil this function cells keep a large Ca2+ concentration gradient between intracellular and extracellular space. Using active transporters and metabolic energy, cells maintain an intracellular Ca2+ concentration that is 10,000 times smaller than that of the extracellular space (5,6). To achieve regulatory changes in cell function, even small increases in intracellular free Ca2+ are sufficient (5,6). This occurs either by release of Ca2+ from cytosolic Ca2+ stores or by influx of Ca2+ into intracellular space. Ca2+ channels play a central role in the latter process.

Ca2+-Regulated Functions...

Keywords

Vascular Endothelial Growth Factor Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Retinal Degeneration Concentration Vascular Endothelial Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    1. Carafoli E. The Symposia on Calcium Binding Proteins and Calcium Function in Health and Disease: an historical account, and an appraisal of their role in spreading the calcium message. Cell Calcium 2005;37:279–81.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Carafoli E. Calcium–a universal carrier of biological signals. Delivered on 3 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 2005;272:1073–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Williams RJ. Calcium ions: their ligands and their functions. Biochem Soc Symp 1974; 133–8.Google Scholar
  4. 4.
    4. Williams RJ. Calcium-binding proteins in normal and transformed cells. Cell Calcium 1994;16:339–46.PubMedCrossRefGoogle Scholar
  5. 5.
    5. Berridge MJ. Unlocking the secrets of cell signaling. Annu Rev Physiol 2005;67:1–21.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11–21.PubMedCrossRefGoogle Scholar
  7. 7.
    7. Shuttleworth TJ. Intracellular Ca2+ signalling in secretory cells. J Exp Biol 1997;200:303–14.PubMedGoogle Scholar
  8. 8.
    8. Bellhorn MB and Lewis RK. Localization of ions in retina by secondary ion mass spectrometry. Exp Eye Res 1976;22:505–18.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Boulton M. Ageing of the retinal pigment epithelium. In: Osborne NN and Chader GJ, eds. Progress in retinal research. New York: Pergamon, Oxford; 1991. p. 125–51.Google Scholar
  10. 10.
    10. Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 2001;15:384–389.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Drager UC. Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci USA 1985;82:6716–20.PubMedCrossRefGoogle Scholar
  12. 12.
    12. Fishman ML, Oberc MA, Hess HH, Engel WK. Ultrastructural demonstration of calcium in retina, retinal pigment epithelium and choroid. Exp Eye Res 1977;24:341–53.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Hess HH. The high calcium content of retinal pigmented epithelium. Exp Eye Res 1975;21:471–9.PubMedCrossRefGoogle Scholar
  14. 14.
    14. Ulshafer RJ, Allen CB, Rubin ML. Distributions of elements in the human retinal pigment epithelium. Arch Ophthalmol 1990;108:113–7.PubMedGoogle Scholar
  15. 15.
    15. Strauss O. The Retinal Pigment Epithelium in Visual Function. Physiol Rev 2005; 85:845–851.PubMedCrossRefGoogle Scholar
  16. 16.
    16. Bok D. The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 1993;17:189–95.PubMedGoogle Scholar
  17. 17.
    17. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 1985;60:327–46.PubMedCrossRefGoogle Scholar
  18. 18.
    18. Nguyen-Legros J and Hicks D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. Int Rev Cytol 2000;196:245–313.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Edelman JL and Miller SS. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 1991;32:3033–40.PubMedGoogle Scholar
  20. 20.
    20. Joseph DP and Miller SS. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium. J Gen Physiol 1992;99:263–90.PubMedCrossRefGoogle Scholar
  21. 21.
    21. Maminishkis A, Jalickee S, Blaug SA, Rymer J, Yerxa BR, Peterson WM, Miller SS. The P2Y(2) receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat. Invest Ophthalmol Vis Sci 2002;43:3555–66.PubMedGoogle Scholar
  22. 22.
    22. Mitchell CH. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol 2001;534:193–202.PubMedCrossRefGoogle Scholar
  23. 23.
    23. Nash MS and Osborne NN. Agonist-induced effects on cyclic AMP metabolism are affected in pigment epithelial cells of the Royal College of Surgeons rat. Neurochem Int 1995;27: 253–62.PubMedCrossRefGoogle Scholar
  24. 24.
    24. Peterson WM, Meggyesy C, Yu K, Miller SS. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 1997;17:2324–37.PubMedGoogle Scholar
  25. 25.
    25. Quinn RH and Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1992;33:3513–27.PubMedGoogle Scholar
  26. 26.
    26. Quinn RH, Quong JN, Miller SS. Adrenergic receptor activated ion transport in human fetal retinal pigment epithelium. Invest Ophthalmol Vis Sci 2001;42:255–64.PubMedGoogle Scholar
  27. 27.
    27. Ryan JS, Baldridge WH, Kelly ME. Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells. J Physiol 1999;520(3):745–59.PubMedCrossRefGoogle Scholar
  28. 28.
    28. Rymer J, Miller SS, Edelman JL. Epinephrine-induced increases in [Ca2+](in) and KCl-coupled fluid absorption in bovine RPE. Invest Ophthalmol Vis Sci 2001;42:1921–9.PubMedGoogle Scholar
  29. 29.
    29. Sullivan DM, Erb L, Anglade E, Weisman GA, Turner JT, Csaky KG. Identification and characterization of P2Y2 nucleotide receptors in human retinal pigment epithelial cells. J Neurosci Res 1997;49:43–52.PubMedCrossRefGoogle Scholar
  30. 30.
    30. Bialek S, Quong JN, Yu K, Miller SS. Nonsteroidal anti-inflammatory drugs alter chloride and fluid transport in bovine retinal pigment epithelium. Am J Physiol 1996;270:C1175–89.PubMedGoogle Scholar
  31. 31.
    31. Fischmeister R and Hartzell HC. Volume sensitivity of the bestrophin family of chloride channels. J Physiol 2005;562:477–91.PubMedCrossRefGoogle Scholar
  32. 32.
    32. Hu JG, Gallemore RP, Bok D, Frambach DA. Chloride transport in cultured fetal human retinal pigment epithelium. Exp Eye Res 1996;62:443–8.PubMedCrossRefGoogle Scholar
  33. 33.
    33. Miller SS and Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol 1990;424:283–300.PubMedGoogle Scholar
  34. 34.
    34. Ryan JS and Kelly ME. Activation of a nonspecific cation current in rat cultured retinal pigment epithelial cells: involvement of a G(alpha i) subunit protein and the mitogen-activated protein kinase signalling pathway. Br J Pharmacol 1998;124:1115–22.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Sheu SJ and Wu SN. Mechanism of inhibitory actions of oxidizing agents on calcium-activated potassium current in cultured pigment epithelial cells of the human retina. Invest Ophthalmol Vis Sci 2003;44:1237–44.PubMedCrossRefGoogle Scholar
  36. 36.
    36. Strauss O, Wiederholt M, Wienrich M. Activation of Cl- currents in cultured rat retinal pigment epithelial cells by intracellular applications of inositol-1,4,5-triphosphate: differences between rats with retinal dystrophy (RCS) and normal rats. J Membr Biol 1996;151:189–200.PubMedCrossRefGoogle Scholar
  37. 37.
    37. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 2002;99:4008 –13.PubMedCrossRefGoogle Scholar
  38. 38.
    38. Tao Q and Kelly ME. Calcium-activated potassium current in cultured rabbit retinal pigment epithelial cells. Curr Eye Res 1996;15:237–46.PubMedCrossRefGoogle Scholar
  39. 39.
    39. Tanihara H, Inatani M, Honda Y. Growth factors and their receptors in the retina and pigment epithelium. Prog Retin Eye Res 1997;16:271–301.CrossRefGoogle Scholar
  40. 40.
    40. Campochiaro PA. Cytokine production by retinal pigmented epithelial cells. Int Rev Cytol 1993;146:75–82.PubMedCrossRefGoogle Scholar
  41. 41.
    41. Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV. CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1 alpha. J Immunol 2000;165:4372–8.PubMedGoogle Scholar
  42. 42.
    42. Enzmann V, Hollborn M, Kuhnhoff S, Wiedemann P, Kohen L. Influence of interleukin 10 and transforming growth factor-beta on T cell stimulation through allogeneic retinal pigment epithelium cells in vitro. Ophthalmic Res 2002;34:232–40.PubMedCrossRefGoogle Scholar
  43. 43.
    43. Ishida K, Panjwani N, Cao Z, Streilein JW. Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocul Immunol Inflamm 2003;11:91–105.PubMedCrossRefGoogle Scholar
  44. 44.
    44. Matsumoto M, Yoshimura N, Honda Y. Increased production of transforming growth factor-beta 2 from cultured human retinal pigment epithelial cells by photocoagulation. Invest Ophthalmol Vis Sci 1994;35:4245–52.PubMedGoogle Scholar
  45. 45.
    45. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 2003;3:879–89.PubMedCrossRefGoogle Scholar
  46. 46.
    46. Streilein JW, Ma N, Wenkel H, Ng TF, Zamiri P. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vision Res 2002;42:487–95.PubMedCrossRefGoogle Scholar
  47. 47.
    47. Wenkel H and Streilein JW. Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci 2000;41:3467–73.PubMedGoogle Scholar
  48. 48.
    48. Sher E, Giovannini F, Codignola A, Passafaro M, Giorgi-Rossi P, Volsen S, Craig P, Davalli A, Carrera P. Voltage-operated calcium channel heterogeneity in pancreatic beta cells: physiopathological implications. J Bioenerg Biomembr 2003;35:687–96.PubMedCrossRefGoogle Scholar
  49. 49.
    49. Rossier MF, Burnay MM, Vallotton MB, Capponi AM. Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology 1996;137:4817–26.PubMedCrossRefGoogle Scholar
  50. 50.
    50. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521–55.PubMedCrossRefGoogle Scholar
  51. 51.
    51. Catterall WA. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 1998;24:307–23.PubMedCrossRefGoogle Scholar
  52. 52.
    52. Rosenthal R, Malek G, Salomon N, Peill-Meininghaus M, Coeppicus L, Wohlleben H, Wimmers S, Bowes Rickman C, Strauss O. The fibroblast growth factor receptors, FGFR-1 and FGFR-2, mediate two independent signalling pathways in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2005;337:241–7.PubMedCrossRefGoogle Scholar
  53. 53.
    53. Rosenthal R, Wohlleben H, Malek G, Schlichting L, Thieme H, Bowes Rickman C, Strauss O. Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration. Biochem Biophys Res Commun 2004;323:1203–8.PubMedCrossRefGoogle Scholar
  54. 54.
    54. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005;57:411–25.PubMedCrossRefGoogle Scholar
  55. 55.
    55. Striessnig J, Hoda JC, Koschak A, Zaghetto F, Mullner C, Sinnegger-Brauns MJ, Wild C, Watschinger K, Trockenbacher A, Pelster G. L-type Ca2+ channels in Ca2+ channelopathies. Biochem Biophys Res Commun 2004;322:1341–6.PubMedCrossRefGoogle Scholar
  56. 56.
    56. Kew JN and Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005;179:4–29.CrossRefGoogle Scholar
  57. 57.
    57. Mayer ML. Glutamate receptor ion channels. Curr Opin Neurobiol 2005;15:282–8.PubMedCrossRefGoogle Scholar
  58. 58.
    58. Burnstock G. Introduction: P2 receptors. Curr Top Med Chem 2004;4:793–803.PubMedCrossRefGoogle Scholar
  59. 59.
    59. North RA. Molecular physiology of P2X receptors. Physiol Rev 2002;82:1013–67.PubMedGoogle Scholar
  60. 60.
    60. Kaupp UB and Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002;82: 769–824.PubMedGoogle Scholar
  61. 61.
    61. Inoue R. TRP channels as a newly emerging non-voltage-gated Ca2+ entry channel superfamily. Curr Pharm Des 2005;11:1899–914.PubMedCrossRefGoogle Scholar
  62. 62.
    62. Clapham DE, Montell C, Schultz G, Julius D. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 2003;55:591–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Ramsey IS, Delling M, Clapham DE. An Introduction to TRP Channels. Annu Rev Physiol 2005.Google Scholar
  64. 64.
    64. Ueda Y and Steinberg RH. Voltage-operated calcium channels in fresh and cultured rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1993;34:3408–18.PubMedGoogle Scholar
  65. 65.
    65. Ueda Y and Steinberg RH. Dihydropyridine-sensitive calcium currents in freshly isolated human and monkey retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1995;36:373–80.PubMedGoogle Scholar
  66. 66.
    66. Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein A, Strauss O. Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 2006;20:178–80.PubMedGoogle Scholar
  67. 67.
    67. Rosenthal R, Thieme H, Strauss O. Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L-type channels (Ca(v)1.3). FASEB J 2001;15:970–7.PubMedCrossRefGoogle Scholar
  68. 68.
    68. Strauss O, Buss F, Rosenthal R, Fischer D, Mergler S, Stumpff F, Thieme H. Activation of neuroendocrine L-type channels (alpha1D subunits) in retinal pigment epithelial cells and brain neurons by pp60(c-src). Biochem Biophys Res Commun 2000;270:806–10.PubMedCrossRefGoogle Scholar
  69. 69.
    69. Strauss O, Mergler S, Wiederholt M. Regulation of L-type calcium channels by protein tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epithelial cells. FASEB J 1997;11:859–67.PubMedGoogle Scholar
  70. 70.
    70. Strauss O and Wienrich M. Cultured retinal pigment epithelial cells from RCS rats express an increased calcium conductance compared with cells from non-dystrophic rats. Pflugers Arch 1993;425:68–76.PubMedCrossRefGoogle Scholar
  71. 71.
    71. Strauss O and Wienrich M. Ca(2+)-conductances in cultured rat retinal pigment epithelial cells. J Cell Physiol 1994;160:89–96.PubMedCrossRefGoogle Scholar
  72. 72.
    72. Wollmann G, Lenzner S, Berger W, Rosenthal R, Karl MO, Strauss O. Voltage-dependent ion channels in the mouse RPE: Comparison with Norrie disease mice. Vision Res 2006;46:688–98.PubMedCrossRefGoogle Scholar
  73. 73.
    73. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994;74:365–507.PubMedGoogle Scholar
  74. 74.
    74. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD. The Light Peak of the Electroretinogram Is Dependent on Voltage-gated Calcium Channels and Antagonized by Bestrophin (Best-1). J Gen Physiol 2006;127:577–89.PubMedCrossRefGoogle Scholar
  75. 75.
    75. Hughes BA, Takahira M, Segawa Y. An outwardly rectifying K+ current active near resting potential in human retinal pigment epithelial cells. Am J Physiol 1995;269:C179–87.PubMedGoogle Scholar
  76. 76.
    76. Hughes BA and Steinberg RH. Voltage-dependent currents in isolated cells of the frog retinal pigment epithelium. J Physiol 1990;428:273–97.PubMedGoogle Scholar
  77. 77.
    77. la Cour M. The retinal pigment epithelium controls the potassium activity in the subretinal space. Acta Ophthalmol 1985;173(Suppl):9–10.Google Scholar
  78. 78.
    78. Miller SS and Steinberg RH. Active transport of ions across frog retinal pigment epithelium. Exp Eye Res 1977;25:235–48.PubMedCrossRefGoogle Scholar
  79. 79.
    79. Miller SS and Steinberg RH. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol 1977;36:337–72.PubMedCrossRefGoogle Scholar
  80. 80.
    80. Oakley B 2nd, Steinberg RH, Miller SS, Nilsson SE. The in vitro frog pigment epithelial cell hyperpolarization in response to light. Invest Ophthalmol Vis Sci 1977;16: 771–4.PubMedGoogle Scholar
  81. 81.
    81. Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J. alpha 1D (Cav1.3) subunits can form I-type Ca2+ channels activating at negative voltages. J Biol Chem 2001;276:22100–6.PubMedCrossRefGoogle Scholar
  82. 82.
    82. Michna M, Knirsch M, Hoda JC, Muenkner S, Langer P, Platzer J, Striessnig J, Engel J. Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol 2003; 553:747–58.PubMedCrossRefGoogle Scholar
  83. 83.
    83. Scholze A, Plant TD, Dolphin AC, Nurnberg B. Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line. Mol Endocrinol 2001;15:1211–21.PubMedCrossRefGoogle Scholar
  84. 84.
    84. Mergler S and Strauss O. Stimulation of L-type Ca(2+) channels by increase of intracellular InsP3 in rat retinal pigment epithelial cells. Exp Eye Res 2002;74:29–40.PubMedCrossRefGoogle Scholar
  85. 85.
    85. Mergler S, Steinhausen K, Wiederholt M, Strauss O. Altered regulation of L-type channels by protein kinase C and protein tyrosine kinases as a pathophysiologic effect in retinal degeneration. FASEB J 1998;12:1125–34.PubMedGoogle Scholar
  86. 86.
    86. Strauss O, Steinhausen K, Mergler S, Stumpff F, Wiederholt M. Involvement of protein tyrosine kinase in the InsP3-induced activation of Ca2+-dependent Cl- currents in cultured cells of the rat retinal pigment epithelium. J Membr Biol 1999;169:141–53.PubMedCrossRefGoogle Scholar
  87. 87.
    87. Qu Z, Fischmeister R, Hartzell C. Mouse bestrophin-2 is a bona fide Cl(-) channel: identification of a residue important in anion binding and conduction. J Gen Physiol 2004;123:327–40.PubMedCrossRefGoogle Scholar
  88. 88.
    88. Arden, G. B. & Constable, P. A. (2006). The electro-oculogram. Prog Retin Eye Res 25, 207–48.PubMedCrossRefGoogle Scholar
  89. 89.
    89. Gallemore RP, Griff ER, Steinberg RH. Evidence in support of a photoreceptoral origin for the “light-peak substance”. Invest Ophthalmol Vis Sci 1988;29:566–71.PubMedGoogle Scholar
  90. 90.
    90. Gallemore RP, Li JD, Govardovskii VI, Steinberg RH. Calcium gradients and light-evoked calcium changes outside rods in the intact cat retina. Vis Neurosci 1994;11:753–61.PubMedCrossRefGoogle Scholar
  91. 91.
    91. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996;87: 1203–14.PubMedCrossRefGoogle Scholar
  92. 92.
    92. Mears D. Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J Membr Biol 2004;200:57–66.PubMedCrossRefGoogle Scholar
  93. 93.
    93. Strauss O, Heimann H, Foerster MH, Agostini H, Hansen LL, Rosenthal R. Activation of L-type Ca2+ Channels is Necessary for Growth Factor-dependent Stimulation of VEGF Secretion by RPE Cells. Invest Ophthalmol Vis Sci 2003;44:(e-abstract)3926.Google Scholar
  94. 94.
    94. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003;22:1–29.PubMedCrossRefGoogle Scholar
  95. 95.
    95. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003;48:257–93.PubMedCrossRefGoogle Scholar
  96. 96.
    96. Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol 2000;184: 301–10.PubMedCrossRefGoogle Scholar
  97. 97.
    Eyetech, Study & Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 2003;110:979–86.Google Scholar
  98. 98.
    98. Frank RN. Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 1997;29:341–53.PubMedCrossRefGoogle Scholar
  99. 99.
    99. Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT. Increased expression of angiogenic growth factors in age-related maculopathy. Brit J Ophthalmol 1997;81: 154–62.CrossRefGoogle Scholar
  100. 100.
    100. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996;37:855–68.PubMedGoogle Scholar
  101. 101.
    101. Slomiany, MG and Rosenzweig S A (2004). IGF-1-induced VEGF and IGFBP-3 secretion correlates with increased HIF-1 alpha expression and activity in retinal pigment epithelial cell line D407. Invest Ophthalmol Vis Sci 45, 2838–47.PubMedCrossRefGoogle Scholar
  102. 102.
    102. Kramer F, White K, Pauleikhoff D, Gehrig A, Passmore L, Rivera A, Rudolph G, Kellner U, Andrassi M, Lorenz B, Rohrschneider K, Blankenagel A, Jurklies B, Schilling H, Schutt F, Holz FG, Weber BH. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 2000;8:286–92.PubMedCrossRefGoogle Scholar
  103. 103.
    103. Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best's disease). Hum Mol Genet 1998;7:1517–25.PubMedCrossRefGoogle Scholar
  104. 104.
    104. Pollack K, Kreuz FR, Pillunat LE. Best's disease with normal EOG. Case report of familial macular dystrophy. Ophthalmologe 2005;102:891–4.PubMedCrossRefGoogle Scholar
  105. 105.
    105. Renner AB, Tillack H, Kraus H, Kramer F, Mohr N, Weber BH, Foerster MH, Kellner U. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 2005;112:586–92.PubMedCrossRefGoogle Scholar
  106. 106.
    106. Wabbels BK, Demmler A, Preising M, Lorenz B. Fundus autofluorescence in patients with genetically determined Best vitelliform macular dystrophy: Evaluation of genotype-phenotype correlation and longitudinal course. Invest Ophthalmol Vis Sci 2004;45: (e-abstract)1762.Google Scholar
  107. 107.
    107. D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9:645–51.PubMedCrossRefGoogle Scholar
  108. 108.
    108. Edwards RB and Szamier RB. Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 1977;197:1001–3.PubMedCrossRefGoogle Scholar
  109. 109.
    109. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, Apfelstedt-Sylla E, Vollrath D. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000;26:270–1.PubMedCrossRefGoogle Scholar
  110. 110.
    110. Goldman AI and O'Brien PJ. Phagocytosis in the retinal pigment epithelium of the RCS rat. Science 1978;201:1023–5.PubMedCrossRefGoogle Scholar
  111. 111.
    111. Strauss O, Stumpff F, Mergler S, Wienrich M, Wiederholt M. The Royal College of Surgeons Rat: an animal model for inherited retinal degeneration with a still unknown genetic defect. Acta Anat (Basel) 1998;162:101–11.CrossRefGoogle Scholar
  112. 112.
    112. Bollimuntha S, Cornatzer E, Singh BB. Plasma membrane localization and function of TRPC1 is dependent on its interaction with beta-tubulin in retinal epithelium cells. Vis Neurosci 2005;22:163–70.PubMedCrossRefGoogle Scholar
  113. 113.
    113. Wettschureck N and Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005;85:1159–204.PubMedCrossRefGoogle Scholar
  114. 114.
    114. Poyer JF, Ryan JS, Kelly ME. G protein-mediated activation of a nonspecific cation current in cultured rat retinal pigment epithelial cells. J Membr Biol 1996;153:13–26.PubMedCrossRefGoogle Scholar
  115. 115.
    115. Collison DJ, Tovell VE, Coombes LJ, Duncan G, Sanderson J. Potentiation of ATP-induced Ca2+ mobilisation in human retinal pigment epithelial cells. Exp Eye Res 2005;80:465–75.PubMedCrossRefGoogle Scholar
  116. 116.
    116. Reigada D, Lu W, Zhang X, Friedman C, Pendrak K, McGlinn A, Stone RA, Laties AM, Mitchell CH. Degradation of extracellular ATP by the retinal pigment epithelium. Am J Physiol Cell Physiol 2005;289:C617–24.PubMedCrossRefGoogle Scholar
  117. 117.
    117. Reigada D and Mitchell CH. Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol Cell Physiol 2005;288:C132–40.PubMedGoogle Scholar
  118. 118.
    118. Fragoso G and Lopez-Colome AM. Excitatory amino acid-induced inositol phosphate formation in cultured retinal pigment epithelium. Vis Neurosci 1999;16:263–9.PubMedCrossRefGoogle Scholar
  119. 119.
    119. Lopez-Colome AM, Fragoso G, Wright CE, Sturman JA. Excitatory amino acid receptors in membranes from cultured human retinal pigment epithelium. Curr Eye Res 1994;13:553–60.PubMedCrossRefGoogle Scholar
  120. 120.
    120. Besharse JC and Spratt G. Excitatory amino acids and rod photoreceptor disc shedding: analysis using specific agonists. Exp Eye Res 1988;47:609–20.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Olaf Strauss
    • 1
  1. 1.Experimentelle Ophthalmologie, Klinik und Poliklinik für AugenheilkundeKlinikum der Universität RegensburgRegensburgGermany

Personalised recommendations