Advertisement

Aquaporins and Water Transport in the Cornea

  • Alan S. Verkman
Part of the Ophthalmology Research book series (OPHRES)

Introduction

The eye contains specialized avascular tissues for corneal and lens transparency, secretory epithelia for regulation of aqueous fluid volume and pressure, and electrically excitable cells for retinal signal transduction. Regulated fluid transport between extravascular spaces and adjacent tissues or microvessels supports these specialized functions. The general paradigm in mammalian tissues, including the eye, is that water movement follows osmotic gradients generated by active and secondary active solute transport. Although all cell membranes have significant water permeability, AQP-type water cells are found in some cell types where they increase plasma membrane water permeability by a few up to approximately 100-fold compared to membranes without AQPs. This chapter provides a brief description of AQP structure and function, followed by evidence about the physiological role of AQPs in extraocular and ocular tissues, with focus on cornea.

Aquaporin Structure and Transport...

Keywords

Water Permeability Ocular Surface Corneal Endothelium Corneal Epithelial Cell Ciliary Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Supported by grants EY13574, HL73856, DK72517, DK35124, HL59198, and EB00415 from the National Institutes of Health, and drug discovery and research development program grants from the Cystic Fibrosis Foundation.

References

  1. 1.
    1. Sui H, Han BG, Lee JK, Walian P, Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001;414:872–878.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J Stroud RM. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 2000;290:481–486.PubMedCrossRefGoogle Scholar
  3. 3.
    3. Harries WE, Akhavan D, Miercke LJ, Khademi S, Stroud RM. The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc Natl Acad Sci USA 2004;101:14045–14050.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Fujiyoshi Y, Mitsuoka K, de Groot BL, Philippsen A, Grubmuller H, Agre P, Engel A Structure and function of water channels. Curr Opin Struct Biol 2002;12:509–515.PubMedCrossRefGoogle Scholar
  5. 5.
    5. Stroud RM, Nollert P, Miercke L. The glycerol facilitator GlpF its aquaporin family of channels, and their selectivity. Adv Protein Chem 2003;63:291–316.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Verbavatz JM, Brown D, Sabolic I, Valenti G, Ausiello DA, Van Hoek AN, Ma T, Verkman AS. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 1991;23:605–618.Google Scholar
  7. 7.
    7. Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O'Connell J, Stroud RM, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002;296:525–530.PubMedCrossRefGoogle Scholar
  8. 8.
    8. Castle NA. Aquaporins as targets for drug discovery. Drug Discov Today 2005;10:485–493.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Verkman AS. Applications of aquaporin inhibitors. Drug News Perspect 2001;14:412–320.PubMedCrossRefGoogle Scholar
  10. 10.
    10. Francis P, Berry V, Bhattacharya S, Moore A. Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br J Ophthalmol 2000;84:1376–1379.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Verkman AS. Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev Physiol Biochem Pharmacol 2005;155:31–55.PubMedCrossRefGoogle Scholar
  12. 12.
    12. Verkman AS. Roles of aquaporins in kidney revealed by transgenic mice. Semin Nephrol 2006;26:200–208.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 1999;274:20071–20074.PubMedCrossRefGoogle Scholar
  14. 14.
    14. Zhang D, Vetrivel L, Verkman AS. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. J Gen Physiol 2002;119:561–569.PubMedGoogle Scholar
  15. 15.
    15. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 2006;1758:1085–1093.PubMedCrossRefGoogle Scholar
  16. 16.
    16. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen A, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema following acute water intoxication and ischemic stroke. Nature Med 2000;6:159–163.PubMedCrossRefGoogle Scholar
  17. 17.
    17. Da T, Verkman AS. Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest Ophthalmol Vis Sci 2004;45:4477–4483.PubMedCrossRefGoogle Scholar
  18. 18.
    18. Binder D, Papadopolous MC, Haggie PM, Verkman AS. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. J Neurosci 2004;24:8049–8056.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2005;2:825–827.PubMedCrossRefGoogle Scholar
  20. 20.
    20. Binder DK, Yao X, Sick TJ, Verkman AS, Manley GT. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 2006;53:631–636.PubMedCrossRefGoogle Scholar
  21. 21.
    21. Li J, Patil RV, Verkman AS. Mildly abnormal retinal function in transgenic mice without Müller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 2002;43:573–579.PubMedGoogle Scholar
  22. 22.
    22. Saadoun M, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted of aquaporin-1 gene disruption. Nature 2005;434:786–792.PubMedCrossRefGoogle Scholar
  23. 23.
    23. Saadoun M, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 2005;118: 5691–5698.PubMedCrossRefGoogle Scholar
  24. 24.
    24. Hara-Chikuma M, Verkman AS. Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 2006;17:39–45.PubMedCrossRefGoogle Scholar
  25. 25.
    25. Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 2006;20:1892–1894.PubMedCrossRefGoogle Scholar
  26. 26.
    26. Levin MH, Verkman AS. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci 2006;47:4365–4372.PubMedCrossRefGoogle Scholar
  27. 27.
    27. Hara M, Ma T, Verkman AS. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity and barrier recovery. J Biol Chem 2002;277:46616–46621.PubMedCrossRefGoogle Scholar
  28. 28.
    Hara-Chikuma M, Verkman AS. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med in press.Google Scholar
  29. 29.
    29. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, Uchida S, Verkman AS. Progressive adipocyte hypertrophy in aquaporin-7 deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 2005;280:15493–15496.PubMedCrossRefGoogle Scholar
  30. 30.
    30. Nielsen S, Smith BI, Christensen EI, Agre PA. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 1993;90:7275–7279.PubMedCrossRefGoogle Scholar
  31. 31.
    31. Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S. Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 1998;274:C1332–1345.PubMedGoogle Scholar
  32. 32.
    32. Frigeri A, Gropper M, Turck CW, Verkman AS. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci USA 1995;92:4328–4331.PubMedCrossRefGoogle Scholar
  33. 33.
    33. Hasegawa H, Lian SC, Finkbeiner WB, Verkman AS. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol 1994;266:C893–C903.PubMedGoogle Scholar
  34. 34.
    34. Patil RV, Saito I, Yang X, Wax MB. Expression of aquaporins in the rat ocular tissue. Exp Eye Res 1997;64:203–209.PubMedCrossRefGoogle Scholar
  35. 35.
    35. Stamer WD, Peppel K, O'Donnell ME, Roberts BC, Wu F, Epstein DS. Expression of aquaporin-1 in human trabecular meshwork cells: role in resting cell volume. Invest Ophthalmol Vis Sci 2001;42:1803–1811.PubMedGoogle Scholar
  36. 36.
    36. Ruiz-Ederra J, Verkman AS. Accelerated cataract formation and reduced lens epithelial water permeability in aquaporin-1deficient mice. Invest Ophthalmol Vis Sci 2006;47:3960–3967.PubMedCrossRefGoogle Scholar
  37. 37.
    37. Varadaraj K, Kumari S, Shiels A, Mathias RT. Regulation of aquaporin water permeability in the lens. Invest Ophthalmol Vis Sci 2005;46:1393–1402.PubMedCrossRefGoogle Scholar
  38. 38.
    38. Connors NC, Kofuji P. Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia 2006;53:124–131.PubMedCrossRefGoogle Scholar
  39. 39.
    39. Nagelhus EA, Horio A, Inanobe Al, Fujita FM, Haug S, Nielson S, Kurachi Y, Ottersen OP. Immungold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 1999;26:47–54.PubMedCrossRefGoogle Scholar
  40. 40.
    40. Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 2001;276:31233–31237.PubMedCrossRefGoogle Scholar
  41. 41.
    41. Freegard TJ. The physical basis of transparency of the normal cornea. Eye 1997;11:465–471.PubMedGoogle Scholar
  42. 42.
    42. Maurice DM. The structure and transparency of the cornea. J Physiol 1957;136:263–286.PubMedGoogle Scholar
  43. 43.
    43. Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem 2002;277:19139–19144.PubMedCrossRefGoogle Scholar
  44. 44.
    44. Kuang K, Yiming M, Wen Q, Li Y, Ma L, Iserovich P, Verkman AS, Fischbarg J. Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. Exp Eye Res 2004;78:791–798.PubMedCrossRefGoogle Scholar
  45. 45.
    45. Fischbarg J, Diecke FP, Iserovich P, Rubashkin A. The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a driving force. J Membr Biol 2005;210:117–130.CrossRefGoogle Scholar
  46. 46.
    46. Candia OA. Electrolyte and fluid transport across corneal, conjunctival, and lens epithelia. Exp Eye Res 2004;78:527–535.PubMedCrossRefGoogle Scholar
  47. 47.
    47. Levin MH, Verkman AS. Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva. Invest Ophthalmol Vis Sci 2004;45:4423–4432.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Alan S. Verkman
    • 1
  1. 1.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations