Skip to main content

Functional Anatomy and Physiology of the Basal Ganglia: Non-motor Functions

  • Chapter
Deep Brain Stimulation in Neurological and Psychiatric Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

While typically associated with motor control, the basal ganglia are also involved in reward-based learning, decision making, and habit formation. The cortico-basal ganglia circuitry constitutes a system in which frontal cortex exploits the basal ganglia for additional processing of reward and cognition to effectively modulate learning that leads to the development of action plans and motor behaviors. This chapter first addresses basic basal ganglia anatomy and circuitry. Second, it focuses on the non-motor pathways associated with prefrontal cortex, in both limbic and cognitive areas. While each basal ganglia structure can generally be divided along limbic, cognitive, and motor pathways, recent evidence supports the hypothesis that complex interactions may occur between these functional systems. This chapter discusses the potential routes by which information can cross functional (limbic, cognitive, and motor control) domains thereby providing a network that supports both parallel and integrative function across motor and nonmotor circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Haber SN, Gdowski MJ (2004) The Basal Ganglia. In: Paxinos G, Mai JK, eds. The Human Nervous System, second edition. Academic Press, pp. 677–738.

    Google Scholar 

  2. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20(1):91–127.

    Article  PubMed  CAS  Google Scholar 

  3. Levy R, Friedman HR, Davachi L, Goldman-Rakic PS (1997) Differential activa tion of the caudate nucleus in primates performing spatial and nonspatial working memory tasks. J Neurosci 17.

    Google Scholar 

  4. Hikosaka O, Rand MK, Miyachi S, Miyashita K (1995) Procedural learning in the monkey. In: Kimura M, Graybiel, A.M., ed. Functions of the Cortico-Basal Ganglia Loop. New York: Springer-Verlag, pp. 18–30.

    Google Scholar 

  5. Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433(7028):873–876.

    Article  PubMed  CAS  Google Scholar 

  6. Tricomi EM, Delgado MR, Fiez JA (2004) Modulation of caudate activity by action contingency. Neuron 41(2):281–292.

    Article  PubMed  CAS  Google Scholar 

  7. Robbins TW, Everitt BJ (1999) Motivation and reward. In: IV Sensory Systems. Academic Press.

    Google Scholar 

  8. Rolls ET (2000) The orbitofrontal cortex and reward. Cerebral Cortex 10(3):284–294.

    Article  PubMed  CAS  Google Scholar 

  9. Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implica tions for corticostriatal circuit function. J Neurosci 24(4):773–780.

    Article  PubMed  CAS  Google Scholar 

  10. Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):RC159.

    PubMed  CAS  Google Scholar 

  11. Koob (1999) Drug Reward and Addiction. In: Fundamental Neuroscience. Academic Press, pp. 1261–1279.

    Google Scholar 

  12. Nestler EJ, Hope BT, Widnell KL (1993) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11:995–1006.

    Article  PubMed  CAS  Google Scholar 

  13. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of moti vation and choice. Am J Psychiatry 162(8):1403–1413.

    Article  PubMed  Google Scholar 

  14. Rauch SL, Savage CR, Alpert NM, et al (1997) Probing striatal function in obsessive-compulsive disorder: a PET study of implicit sequence learning. J Neuropsychiatry Clin Neurosci 9(4):568–573.

    PubMed  CAS  Google Scholar 

  15. Breiter HC, Rauch SL, Kwong KK, et al (1996) Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psych 53:595–606.

    CAS  Google Scholar 

  16. McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ (1994) Functional anatomy of obsessive-compulsive phenomena. Brit J Psych 164:459–468.

    Article  CAS  Google Scholar 

  17. Pantelis C, Barnes TR, Nelson HE, et al (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120(Pt 10):1823–1843.

    Article  PubMed  Google Scholar 

  18. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381.

    Article  PubMed  CAS  Google Scholar 

  19. Elliott R, Newman JL, Longe OA, Deakin JF (2003) Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci 23(1):303–307.

    PubMed  CAS  Google Scholar 

  20. Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356.

    PubMed  CAS  Google Scholar 

  21. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addic tion: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489.

    Article  PubMed  CAS  Google Scholar 

  22. Brasted PJ, Wise SP (2004) Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur J Neurosci 19(3):721–740.

    Article  PubMed  Google Scholar 

  23. Schultz W, Tremblay L, Hollerman JR (2003) Changes in behavior-related neuro-nal activity in the striatum during learning. Trends Neurosci 26(6):321–328.

    Article  PubMed  CAS  Google Scholar 

  24. Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15(6):638–644.

    Article  PubMed  CAS  Google Scholar 

  25. Berns GS, Sejnowski TJ (1996) How the basal ganglia make decisions. In: Damasio A, Damasio H, Christen Y, eds. The Neurobiology of Decision Making. Berlin: Springer-Verlag, pp. 101–114.

    Google Scholar 

  26. Heimer L, Alheid GF, Zahm DS (1994) Basal forebrain organization: An anatomi cal framework for motor aspects of drive and motivation. In: Kalivas PW, Barnes CD, eds. Limbic Motor Circuits and Neuropsychiatry. Boca Raton, Florida: CRC Press, Inc.

    Google Scholar 

  27. Haber SN, McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. In: McGinty JF, ed. Advancing from the ventral striatum to the extended amygdala. New York: The New York Academy of Sciences, pp. 33–48.

    Google Scholar 

  28. Parent A (1986) Comparative Neurobiology of the Basal Ganglia. New York: John Wiley and Sons.

    Google Scholar 

  29. Olszewski, J., Baxter, D., (1982) Cytoarchitecture of the human brain stem. Basal: S. Rarger

    Google Scholar 

  30. Graybiel AM (1995) The basal ganglia. Trends Neurosci 18(2):60–62.

    Article  PubMed  CAS  Google Scholar 

  31. Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical inputs, providing a substrate for incentive-based learning. J Neurosci 26(32):8368–8376.

    Article  PubMed  CAS  Google Scholar 

  32. Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of cor-ticostriatal axonal arborizations. J Neurophysiol 87(2):1007–1017.

    PubMed  CAS  Google Scholar 

  33. Sadikot AF, Parent A, Francois C (1990) The centre median and parafascicular tha-lamic nuclei project respectively to the sensorimotor and associative-limbic striatal territories in the squirrel monkey. Brain Res 510:161–165.

    Article  PubMed  CAS  Google Scholar 

  34. Francois C, Percheron G, Parent A, Sadikot AF, Fenelon G, Yelnik J (1991) Topography of the projection from the central complex of the thalamus to the sen-sorimotor striatal territory in monkeys. J Comp Neurol 305:17–34.

    Article  PubMed  CAS  Google Scholar 

  35. Giménez-Amaya JM, McFarland NR, de las Heras S, Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149.

    Article  PubMed  Google Scholar 

  36. Fenelon G, Francois C, Percheron G, Yelnik J (1991) Topographic distribution of the neurons of the central complex (Centre median-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaques. Neuroscience 45(2):495–510.

    Article  PubMed  CAS  Google Scholar 

  37. Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relation ships between dopaminergic afferents and cortical or thalamic input in the sensori-motor territory of the striatum in monkey. J Comp Neurol 344:1–19.

    Article  PubMed  CAS  Google Scholar 

  38. Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculo-pontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537:54–68.

    Article  PubMed  CAS  Google Scholar 

  39. Nakano K, Kayahara T, Chiba T (1999) Afferent connections to the ventral stria-tum from the medial prefrontal cortex (area 25) and the thalamic nuclei in the macaque monkey. Ann NY Acad Sci 877:667–670.

    Article  PubMed  CAS  Google Scholar 

  40. McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20(10):3798–3813.

    PubMed  CAS  Google Scholar 

  41. McFarland NR, Haber SN (2001) Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol 429:321–336.

    Article  PubMed  CAS  Google Scholar 

  42. Druga R, Rokyta R, Benes V (1991) Thalamocaudate projections in the macaque monkey (a horseradish peroxidase study). J Hirnforsch 6:765–774.

    Google Scholar 

  43. Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4:539–560.

    PubMed  CAS  Google Scholar 

  44. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: A multiple tracing study in macaque monkeys. J Comp Neurol 345:185–213.

    Article  PubMed  CAS  Google Scholar 

  45. Matelli M, Luppino G (1996) Thalamic input to mesial and superior area 6 in the Macaque monkey. J Comp Neurol 372:59–87.

    Article  PubMed  CAS  Google Scholar 

  46. Akert K, Hartmann-von Monakow K (1980) Relationships of precentral, premotor and prefrontal cortex to the mediodorsal and intralaminar nuclei of the monkey thalamus. Acta Neurobiol Exp 40:7–25.

    CAS  Google Scholar 

  47. Bouyer JJ, Joh TH, Pickel VM (1984) Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens. J Comp Neurol 227(1):92–103.

    Article  PubMed  CAS  Google Scholar 

  48. Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640.

    Article  PubMed  CAS  Google Scholar 

  49. Gerfen CR, Engber TM, Mahan LC, et al (1990) D1 and D2 dopamine recep tor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432.

    Article  PubMed  CAS  Google Scholar 

  50. Takagi H, Somogyi P, Somogyi J, Smith AD (1983) Fine structural studies on a type of somatostatin-immunoreactive neuron and its synaptic connections in the rat neostriatum: A correlated light and electron microscopic study. J Comp Neurol 214:1–16.

    Article  PubMed  CAS  Google Scholar 

  51. Izzo PN, Bolam JP (1988) Cholinergic synaptic input to different parts of spiny stratonigral neurons in the rat. J Comp Neurol 269:219–236.

    Article  PubMed  CAS  Google Scholar 

  52. Spooren WPJM, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: Evidence for modulation of basal ganglia circuits. J Comp Neurol 370(3):295–312.

    Article  PubMed  CAS  Google Scholar 

  53. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387.

    Article  PubMed  CAS  Google Scholar 

  54. DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neos-triatum of monkeys. Brain Res 114:245–256.

    Article  PubMed  CAS  Google Scholar 

  55. Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327(1–2):307–311.

    Article  PubMed  CAS  Google Scholar 

  56. Fox CA, Andrade AN, Hillman DE, Schwyn RC (1971) The spiny neurons in the primate striatum: a Golgi and electron microscopic study. J Hirnforschung 13(3):181–201.

    Google Scholar 

  57. Kimura M (1990) Behaviorally contingent property of movement-related activity of the primate putamen. J Neurophysiol 63:1277–1296.

    PubMed  CAS  Google Scholar 

  58. Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM (1999) Building neural representations of habits. Science 286(26):1745–1749.

    Article  PubMed  CAS  Google Scholar 

  59. Wilson CJ (2004) The basal ganglia. In: Shepherd GM, ed. Synaptic Organization of the Brain, fifth ed. New York, NY: Oxford University Press, pp. 361–413.

    Google Scholar 

  60. Plenz D, Kitai ST (1998) Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J Neurosci 18:266–283.

    PubMed  CAS  Google Scholar 

  61. Kemp JM, Powell TP (1971) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B Biol Sci 262(845):429–439.

    Article  PubMed  CAS  Google Scholar 

  62. Dubé L, Smith AD, Bolam JP (1988) Identification of synaptic terminals of tha-lamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neurostriatum. J Comp Neurol 267:455–471.

    Article  PubMed  Google Scholar 

  63. Fox CA, Andrade AN, Schwyn RC, Rafols JA (1971) The aspiny neurons and the glia in the primate striatum: a golgi and electron microscopic study. J Hirnforschung 13(4):341–362.

    Google Scholar 

  64. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18(12):527–535.

    Article  PubMed  CAS  Google Scholar 

  65. Lehmann J, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 10(4):1105–1120.

    Article  PubMed  CAS  Google Scholar 

  66. Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein F, Tohyama M (1987) Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Res 413(1):179–184.

    Article  PubMed  CAS  Google Scholar 

  67. Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties under lying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20(22):8493–8503.

    PubMed  CAS  Google Scholar 

  68. Ravel S, Sardo P, Legallet E, Apicella P (2001) Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatum. J Neurosci 21(15):5730–5739.

    PubMed  CAS  Google Scholar 

  69. Kimura M, Rajkowski J, Evarts E (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA 81:4998–5001.

    Article  PubMed  CAS  Google Scholar 

  70. Apicella P, Legallet E, Trouche E (1997) Responses of tonically discharging neu rons in the monkey striatum to primary rewards delivered during different behavio ral states. Exp Brain Res 116(3):456–466.

    Article  PubMed  CAS  Google Scholar 

  71. Lapper SR, Smith Y, Sadikot AF, Parent A, Bolam JP (1992) Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey. Brain Res 580:215–224.

    Article  PubMed  CAS  Google Scholar 

  72. Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25(15):3857–3869.

    Article  PubMed  CAS  Google Scholar 

  73. Vuillet J, Kerkerian L, Salin P, Nieoullon A (1989) Ultrastructural features of NPY-containing neurons in the rat striatum. Brain Res 477(1–2):241–251.

    Article  PubMed  CAS  Google Scholar 

  74. Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) Cholecystokinin innervation of the ventral striatum: A morphological and radioim-munological study. Neuroscience 14(2):427–453.

    Article  PubMed  CAS  Google Scholar 

  75. Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25(50):11777–11786.

    Article  PubMed  CAS  Google Scholar 

  76. Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motiva tional stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22(11):4709–4719.

    PubMed  CAS  Google Scholar 

  77. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in condi tioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20(19):7489–7495.

    PubMed  CAS  Google Scholar 

  78. Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 21(9):3251–3260.

    PubMed  CAS  Google Scholar 

  79. Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appe titive pavlovian approach behavior and the potentiation of conditioned reinforce ment and locomotor activity by D-amphetamine. J Neurosci 19(6):2401–2411.

    PubMed  CAS  Google Scholar 

  80. Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 365:628–639.

    Article  PubMed  CAS  Google Scholar 

  81. Chronister RB, Sikes RW, Trow TW, DeFrance JF (1981) The organization of the nucleus accumbens. In: Chronister RB, DeFrance JF, eds. The Neurobiology of the Nucleus Accumbens. Brunswick, ME: Haer Institute, pp. 97–146.

    Google Scholar 

  82. Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projec tions in the monkey. An anterograde tracing study. Brain Res 329:241–257.

    Article  PubMed  CAS  Google Scholar 

  83. Fudge JL, Kunishio K, Walsh C, Richard D, Haber SN (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110:257–275.

    Article  PubMed  CAS  Google Scholar 

  84. Haber SN (1986) Neurotransmitters in the human and nonhuman primate basal ganglia. Human Neurobiology 5:159–168.

    PubMed  CAS  Google Scholar 

  85. Yelnik J, Percheron G, Francois C (1984) A golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arboriza tions. J Comp Neurol 227:200–213.

    Article  PubMed  CAS  Google Scholar 

  86. Fox CH, Andrade HN, Du Qui IJ, Rafols JA (1974) The primate globus pallidus. A Golgi and electron microscope study. J R Hirnforschung 15:75–93.

    CAS  Google Scholar 

  87. Francois C, Percheron G, Yelnik J, Heyner S (1984) A golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons. J Comp Neurol 227:182–199.

    Article  PubMed  CAS  Google Scholar 

  88. Smith Y, Parent A, Seguela P, Descarries L (1987) Distribution of GABA-immu-noreactive neurons in the basal ganglia of the squirrel monkey (saimiri sciureus). J Comp Neurol 259:50–64.

    Article  PubMed  CAS  Google Scholar 

  89. Carpenter MB, Baton RRd, Carleton SC, Keller JT (1981) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197(4):579–603.

    Article  PubMed  CAS  Google Scholar 

  90. Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: An autoradiographic study in monkey and cat. J Comp Neurol 180:1–16.

    Article  PubMed  CAS  Google Scholar 

  91. Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358:119–141.

    Article  PubMed  CAS  Google Scholar 

  92. Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409(3):400–410.

    Article  PubMed  CAS  Google Scholar 

  93. Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42.

    Article  PubMed  CAS  Google Scholar 

  94. DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connec tions of the globus pallidus in Macaca mulatta. Exp Brain Res 46:107–117.

    Article  PubMed  CAS  Google Scholar 

  95. Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr MD, ed. The Basal Ganglia. New York: Raven Press, pp. 1–36.

    Google Scholar 

  96. Kuo J, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151:201–236.

    Article  PubMed  CAS  Google Scholar 

  97. Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–290.

    Article  PubMed  CAS  Google Scholar 

  98. Parent M, Levesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional recon struction. J Comp Neurol 439(2):162–175.

    Article  PubMed  CAS  Google Scholar 

  99. Shink E, Sidibé M, Smith Y (1997) Efferent connections of the internal globus pal-lidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunclulopontine nucleus. J Comp Neurol 382:348–363.

    Article  PubMed  CAS  Google Scholar 

  100. Sakai ST, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pal-lidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368(2):215–228.

    Article  PubMed  CAS  Google Scholar 

  101. McFarland NR, Haber SN (2002) Thalamic connections with cortex from the basal ganglia relay nuclei provide a mechanism for integration across multiple cortical areas. J Neurosci in press.

    Google Scholar 

  102. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum com municates with the basal ganglia. Nat Neurosci 8(11):1491–1493.

    Article  PubMed  CAS  Google Scholar 

  103. Sato F, Lavallee P, Levesque M, Parent A (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417(1):17–31.

    Article  PubMed  CAS  Google Scholar 

  104. Mink JW, Thach WT (1991) Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. J Neurophysiol 65(2):273–300.

    PubMed  CAS  Google Scholar 

  105. Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of sponta neous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20(22):8559–8571.

    PubMed  CAS  Google Scholar 

  106. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425.

    Article  PubMed  CAS  Google Scholar 

  107. Nambu A, Tokuno H, Hamada I, et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84(1):289–300.

    PubMed  CAS  Google Scholar 

  108. Basso MA, Wurtz RH (2002) Neuronal activity in substantia nigra pars reticulata during target selection. J Nuerosci 22(5):1883–1894.

    CAS  Google Scholar 

  109. Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299: 1–16.

    Article  PubMed  CAS  Google Scholar 

  110. Moukhles H, Bosler O, Bolam JP, et al (1997) Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals nd postsy-naptic targets in rat substantia nigra. Neuroscience 76:1159–1171.

    Article  PubMed  CAS  Google Scholar 

  111. Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey sub-stantia nigra pars reticulata. I V. Relation of substantia nigra to superior colliculus. J Neurophysiol 49(5):1285–1301.

    PubMed  CAS  Google Scholar 

  112. Rafols JA, Fox CA (1976) The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study. J Comp Neurol 168(1):75–111.

    Article  PubMed  CAS  Google Scholar 

  113. Smith Y, Shink E, Sidibe M (1998) Neuronal circuitry and synaptic connectivity of the basal ganglia. Neurosurg Clin North Am 9(2):203–222.

    CAS  Google Scholar 

  114. Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329(1):111–129.

    Article  PubMed  CAS  Google Scholar 

  115. Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  116. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental Parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438.

    Article  PubMed  CAS  Google Scholar 

  117. Francois C, Savy C, Jan C, Tande D, Hirsch EC, Yelnik J (2000) Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated mon keys, and in Parkinson's disease patients. J Comp Neurol 425(1):121–129.

    Article  PubMed  CAS  Google Scholar 

  118. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal con nections of the mesopontine tegmentum. J Comp Neurol 259:483–528.

    Article  PubMed  CAS  Google Scholar 

  119. Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120.

    PubMed  CAS  Google Scholar 

  120. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117.

    Article  PubMed  Google Scholar 

  121. Sato F, Parent M, Levesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424(1):142–152.

    Article  PubMed  CAS  Google Scholar 

  122. Olszewski J, Baxter D (1982) Cytoarchitecture of the Human Brain Stem, second ed. Basel: S. Karger.

    Google Scholar 

  123. Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neu rons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxy-lase and calbindin immunoreactivity. J Comp Neurol 362:400–410.

    Article  PubMed  CAS  Google Scholar 

  124. McRitchie DA, Halliday GM (1995) Calbindin D28K-containing neurons are restricted to the medial substantia nigra in humans. Neuroscience 65:87–91.

    Article  PubMed  CAS  Google Scholar 

  125. Parent A, Lavoie B (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and Parkinsonian monkeys. Adv Neurol 60:25–30.

    PubMed  CAS  Google Scholar 

  126. Pifl C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44(3):591–605.

    Article  PubMed  CAS  Google Scholar 

  127. Fudge JL, Haber SN (2000) The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 97(3):479–494.

    Article  PubMed  CAS  Google Scholar 

  128. Parent A, DeBellefeuille L (1983) The pallidointralaminar and pallidonigral pro jections in primate as studied by retrograde double-labeling method. Brain Res 278:11–27.

    Article  PubMed  CAS  Google Scholar 

  129. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231.

    Article  PubMed  CAS  Google Scholar 

  130. Fudge JL, Haber SN (2001) Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 104(3):807–827.

    Article  PubMed  CAS  Google Scholar 

  131. Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: A comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345(4):562–578.

    Article  PubMed  CAS  Google Scholar 

  132. Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innerva-tion of the human cerebral cortex as revealed by comparative immunohistochem istry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271.

    Article  PubMed  CAS  Google Scholar 

  133. Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The dis tribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279–290.

    PubMed  CAS  Google Scholar 

  134. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autora-diographic analysis using [3H] raclopride, [3H] spiperone and [3H]sch23390. Neuroscience 40(3):657–671.

    Article  PubMed  CAS  Google Scholar 

  135. Gaspar P, Stepneiwska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325:1–21.

    Article  PubMed  CAS  Google Scholar 

  136. Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205:63–76.

    Article  PubMed  CAS  Google Scholar 

  137. Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762.

    Article  PubMed  CAS  Google Scholar 

  138. Norita M, Kawamura K (1980) Subcortical afferents to the monkey amygdala: an HRP study. Brain Res 190:225–230.

    Article  PubMed  CAS  Google Scholar 

  139. Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368.

    Article  PubMed  CAS  Google Scholar 

  140. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599.

    Article  PubMed  CAS  Google Scholar 

  141. Dommett E, Coizet V, Blaha CD, et al (2005) How visual stimuli activate dopaminergic neurons at short latency. Science 307(5714):1476–1479.

    Article  PubMed  CAS  Google Scholar 

  142. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27.

    PubMed  CAS  Google Scholar 

  143. Schultz W, Tremblay L, Hollerman JR (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex 10(3):272–284.

    Article  PubMed  CAS  Google Scholar 

  144. Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9(8):1057–1063.

    Article  PubMed  CAS  Google Scholar 

  145. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6): 483–494.

    Article  PubMed  CAS  Google Scholar 

  146. Arbuthnott GW, Ingham CA, Wickens JR (2000) Dopamine and synaptic plastic ity in the neostriatum. J Anat 196(Pt 4):587–596.

    Article  PubMed  CAS  Google Scholar 

  147. Centonze D, Grande C, Saulle E, et al (2003) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 23(24):8506–8512.

    PubMed  CAS  Google Scholar 

  148. Kawagoe R, Takikawa Y, Hikosaka O (2004) Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. J Neurophysiol 91(2):1013–1024.

    Article  PubMed  CAS  Google Scholar 

  149. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mecha nisms of memory. Neuron 25(3):515–532.

    Article  PubMed  CAS  Google Scholar 

  150. Percheron G, Filion M (1991) Parallel processing in the basal ganglia: Up to a point. Trends Neurosci 14:55–59.

    Article  PubMed  CAS  Google Scholar 

  151. Bevan MD, Clarke NP, Bolam JP (1997) Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci 17:308–324.

    PubMed  CAS  Google Scholar 

  152. Bevan MD, Smith AD, Bolam JP (1996) The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neuroscience 75:5–12.

    Article  PubMed  CAS  Google Scholar 

  153. Somogyi P, Bolam JP, Totterdell S, Smith AD (1981) Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostri-atal neurones. Brain Res 217:245–263.

    Article  PubMed  CAS  Google Scholar 

  154. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382.

    PubMed  CAS  Google Scholar 

  155. Hadland KA, Rushworth MF, Gaffan D, Passingham RE (2003) The ante rior cingulate and reward-guided selection of actions. J Neurophysiol 89(2):1161–1164.

    Article  PubMed  CAS  Google Scholar 

  156. Walton ME, Devlin JT, Rushworth MF (2004) Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci 7(11):1259–1265.

    Article  PubMed  CAS  Google Scholar 

  157. Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 15(1):58–63.

    Article  PubMed  Google Scholar 

  158. Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10(3):308–317.

    Article  PubMed  CAS  Google Scholar 

  159. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867.

    PubMed  CAS  Google Scholar 

  160. Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (sub-genual cortex) of the macaque monkey. Jour of Comp Neur 421(2):172–188.

    Article  CAS  Google Scholar 

  161. Hassani OK, Cromwell HC, Schultz W (2001) Influence of expectation of differ ent rewards on behavior-related neuronal activity in the striatum. J Neurophysiol 85(6):2477–2489.

    PubMed  CAS  Google Scholar 

  162. Takikawa Y, Kawagoe R, Hikosaka O (2002) Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. J Neurophysiol 87(1):508–515.

    PubMed  Google Scholar 

  163. Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7(8):887–893.

    Article  PubMed  CAS  Google Scholar 

  164. Watanabe K, Hikosaka O (2005) Immediate changes in anticipatory activity of caudate neurons associated with reversal of position-reward contingency. J Neurophysiol 94(3):1879–1887.

    Article  PubMed  Google Scholar 

  165. Apicella P, Ljungberg T, Scarnati E, Schultz W (1991) Responses to reward in monkey dorsal and ventral striatum. Exp Brain Res 85:491–500.

    Article  PubMed  CAS  Google Scholar 

  166. Nakamura K, Hikosaka O (2006) Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J Neurosci 26(20):5360–5369.

    Article  PubMed  CAS  Google Scholar 

  167. Goldman-Rakic PS (1987) Circuitry of the frontal association cortex and its rel evance to dementia. Arch Gerontol Geriatr 6:299–309.

    Article  PubMed  CAS  Google Scholar 

  168. Fuster JM (2000) Prefrontal neurons in networks of executive memory. Brain Res Bull 52(5):331–336.

    Article  PubMed  CAS  Google Scholar 

  169. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363(6430):623–625.

    Article  PubMed  CAS  Google Scholar 

  170. Smith EE, Jonides J (1997) Working memory: a view from neuroimaging. Cog Psychol 33(1):5–42.

    Article  CAS  Google Scholar 

  171. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigi-tation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794.

    PubMed  CAS  Google Scholar 

  172. Arikuni T, Kubota K (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP-gel. J Comp Neurol 244:492–510.

    Article  PubMed  CAS  Google Scholar 

  173. Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol 68(3):1–16.

    Google Scholar 

  174. Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61(4):814–832.

    PubMed  CAS  Google Scholar 

  175. Elliott R, Dolan RJ (1999) Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. J Neurosci 19(12):5066–5073.

    PubMed  CAS  Google Scholar 

  176. Battig K, Rosvold HE, Mishkin M (1960) Comparison of the effect of frontal and caudate lesions on delayed response and alternation in monkeys. J Comp Physiol Psychol 53:400–404.

    Article  PubMed  CAS  Google Scholar 

  177. Butters N, Rosvold HE (1968) Effect of caudate and septal nuclei lesions on resist ance to extinction and delayed-alternation. J Comp Physiol Psychol 65(3):397–403.

    Article  PubMed  CAS  Google Scholar 

  178. Partiot A, Verin M, Pillon B, Teixeira-Ferreira C, Agid Y, Dubois B (1996) Delayed response tasks in basal ganglia lesions in man: further evidence for a striato-fron tal cooperation in behavioural adaptation. Neuropsychologia 34(7):709–721.

    Article  PubMed  CAS  Google Scholar 

  179. Miyachi S, Hikosaka O, Miyashita K, Karadi Z, Rand MK (1997) Differential roles of monkey striatum in learning of sequential hand movement. Exper Brain Res 115(1):1–5.

    Article  CAS  Google Scholar 

  180. Boecker H, Dagher A, Ceballos-Baumann AO, et al (1998) Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. J Neurophysiol 79(2):1070–1080.

    PubMed  CAS  Google Scholar 

  181. Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B (1996) Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76:617–621.

    PubMed  CAS  Google Scholar 

  182. Aldridge JW, Anderson RJ, Murphy JT (1980) Sensory-motor processing in the caudate nucleus and globus pallidus: a single-unit study in behaving primates. Can J Physiol Pharmacol 58(10):1192–1201.

    PubMed  CAS  Google Scholar 

  183. Flaherty AW, Graybiel AM (1993) Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 13(3):1120–1137.

    PubMed  CAS  Google Scholar 

  184. Takada M, Tokuno H, Nambu A, Inase M (1998) Corticostriatal input zones from the supplementary motor area overlap those from the contra rather than ipsilateral primary motor cortex. Brain Res 791(1–2):335–340.

    Article  PubMed  CAS  Google Scholar 

  185. Ramanathan S, Hanley JJ, Deniau JM, Bolam JP (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22:8158–8169.

    PubMed  CAS  Google Scholar 

  186. Charpier S, Mahon S, Deniau JM (1999) In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91(4):1209–1222.

    Article  PubMed  CAS  Google Scholar 

  187. Yamada H, Matsumoto N, Kimura M (2004) Tonically active neurons in the pri mate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J Neurosci 24(14):3500–3510.

    Article  PubMed  CAS  Google Scholar 

  188. Apicella P (2002) Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events. Eur J Neurosci 16(11):2017–2026.

    Article  PubMed  Google Scholar 

  189. Percheron G, Yelnik J, Francois C (1984) The primate striato-pallido-nigral sys tem: An integrative system for cortical information. In: McKenzie JS, Kemm RE, Wilcock LN, eds. The Basal Ganglia: Structure and Function. London: Plenum Press, pp. 87–105.

    Google Scholar 

  190. Anderson ME, Turner RS (1991) A quantitative analysis of pallidal discharge dur ing targeted reaching movement in the monkey. Exp Brain Res 86(3):623–632.

    Article  PubMed  CAS  Google Scholar 

  191. Brotchie P, Iansek R, Horne M (1991) A neural network model of neural activity in the monkey globus pallidus. Neurosci Lett 131(1):33–36.

    Article  PubMed  CAS  Google Scholar 

  192. Aldridge JW, Anderson RJ, Murphy JT (1980) The role of the basal ganglia in con trolling a movement initiated by a visually presented cue. Brain Res 192:3–16.

    Article  PubMed  CAS  Google Scholar 

  193. Inase M, Li BM, Takashima I, Iijima T (2001) Pallidal activity is involved in visuomotor association learning in monkeys. Eur J Neurosci 14(5):897–901.

    Article  PubMed  CAS  Google Scholar 

  194. Kolomiets BP, Deniau JM, Mailly P, Menetrey A, Glowinski J, Thierry AM (2001) Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 21(15):5764–5772.

    PubMed  CAS  Google Scholar 

  195. Bonci A, Malenka RC (1999) Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J Neurosci 19(10):3723–3730.

    PubMed  CAS  Google Scholar 

  196. Matsumoto N, Hanakawa T, Maki S, Graybiel AM, Kimura M (1999) Nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82(2):978–998.

    PubMed  CAS  Google Scholar 

  197. Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the tempo ral prediction of reward during learning. Nat Neurosci 1(4):304–309.

    Article  PubMed  CAS  Google Scholar 

  198. Anglade P, Blanchard V, Raisman-Vozari R, et al (1996) Is dopaminergic cell death accompanied by concomitant nerve plasticity? In: Battistin L, Scarlato G, Caraceni T, Ruggieri S, eds. Parkinson's Disease. Philadelphia: Lippincott-Raven Publishers, pp. 195–208.

    Google Scholar 

  199. Ljungberg T, Apicella P, Schultz W (1991) Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res 567:337–341.

    Article  PubMed  CAS  Google Scholar 

  200. Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigal, and nigrostriatal projections in the Macaque. J Comp Neurol 304:569–595.

    Article  PubMed  CAS  Google Scholar 

  201. Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study. J Comp Neurol 293:282–298.

    Article  PubMed  CAS  Google Scholar 

  202. Szabo J (1979) Strionigral and nigrostriatal connections. Anatomical studies. Appl Neurophysiol 42(1–2):9–12.

    PubMed  CAS  Google Scholar 

  203. Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24(14):3554–3562.

    Article  PubMed  CAS  Google Scholar 

  204. Martinez D, Slifstein M, Broft A, et al (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: ampheta mine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23(3):285–300.

    Article  PubMed  CAS  Google Scholar 

  205. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132.

    PubMed  CAS  Google Scholar 

  206. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76(3):1367–1395.

    PubMed  CAS  Google Scholar 

  207. Castro-Alamancos MA, Connors BW (1997) Thalamocortical synapses. Prog Neurobiol 51(6):581–606.

    Article  PubMed  CAS  Google Scholar 

  208. Jones EG (1985) The Thalamus. New York: Plenum Press.

    Google Scholar 

  209. Murphy PC, Duckett SG, Sillito AM (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286(5444):1552–1554.

    Article  PubMed  CAS  Google Scholar 

  210. Deschenes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Rev 28(3):286–308.

    Article  PubMed  CAS  Google Scholar 

  211. Darian-Smith C, Tan A, Edwards S (1999) Comparing thalamocortical and corti-cothalamic microstructure and spatial reciprocity in the macaque ventral postero-lateral nucleus (VPLc) and medial pulvinar. J Comp Neurol 410(2):211–234.

    Article  PubMed  CAS  Google Scholar 

  212. Jones EG (1998) The thalamus of primates. In: Bloom FE, Björklund A, Hökfelt T, eds. The Primate Nervous System, Part II. Amsterdam: Elsevier Science, pp. 1–298.

    Chapter  Google Scholar 

  213. Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain 116:1159–1175.

    Article  PubMed  Google Scholar 

  214. Passingham RE (1995) The Frontal Lobes and Voluntary Action. Oxford: OUP.

    Google Scholar 

  215. Grafton ST, Hazeltine E (1995) Functional mapping of sequence learning in nor mal humans. J Cog Neurosci 7:497–510.

    Article  Google Scholar 

  216. Hikosaka O, Miyashita K, Miyachi S, Sakai K, Lu X (1998) Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiol Learn Mem 70(1–2):137–149.

    Article  PubMed  CAS  Google Scholar 

  217. Doyon J, Gaudreau D, Laforce R Jr, et al (1997) Role of the striatum, cerebel lum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn 34(2):218–245.

    Article  PubMed  CAS  Google Scholar 

  218. Jaeger D, Gilman S, Aldridge JW (1995) Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching move ments. Brain Res 694(1–2):111–127.

    Article  PubMed  CAS  Google Scholar 

  219. Aosaki T, Graybiel AM, Kimura M (1994) Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 265:412–410.

    Article  PubMed  CAS  Google Scholar 

  220. Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197.

    Article  PubMed  CAS  Google Scholar 

  221. Rauch SL, Jenike MA, et al (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51(1):62–70.

    PubMed  CAS  Google Scholar 

  222. Mayberg HS, Brannan SK, et al (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Bio Psych 48(8):830–843.

    Article  CAS  Google Scholar 

  223. Szeszko PR, Robinson D, et al (1999) Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch Gen Psych 56(10):913–919.

    Article  CAS  Google Scholar 

  224. Gilbert AR, Moore GJ, et al (2000) Decrease in thalamic volumes of pediatric patients with obsessive-compulsive disorder who are taking paroxetine. Arch Gen Psych 57(5):449–456.

    Article  CAS  Google Scholar 

  225. Scarone S, Colombo C, et al (1992) Increased right caudate nucleus size in obsessive-compulsive disorder: detection with magnetic resonance imaging. Psychiatry Res 45(2):115–121.

    Article  PubMed  CAS  Google Scholar 

  226. Robinson D, Wu H, et al (1995) Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch Gen Psych 52:393–398.

    CAS  Google Scholar 

  227. Jenike MA, Breiter HC, et al (1996) Cerebral structural abnormalities in obsessive-compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Arch Gen Psych 53(7):625–632.

    CAS  Google Scholar 

  228. Schwartz JM, Stoessel PW, et al (1996) Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Arch Gen Psych 53:109–113.

    CAS  Google Scholar 

  229. Mindus P, Bergstrom K, et al (1986) Magnetic resonance imaging of stereotactic radiosurgical lesions in the internal capsule. Acta Radiol Suppl 369:614–617.

    PubMed  CAS  Google Scholar 

  230. Baxter LR Jr, Schwartz JM, et al (1992) Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psych 49(9):681–689.

    CAS  Google Scholar 

  231. Swedo SE, Pietrini P, et al (1992) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psych 49(9):690–694.

    CAS  Google Scholar 

  232. Brody AL, Saxena S, et al (1998) FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res 84(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  233. Saxena S, Brody AL, et al (1999) Localized orbitofrontal and subcortical meta bolic changes and predictors of response to paroxetine treatment in obsessive-compulsive disorder. Neuropsychopharmacology 21(6):683–693.

    Article  PubMed  CAS  Google Scholar 

  234. Rauch SL, Shin LM, et al (2002) Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provoca tion study. Neuropsychopharmacology 27(5):782–791.

    Article  PubMed  CAS  Google Scholar 

  235. Rauch SL, Dougherty DD, et al (2006) A functional neuroimaging investiga tion of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104(4):558–565.

    Article  PubMed  Google Scholar 

  236. Rasmussen SA, Eisen JL (1997) Treatment strategies for chronic and refractory obsessive-compulsive disorder. J Clin Psychiatry 58(Suppl 13):9–13.

    PubMed  Google Scholar 

  237. Greenberg BD, Price LH, et al (2003) Neurosurgery for intractable obsessive-compulsive disorder and depression: Critical issues. Neurosurg Clin North Am 14(2):199–212.

    Article  Google Scholar 

  238. Greenberg BD (2004) Deep brain stimulation: Clinical findings in intractable OCD and depression. Bio Psych 55(Suppl 1):197S.

    Google Scholar 

  239. Nuttin BJ, Gabriels LA, et al (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52(6):1263–1272; discussion 1272–1274.

    Article  PubMed  Google Scholar 

  240. Mayberg HS, Lozano AM, et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660.

    Article  PubMed  CAS  Google Scholar 

  241. Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27(4):840–844.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants NS22311 and MH45573.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haber, S.N. (2008). Functional Anatomy and Physiology of the Basal Ganglia: Non-motor Functions . In: Tarsy, D., Vitek, J.L., Starr, P.A., Okun, M.S. (eds) Deep Brain Stimulation in Neurological and Psychiatric Disorders. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-59745-360-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-360-8_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-952-9

  • Online ISBN: 978-1-59745-360-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics