Skip to main content

PHOSPHOINOSITIDE 3-KINASE ENZYMES AS DOWNSTREAM TARGETS OF THE EGF RECEPTOR

  • Chapter
  • First Online:
  • 1242 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Phosphoinositide 3-kinase (PI3K) activity plays a critical role downstream of the activated epidermal growth factor receptor (EGFR), regulating cell viability, proliferation, and migration. Here I will overview the components of the PI3K signaling pathway and its control. Emphasis is placed on the eight PI3K catalytic isoforms expressed in human tissue and grouped into three classes termed I, II, and III based on sequence similarity and substrate specificity. The nature and localization of the 3-phosphoinositide products of PI3K activity govern the translocation/activation of protein targets that include the serine/threonine kinases Akt and PDK-1. In this way the EGFR elicits its spectrum of intracellular effects that include altering cell migration, vesicle transport, cell cycle progression, metabolism, and transcription. Despite the intense focus, the mechanisms by which the activated EGFR stimulates PI3K activity are not completely understood. In addition, the possibility of EGF stimulated synthesis of phosphatidylinositol (3) phosphate could provide exciting new insights into the regulation of EGFR mediated vesicle transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sugimoto Y, Whitman M, Cantley LC, Erikson RL. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Natl Acad Sci U S A 1984; 81:2117-2121.

    Google Scholar 

  2. Macara IG, Marinetti GV, Balduzzi PC. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumorigenesis. Proc Natl Acad Sci USA 1984; 84:2728-2732.

    Google Scholar 

  3. Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 1989; 57:167-175.

    Google Scholar 

  4. Varticovski L, Druker B, Morrison D, Cantley L, Roberts T. The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature 1989; 342:699-702.

    Google Scholar 

  5. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985; 315:239-42.

    Google Scholar 

  6. Courtneidge SA, Heber A. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 1987; 50:1031-1037.

    Google Scholar 

  7. Talmage DA, Freund R, Young AT, Dahl J, Dawe CJ, Benjamin TL. Phosphorylation of middle T by pp60c-src: a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis. Cell 1989; 59:55-65.

    Google Scholar 

  8. Endemann G, Dunn SN, Cantley LC. Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 1987; 26:6845-6852.

    Google Scholar 

  9. Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332:644-646.

    Google Scholar 

  10. Stephens LR, Hughes KT, Irvine RF. Pathways of phosphatidylinositol (3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 1991; 351:33-39.

    Google Scholar 

  11. Hawkins PT, Jackson TR, Stephens LR. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 1992; 358:157-9.

    Google Scholar 

  12. Jackson TR, Stephens LR, Hawkins PT. Receptor specificity of growth factor-stimulated synthesis of 3-phosphorylated inositol lipids in Swiss 3T3 cells. J Biol Chem 1992; 267:16627-36.

    Google Scholar 

  13. Morgan SJ, Smith AD, Parker PJ. Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur J Biochem 1990; 191:761-767.

    Google Scholar 

  14. Otsu M, Hiles ID, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G et al. Chracterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 1991; 65:91-104.

    Google Scholar 

  15. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fisher R, Drepps A et al. Cloning of PI3-kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 1991; 65:83-90.

    Google Scholar 

  16. Escobedo J, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 1991; 65:75-82.

    Google Scholar 

  17. Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R et al. Phosphatidylinositol 3-kinase : structure and expression of the 110 kd catalytic subunit. Cell 1992; 70:419-429.

    Google Scholar 

  18. Downing JR, Reynolds AB. PDGF, CSF-1, and EGF induce tyrosine phosphorylation of p120, a pp60src transformation-associated substrate. Oncogene 1991; 6:607-613.

    Google Scholar 

  19. Herman PK, Emr SD. Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:6742-6754.

    Google Scholar 

  20. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD. Phosphatidylinositol 3-kinase encoded by the yeast VPS34 gene essential for protein sorting. Science 1993; 260:88-92.

    Google Scholar 

  21. Hu P, Mondino A, Skolnik EY, Schlessinger J. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 1993; 13:7677-88.

    Google Scholar 

  22. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al. p110d, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci 1997; 94:4330-5.

    Google Scholar 

  23. MacDougall LK, Domin J, Waterfield MD. A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. Curr Biol 1995; 5:1404-1415.

    Google Scholar 

  24. Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, Stein RC et al. Cloning of a human phosphatidylinositol 3-kinase with a C2 domain which displays reduced sensitivity to the inhibitor wortmannin. Biochem J 1997; 326:139-47.

    Google Scholar 

  25. Brown RA, Ho LK, Weber-Hall SJ, Shipley JM, Fry MJ. Identification and cDNA cloning of a novel mammalian C2 domain-containing phosphoinositide 3-kinase, HsC2-PI3K. Biochem Biophys Res Commun 1997; 233:537-544.

    Google Scholar 

  26. Arcaro A, Volinia S, Zvelebil MJ, Stein R, Watton SJ, Layton MJ et al. Human PI3-kinase C2b - The role of calcium and the C2 domain in enzyme activity. J Biol Chem 1998; 273:33082-33091.

    Google Scholar 

  27. Rozycka M, Lu YJ, Brown RA, Lau MR, Shipley JM, Fry MJ. cDNA cloning of a third human C2-domain-containing class II phosphoinositide 3-kinase, PI3K-C2gamma, and chromosomal assignment of this gene (PIK3C2G) to 12p12. Genomics 1998; 54:569-574.

    Google Scholar 

  28. Virbasius JV, Guilherme A, Czech MP. Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J Biol Chem 1996; 271:13304-13307.

    Google Scholar 

  29. Molz L, Chen YW, Hirano M, Williams LT. Cpk is a novel class of drosophila PtdIns 3-kinase containing a C2 domain. J Biol Chem 1996; 271:13892-99.

    Google Scholar 

  30. Ono F, Nakagawa T, Saito S, Owada Y, Sakagami H, Goto K et al. A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J Biol Chem 1998; 273:7731-7736.

    Google Scholar 

  31. Domin J, Waterfield MD. Using structure to define the function of phosphoinositide 3-kinase family members. FEBS Lett 1997; 410:91-95.

    Google Scholar 

  32. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001; 70:535-602.

    Google Scholar 

  33. Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem 1998; 67:481-507.

    Google Scholar 

  34. Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G et al. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J 1994; 13:511-521.

    Google Scholar 

  35. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370:527-532.

    Google Scholar 

  36. Ponting CP. Novel domains in NADPH oxidase subunits, sorting nexins and PtdIns 3-kinases: Binding partners of SH3 domains? Protein Sci 1996; 5:2353-7.

    Google Scholar 

  37. Walker E, Perisic O, Ried C, Stephens L, Williams R. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 1999; 402:313-20.

    Google Scholar 

  38. Katan M, Allen VL. Modular PH and C2 domains in membrane attachment and other functions. FEBS Lett 1999; 452:36-40.

    Google Scholar 

  39. Rojas E, Nassar-Gentina V, Luxoro M, Pollard ME, Carrasco MA. Inositol 1,4,5-trisphosphate-induced Ca2+ release from the sarcoplasmic reticulum and contraction in crustacean muscle. Can J Physiol Pharmacol 1987; 65:672-680.

    Google Scholar 

  40. Huang L, Hofer F, Martin GS, Kim SH. Structural basis for the interaction of Ras with RalGDS. Nat Struct Biol 1998; 5:422-426.

    Google Scholar 

  41. Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J et al. The Gbg sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 1997; 89:105-114.

    Google Scholar 

  42. Krugmann S, Hawkins PT, Pryer N, Braselmann S. Characterizing the interactions between the two subunits of the p101/p110gamma phosphoinositide 3-kinase and their role in the activation of this enzyme by G beta gamma subunits. J Biol Chem 1999; 274:17152-17158.

    Google Scholar 

  43. Andrade MA, Petosa C, O'Donoghue SI, Muller CW, Bork P. Comparison of ARM and HEAT protein repeats. J Mol Biol 2001; 309:1-18.

    Google Scholar 

  44. Essen LO, Perisic O, Lynch DE, Katan M, Williams RL. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1. Biochemistry 1997; 36:2753-2762.

    Google Scholar 

  45. Czupalla C, Culo M, Muller EC, Brock C, Reusch HP, Spicher K et al. Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 2003; 278:11536-11545.

    Google Scholar 

  46. Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K et al. Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J Cell Biol 2003; 160:89-99.

    Google Scholar 

  47. Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ et al. SH2 domain specificity and activity modified by a single residue. Nature 1994; 369:502-505.

    Google Scholar 

  48. Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J 1994; 13:522-533.

    Google Scholar 

  49. Bunday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Biochim Biophys Acta 1999; 1422:187-204.

    Google Scholar 

  50. Zheng Y, Bagrodia S, Cerione RA. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J Biol Chem 1994; 269:18727-18730.

    Google Scholar 

  51. Tolias KF, Cantley LC, Carpenter CL. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 1995; 270:17656-17659.

    Google Scholar 

  52. Hill KM, Huang Y, Yip SC, Yu J, Segall JE, Backer JM. N-terminal domains of the class ia phosphoinositide 3-kinase regulatory subunit play a role in cytoskeletal but not mitogenic signaling. J Biol Chem 2001; 276:16374-16378.

    Google Scholar 

  53. Antonetti DA, Algenstaedt P, Kahn CR. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol 1996; 16:2195-2203.

    Google Scholar 

  54. Inukai K, Anai M, Van Breda E, Hosaka T, Katagiri H, Funaki M et al. A novel 55-kDa regulatory subunit for phosphatidylinositol 3-kinase structurally similar to p55PIK Is generated by alternative splicing of the p85alpha gene. J-Biol-Chem 1996; 271:5317-20.

    Google Scholar 

  55. Fruman DA, Cantley LC, Carpenter CL. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics 1996; 37:113-121.

    Google Scholar 

  56. Inukai K, Funaki M, Ogihara T, Katagiri H, Kanda A, Anai M et al. p85alpha gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50alpha, p55alpha, and p85alpha, with different PI 3-kinase activity elevating responses to insulin. J Biol Chem 1997; 272:7873-7882.

    Google Scholar 

  57. Pons S, Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher TL et al. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol 1995; 15:4453-4465.

    Google Scholar 

  58. Kerouz NJ, Horsch D, Pons S, Kahn CR. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 1997; 100:3164-3172.

    Google Scholar 

  59. Xia X, Serrero G. Multiple forms of p55PIK, a regulatory subunit of phosphoinositide 3-kinase, are generated by alternative initiation of translation. Biochem J 1999; 341 ( Pt 3):831-837.

    Google Scholar 

  60. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D et al. Cloning and characterisation of a G protein-activated human phosphatidlinositol 3-kinase. Science 1995; 269:690-693.

    Google Scholar 

  61. Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L. p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 2005; 15:566-570.

    Google Scholar 

  62. Domin J, Gaidarov I, Smith M, Keen J, Waterfield M. The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 2000; 275:11943-50.

    Google Scholar 

  63. Song X, Xu W, Zhang A, Huang G, Liang X, Virbasius JV et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 2001; 40:8940-8944.

    Google Scholar 

  64. Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE et al. The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell 2001; 8:829-839.

    Google Scholar 

  65. Wheeler M, Domin J. Recruitment of the class II phosphoinositide 3-kinase C2beta to the epidermal growth factor receptor: role of Grb2. Mol Cell Biol 2001; 21:6660-6667.

    Google Scholar 

  66. Budovskaya YV, Hama H, DeWald DB, Herman PK. The C terminus of the Vps34p phosphoinositide 3-kinase is necessary and sufficient for the interaction with the Vps15p protein kinase. J Biol Chem 2002; 277:287-294.

    Google Scholar 

  67. Panaretou C, Domin J, Cockcroft S, Waterfield MD. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem 1997; 272:2477-2485.

    Google Scholar 

  68. Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 2002; 3:416-427.

    Google Scholar 

  69. Arcaro A, Zvelebil MJ, Wallasch C, Ullrich A, Waterfield MD, Domin J. Class II phosphoinositide 3-kinase are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol 2000; 20:3817-30.

    Google Scholar 

  70. Zhang J, Banfic H, Straforini F, Tosi L, Volinia S, Rittenhouse S. A type II phosphoinositide 3-kinase is stimulated via activated integrin in platelets. A source of phosphatidylinositol 3-phosphate. J Biol Chem 1998; 273:14081-14084.

    Google Scholar 

  71. Sindic A, Aleksandrova A, Fields AP, Volinia S, Banfic H. Presence and activation of nuclear phosphoinositide 3-kinase C2beta during compensatory liver growth. J Biol Chem 2001; 276:17754-17761.

    Google Scholar 

  72. Visnjic D, Curic J, Crljen V, Batinic D, Volinia S, Banfic H. Nuclear phosphoinositide 3-kinase C2beta activation during G2/M phase of the cell cycle in HL-60 cells. Biochim Biophys Acta 2003; 1631:61-71.

    Google Scholar 

  73. Crljen V, Volinia S, Banfic H. Hepatocyte growth factor activates phosphoinositide 3-kinase C2beta in renal brush-border plasma membranes. Biochem J 2002; 365:791-799.

    Google Scholar 

  74. Domin J, Harper L, Aubyn D, Wheeler M, Florey O, Haskard D et al. The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns(3)P dependent mechanism. J Cell Physiol 2005.

    Google Scholar 

  75. Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ, Falasca M. Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol 2005; 169:789-799.

    Google Scholar 

  76. Arcaro A, Khanzada UK, Vanhaesebroeck B, Tetley TD, Waterfield MD, Seckl MJ. Two distinct phosphoinositide 3-kinases mediate polypeptide growth factor-stimulated PKB activation. EMBO J 2002; 21:5097-5108.

    Google Scholar 

  77. Thompson DM, Cochet C, Chambaz EM, Gill GN. Separation and characterization of a phosphatidylinositol kinase activity that co-purifies with the epidermal growth factor receptor. J Biol Chem 1985; 260:8824-8830.

    Google Scholar 

  78. Pike LJ, Eakes AT. Epidermal growth factor stimulates the production of phosphatidylinositol monophosphate and the breakdown of polyphosphoinositides in A431 cells. J Biol Chem 1987; 262:1644-1651.

    Google Scholar 

  79. Carter AN, Downes CP. Phosphatidylinositol 3-kinase is activated by nerve growth factor and epidermal growth factor in PC12 cells. J Biol Chem 1992; 267:14563-14567.

    Google Scholar 

  80. Miller ES, Ascoli M. Anti-phosphotyrosine immunoprecipitation of phosphoinositol 3'kinase activity in different cell types after exposure to epidermal growth factor. Biochem Biophys Res Commun 1990; 173:289-295.

    Google Scholar 

  81. Raffioni S, Bradshaw RA. Activation of phosphatidylinositol 3-kinase by epidermal growth factor, basic fibroblast growth factor and nerve growth factor in PC12 phaeochromocytoma cells. Proc Natl Acad Sci 1992; 89:9121-9125.

    Google Scholar 

  82. Bjorge JD, Chan TO, Antczak M, Kung HJ, Fujita DJ. Activated type I phosphatidylinositol kinase is associated with the epidermal growth factor (EGF) receptor following EGF stimulation. Proc Natl Acad Sci U S A 1990; 87:3816-3820.

    Google Scholar 

  83. Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 1992; 12:981-990.

    Google Scholar 

  84. Gout I, Dhand R, Panayotou G, Fry MJ, Hiles I, Otsu M et al. Expression and characterization of the p85 subunit of the phosphatidylinositol 3-kinase complex and a related p85 beta protein by using the baculovirus expression system. Biochem J 1992; 288:395-405.

    Google Scholar 

  85. King CR, Borrello I, Bellot F, Comoglio P, Schlessinger J. Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. EMBO J 1988; 7:1647-1651.

    Google Scholar 

  86. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993; 72:767-778.

    Google Scholar 

  87. Panayotou G, Bax B, Gout I, Federwisch M, Wroblowski B, Dhand R et al. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes. EMBO J 1992; 11:4261-4272.

    Google Scholar 

  88. Soltoff SP, Carraway SA, Prigent SA, Gullick WG, Cantley LC. ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 1994; 14:3550-3558.

    Google Scholar 

  89. Prigent SA, Gullick WJ. Identification of c-erbB-3 binding sites for phosphatidylinositol 3'-kinase and SHC using an EGF receptor/c-erbB-3 chimera. Embo J 1994; 13:2831-2841.

    Google Scholar 

  90. Gillham H, Golding MCHM, Pepperkok R, Gullick WJ. Intracellular movement of green flourescent protein-tagged phosphatidylinositol 3-kinase in response to growth factor receptor signaling. J Cell Biol 1999; 146:869-880.

    Google Scholar 

  91. Soltoff SP, Cantley LC. p120cbl is a cytosolic adaptor protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J Biol Chem 1996; 271:563-567.

    Google Scholar 

  92. Fukazawa T, Reedquist KA, Trub T, Soltoff S, Panchamoorthy G, Druker B et al. The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:19141-19150.

    Google Scholar 

  93. Galisteo ML, Dikic I, Batzer AG, Langdon WY, Schlessinger J. Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J Biol Chem 1995; 270:20242-20245.

    Google Scholar 

  94. Bowtell DD, Langdon WY. The protein product of the c-cbl oncogene rapidly complexes with the EGF receptor and is tyrosine phosphorylated following EGF stimulation. Oncogene 1995; 11:1561-1567.

    Google Scholar 

  95. Lehr S, Kotzka J, Herkner A, Klein E, Siethoff C, Knebel B et al. Identification of tyrosine phosphorylation sites in human Gab-1 protein by EGF receptor kinase in vitro. Biochemistry 1999; 38:151-159.

    Google Scholar 

  96. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 2000; 20:1448-1459.

    Google Scholar 

  97. Fujioka T, Ui M. Involvement of insulin receptor substrates in epidermal growth factor induced activation of phosphatidylinositol 3-kinase in rat hepatocyte primary culture. Eur J Biochem 2001; 268:25-34.

    Google Scholar 

  98. Katso RM, Pardo OE, Palamidessi A, Franz CM, Marinov M, De Laurentiis A et al. Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 2006; 17:3729-3744.

    Google Scholar 

  99. Mayer BJ, Ren R, Clark KL, Baltimore D. A putative modular domain present in diverse signaling proteins. Cell 1993; 73:629-630.

    Google Scholar 

  100. Haslam RJ, Koide HB, Hemmings BA. Pleckstrin domain homology. Nature 1993; 363:309-310.

    Google Scholar 

  101. Harlan JE, Hajduk PJ, Yoon HS, Fesik SW. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 1994; 371:168-170.

    Google Scholar 

  102. Kay BK, Yamabhai M, Wendland B, Emr SD. Identification of a novel domain shared by putative components of the endocytic and cytoskeletal machinery. Protein Sci 1999; 8:435-438.

    Google Scholar 

  103. Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS. ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci 2004; 117:9-18.

    Google Scholar 

  104. Rosenthal JA, Chen H, Slepnev VI, Pellegrini L, Salcini AE, Di Fiore PP et al. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem 1999; 274:33959-33965.

    Google Scholar 

  105. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291:1047-1051.

    Google Scholar 

  106. Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291:1051-1055.

    Google Scholar 

  107. Hyun TS, Rao DS, Saint-Dic D, Michael LE, Kumar PD, Bradley SV et al. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains. J Biol Chem 2004; 279:14294-14306.

    Google Scholar 

  108. Friant S, Pecheur EI, Eugster A, Michel F, Lefkir Y, Nourrisson D et al. Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev Cell 2003; 5:499-511.

    Google Scholar 

  109. Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991; 254:274-277.

    Google Scholar 

  110. Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 1991; 201:475-481.

    Google Scholar 

  111. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 1991; 88:4171-4175.

    Google Scholar 

  112. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A 1992; 89:9267-9271.

    Google Scholar 

  113. Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K et al. Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun 1995; 216:526-534.

    Google Scholar 

  114. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275:665-668.

    Google Scholar 

  115. Franke TF, Yang S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-ativated phosphatidylinositol 3-kinase. Cell 1995; 81:727-736.

    Google Scholar 

  116. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15:6541-6551.

    Google Scholar 

  117. Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK, Nakagawa H. Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 2000; 275:30934-30942.

    Google Scholar 

  118. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376:599-602.

    Google Scholar 

  119. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba. Current Biology 1997; 7:261-269.

    Google Scholar 

  120. Meier R, Alessi DR, Cron P, Andjelkovic M, Hemmings BA. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem 1997; 272:30491-30497.

    Google Scholar 

  121. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997; 277:567-570.

    Google Scholar 

  122. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 1998; 279:710-714.

    Google Scholar 

  123. Mora A, Komander D, van Aalten DM, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 2004; 15:161-170.

    Google Scholar 

  124. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271:31372-31378.

    Google Scholar 

  125. Lim MA, Kikani CK, Wick MJ, Dong LQ. Nuclear translocation of 3'-phosphoinositide-dependent protein kinase 1 (PDK-1): a potential regulatory mechanism for PDK-1 function. Proc Natl Acad Sci U S A 2003; 100:14006-14011.

    Google Scholar 

  126. Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter DC et al. Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 2004; 23:3918-3928.

    Google Scholar 

  127. Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S et al. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J 2002; 21:5396-5407.

    Google Scholar 

  128. Cheng X, Ma Y, Moore M, Hemmings BA, Taylor SS. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci U S A 1998; 95:9849-9854.

    Google Scholar 

  129. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998; 281:2042-2045.

    Google Scholar 

  130. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA et al. Phosphorylation and activation of p70s6k by PDK1. Science 1998; 279:707-710.

    Google Scholar 

  131. Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem 1999; 274:27168-27176.

    Google Scholar 

  132. Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 1999; 18:3024-3033.

    Google Scholar 

  133. Terada N, Lucas JJ, Szepesi A, Franklin RA, Takase K, Gelfand EW. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun 1992; 186:1315-1321.

    Google Scholar 

  134. Wilson M, Burt AR, Milligan G, Anderson NG. Wortmannin-sensitive activation of p70s6k by endogenous and heterologously expressed Gi-coupled receptors. J Biol Chem 1996; 271:8537-8540.

    Google Scholar 

  135. Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci U S A 1994; 91:4441-4445.

    Google Scholar 

  136. Parker PJ, Murray-Rust J. PKC at a glance. J Cell Sci 2004; 117:131-132.

    Google Scholar 

  137. Akimoto K, Takahashi R, Moriya S, Nishioka N, Takayanagi J, Kimura K et al. EGF or PDGF receptors activate atypical PKClambda through phosphatidylinositol 3-kinase. EMBO J 1996; 15:788-798.

    Google Scholar 

  138. Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y et al. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18:6971-6982.

    Google Scholar 

  139. Dutil EM, Toker A, Newton AC. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol 1998; 8:1366-1375.

    Google Scholar 

  140. Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, Anand G. PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 2004; 1697:259-269.

    Google Scholar 

  141. Michel JJ, Scott JD. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol 2002; 42:235-257.

    Google Scholar 

  142. Bayascas JR, Alessi DR. Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 2005; 18:143-145.

    Google Scholar 

  143. Toker A, Newton AC. Cellular signaling: pivoting around PDK-1. Cell 2000; 103:185-188.

    Google Scholar 

  144. Troussard AA, Mawji NM, Ong C, Mui A, Arnaud R, Dedhar S. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 2003; 278:22374-22378.

    Google Scholar 

  145. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177-189.

    Google Scholar 

  146. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-175.

    Google Scholar 

  147. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307:1098-1101.

    Google Scholar 

  148. Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E et al. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 2003; 278:32124-32131.

    Google Scholar 

  149. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001; 15:2203-2208.

    Google Scholar 

  150. Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV. Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 2004; 104:1703-1710.

    Google Scholar 

  151. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, III et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292:1728-1731.

    Google Scholar 

  152. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88:435-437.

    Google Scholar 

  153. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol 1998; 16:395-419.

    Google Scholar 

  154. Fang X, Yu S, Eder A, Mao M, Bast RC, Jr., Boyd D et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 1999; 18:6635-6640.

    Google Scholar 

  155. del PL, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278:687-689.

    Google Scholar 

  156. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:231-241.

    Google Scholar 

  157. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282:1318-1321.

    Google Scholar 

  158. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8:1145-1152.

    Google Scholar 

  159. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8:1136-1144.

    Google Scholar 

  160. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001; 3:245-252.

    Google Scholar 

  161. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98:11598-11603.

    Google Scholar 

  162. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001; 3:973-982.

    Google Scholar 

  163. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999; 286:1741-1744.

    Google Scholar 

  164. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96:857-868.

    Google Scholar 

  165. Kops GJ, de Ruiter ND, Vries-Smits AM, Powell DR, Bos JL, Burgering BM. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999; 398:630-634.

    Google Scholar 

  166. Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380:297-309.

    Google Scholar 

  167. Biggs WH, III, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 1999; 96:7421-7426.

    Google Scholar 

  168. Takaishi H, Konishi H, Matsuzaki H, Ono Y, Shirai Y, Saito N et al. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci U S A 1999; 96:11836-11841.

    Google Scholar 

  169. Schmidt M, Fernandez de MS, van der HA, Klompmaker R, Kops GJ, Lam EW et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 2002; 22:7842-7852.

    Google Scholar 

  170. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 2000; 20:9138-9148.

    Google Scholar 

  171. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8:1153-1160.

    Google Scholar 

  172. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 2001; 21:952-965.

    Google Scholar 

  173. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004; 6:203-208.

    Google Scholar 

  174. Khwaja A. Akt is more than just a Bad kinase. Nature 1999; 401:33-34.

    Google Scholar 

  175. Lauder A, Castellanos A, Weston K. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of Tcells and is required for PKB-mediated protection from apoptosis. Mol Cell Biol 2001; 21:5797-5805.

    Google Scholar 

  176. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273:32377-32379.

    Google Scholar 

  177. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275:10761-10766.

    Google Scholar 

  178. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999; 19:6195-6206.

    Google Scholar 

  179. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609.

    Google Scholar 

  180. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 2000; 20:8969-8982.

    Google Scholar 

  181. Kim BC, Lee MN, Kim JY, Lee SS, Chang JD, Kim SS et al. Roles of phosphatidylinositol 3-kinase and Rac in the nuclear signaling by tumor necrosis factor-alpha in rat-2 fibroblasts. J Biol Chem 1999; 274:24372-24377.

    Google Scholar 

  182. Wang Y, Falasca M, Schlessinger J, Malstrom S, Tsichlis P, Settleman J et al. Activation of the c-fos serum response element by phosphatidyl inositol 3-kinase and rho pathways in HeLa cells. Cell Growth Differ 1998; 9:513-522.

    Google Scholar 

  183. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 1998; 335 ( Pt 1):1-13.

    Google Scholar 

  184. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A 1998; 95:11211-11216.

    Google Scholar 

  185. Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett 1998; 421:125-130.

    Google Scholar 

  186. Proud CG. eIF2 and the control of cell physiology. Semin Cell Dev Biol 2005; 16:3-12.

    Google Scholar 

  187. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272:17269-17275.

    Google Scholar 

  188. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-579.

    Google Scholar 

  189. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15:807-826.

    Google Scholar 

  190. Shamji AF, Nghiem P, Schreiber SL. Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell 2003; 12:271-280.

    Google Scholar 

  191. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23:3151-3171.

    Google Scholar 

  192. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648-657.

    Google Scholar 

  193. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002; 4:658-665.

    Google Scholar 

  194. Gao X, Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 2001; 15:1383-1392.

    Google Scholar 

  195. Harris TE, Lawrence JC, Jr. TOR signaling. Sci STKE 2003; 2003:re15.

    Google Scholar 

  196. Kwiatkowski DJ. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2003; 2:471-476.

    Google Scholar 

  197. Wittinghofer A. Signal transduction via Ras. Biol Chem 1998; 379:933-937.

    Google Scholar 

  198. Worthylake DK, Rossman KL, Sondek J. Crystal structure of the DH/PH fragment of Dbs without bound GTPase. Structure (Camb ) 2004; 12:1078-1086.

    Google Scholar 

  199. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 2003; 546:93-97.

    Google Scholar 

  200. Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 1999; 274:8347-50.

    Google Scholar 

  201. Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 1998; 279:558-560.

    Google Scholar 

  202. Venkateswarlu K, Oatey PB, Tavare JM, Cullen PJ. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol 1998; 8:463-466.

    Google Scholar 

  203. Lockyer PJ, Wennstrom S, Kupzig S, Venkateswarlu K, Downward J, Cullen PJ. Identification of the ras GTPase-activating protein GAP1(m) as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Curr Biol 1999; 9:265-268.

    Google Scholar 

  204. Venkateswarlu K, Oatey PB, Tavare JM, Jackson TR, Cullen PJ. Identification of centaurin-alpha1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochem J 1999; 340 ( Pt 2):359-363.

    Google Scholar 

  205. Chen X, Wang Z. Regulation of intracellular trafficking of the EGF receptor by Rab5 in the absence of phosphatidylinositol 3-kinase activity. EMBO Rep 2001; 2:68-74.

    Google Scholar 

  206. Futter CE, Collinson LM, Backer JM, Hopkins CR. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol 2001; 155:1251-1264.

    Google Scholar 

  207. Johnson EE, Overmeyer JH, Gunning WT, Maltese WA. Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J Cell Sci 2006; 119:1219-1232.

    Google Scholar 

  208. Gaidarov I, Smith ME, Domin J, Keen JH. The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 2001; 7:443-449.

    Google Scholar 

  209. Wheeler M, Domin J. The N-terminus of phosphoinositide 3-kinase-C2beta regulates lipid kinase activity and binding to clathrin. J Cell Physiol 2006; 206:586-593.

    Google Scholar 

  210. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 2006; 125:733-747.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Domin, J. (2008). PHOSPHOINOSITIDE 3-KINASE ENZYMES AS DOWNSTREAM TARGETS OF THE EGF RECEPTOR. In: Haley, J., Gullick, W. (eds) EGFR Signaling Networks in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-356-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-356-1_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-948-2

  • Online ISBN: 978-1-59745-356-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics