Skip to main content

Internalization and degradation of EGF receptor

  • Chapter
  • First Online:
Book cover EGFR Signaling Networks in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1310 Accesses

Abstract

Activation of the EGF receptor (EGFR) at the cell surface results in acceleration of endocytosis of the receptor and rapid degradation of endocytosed receptors in lysosomes. The elevated internalization and lysosomal targeting result in down-regulation of the EGFR, which negatively regulates signaling by the receptor. This review describes the molecular mechanisms involved in EGFR trafficking, which lead to growth-factor-induced receptor down-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter G, Cohen S. 125I-Labeled human epidermal growth factor: binding internalization, and degradation in human fibroblasts. J. Cell Biol. 1976; 71:159-171.

    Google Scholar 

  2. Gorden P, Carpentier J-L, Cohen S, Orci L. Epidermal growth factor: Morphological demonstration of binding internalization and lydosomal association in human fibroblasts. Proc.Nat. Acad. Sci. USA 1978; 75:5025-5029.

    Google Scholar 

  3. Chinkers M, McKanna JA, Cohen S. Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 1979; 83:260-265.

    Google Scholar 

  4. Haigler HT, McKanna JA, Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A431. J. Cell Biol. 1979; 81:382-395.

    Google Scholar 

  5. McKanna JA, Haigler HT, Cohen S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci U S A 1979; 76:5689-93.

    Google Scholar 

  6. Wiley HS, Herbst JJ, Walsh BJ, Lauffenberger DA, Rosenfeld MG, Gill GN. The role of Tyrosine Kinase Activity in Endocytosis, Compartmentalization and Down-regulation of the Epidermal Growth Factor Receptor. J. Biol. Chem. 1991; 266:11083-11094.

    Google Scholar 

  7. Chang C-P, Lazar CS, Walsh BJ, et al. Ligand-induced internalization of the epidermal growth factor receptor is mediated by multiple endocytic codes analogous to the tyrosine motif found in constitutively internalized receptors. J. Biol. Chem. 1993; 268:19312-19320.

    Google Scholar 

  8. Resat H, Ewald JA, Dixon DA, Wiley HS. An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J 2003; 85:730-43.

    Google Scholar 

  9. Burke PM, Wiley HS. Human mammary epithelial cells rapidly exchange empty EGFR between surface and intracellular pools. J Cell Physiol 1999; 180:448-60.

    Google Scholar 

  10. Beguinot L, Lyall RM, Willingham MC, Pastan I. Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc. Natl. Acad. Sci. USA 1984; 81:2384-8.

    Google Scholar 

  11. Stoscheck CM, Carpenter G. “Down-regulation” of EGF receptors: Direct demonstration of receptor degradation in human fibroblasts. J. Cell Biol. 1984; 98:1048-1053.

    Google Scholar 

  12. Stoscheck CM, Carpenter G. Characterization of the metabolic turnover of epidermal growth factor receptor protein in A-431 cells. J. Cell Physiology 1984; 120:296-302.

    Google Scholar 

  13. Wells A, Welsh JB, Lazar CS, Wiley HS, Gill GN, Rosenfeld MG. Ligand-Induced Transformation By a Noninternalizing Epidermal Growth Factor Receptor. Science 1990; 247:962-964.

    Google Scholar 

  14. Lund KA, Opresko LK, Strarbuck C, Walsh BJ, Wiley HS. Quantitative analysis of the endocytic system involved in hormone-induced receptor internalization. J. Biol. Chem. 1990; 265:15713-13723.

    Google Scholar 

  15. Wiley HS. Anomalous Binding of Epidermal Growth Factor to A431 Cells Is Due to the Effect of High Receptor Densities and a Saturable Endocytic System. J. Cell Biol. 1988; 107:801-810.

    Google Scholar 

  16. Jiang X, Sorkin A. Epidermal growth factor receptor internalization through clathrin-coated pits requires Cbl RING finger and proline-rich domains but not receptor polyubiquitylation. Traffic 2003; 4:529-43.

    Google Scholar 

  17. Sigismund S, Woelk T, Puri C, et al. From the Cover: Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A 2005; 102:2760-5.

    Google Scholar 

  18. Kazazic M, Roepstorff K, Johannessen LE, et al. EGF-induced activation of the EGF receptor does not trigger mobilization of caveolae. Traffic 2006; 7:1518-27.

    Google Scholar 

  19. Hanover JA, Willingham MC, Pastan I. Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Cell 1984; 39:283-293.

    Google Scholar 

  20. Carpentier J-L, Gorden P, Anderson RGW, Brown MS, Cohen S, Orci L. Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: A quantitative electron microscopic study in normal and mutant human fibroblasts. J. Cell Biol. 1982; 95:73-77.

    Google Scholar 

  21. Stang E, Blystad FD, Kazazic M, et al. Cbl-Dependent Ubiquitination is Required for Progression of EGF Receptors into Clathrin-coated Pits. Mol Biol Cell 2004.

    Google Scholar 

  22. Johannessen LE, Pedersen NM, Pedersen KW, Madshus IH, Stang E. Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor- and grb2-containing clathrin-coated pits. Mol Cell Biol 2006; 26:389-401.

    Google Scholar 

  23. Huang F, Khvorova A, Marshall W, Sorkin A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 2004; 279:16657-61.

    Google Scholar 

  24. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211-25.

    Google Scholar 

  25. Chen WS, Lazar CS, Lund KA, et al. Functional Independence of the Epidermal Growth Factor Receptor From a Domain Required For Ligand-Induced Internalization and Calcium Regulation. Cell 1989; 59:33-43.

    Google Scholar 

  26. Sorkin A, Waters CM, Overholser KA, Carpenter G. Multiple autophosphorylation site mutations of the epidermal growth factor receptor. J. Biol. Chem. 1991; 266:8355-8362.

    Google Scholar 

  27. Lamaze C, Schmid SL. Recruitment of Epidermal Growth Factor Receptors into Coated Pits Requires Their Activated Tyrosine Kinase. J. Cell Biol. 1995; 129:47-54.

    Google Scholar 

  28. Sorkina T, Huang F, Beguinot L, Sorkin A. Effect of tyrosine kinase inhibitors on clathrin-coated pit recruitment and internalization of epidermal growth factor receptor. J Biol Chem 2002; 277:27433-41.

    Google Scholar 

  29. Honegger AM, Dull TJ, Felder S, et al. Point Mutation at the ATP Binding Site of EGF Receptor Abolishes Protein-Tyrosine Kinase Activity and Alters Cellular Routing. Cell 1987; 51:199-209.

    Google Scholar 

  30. Jiang X, Huang F, Marusyk A, Sorkin A. Grb2 Regulates Internalization of EGF Receptors through Clathrin-coated Pits. Mol Biol Cell 2003; 14:858-70.

    Google Scholar 

  31. Lund KA, Lazar CS, Chen WS, et al. Phosphorylation of the Epidermal Growth Factor Receptor at Threonine 654 Inhibits Ligand-induced Internalization and Down-regulation. J. Biol. Chem. 1990; 265:20517-20523.

    Google Scholar 

  32. Countaway JL, Nairn AC, Davis RJ. Mechanism of Desensitization of the Epidermal Growth Factor Receptor Protein-Tyrosine Kinase. J. Biol. Chem. 1992; 267:1129-1140.

    Google Scholar 

  33. Frey MR, Dise RS, Edelblum KL, Polk DB. p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. Embo J 2006; 25:5683-92.

    Google Scholar 

  34. Vergarajauregui S, San Miguel A, Puertollano R. Activation of p38 mitogen-activated protein kinase promotes epidermal growth factor receptor internalization. Traffic 2006; 7:686-98.

    Google Scholar 

  35. Zwang Y, Yarden Y. p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. Embo J 2006; 25:4195-206.

    Google Scholar 

  36. Sorkin A, Carpenter G. Interaction of activated EGF receptors with coated pit adaptins. Science 1993; 261:612-615.

    Google Scholar 

  37. Nesterov A, Kurten RC, Gill GN. Association of Epidermal Growth Factor Receptors with Coated Pit Adaptins via a Tyrosine Phosphorylation-regulated Mechanism. J. Biol. Chem. 1995; 270:6320-6327.

    Google Scholar 

  38. Nesterov A, Carter RE, Sorkina T, Gill GN, Sorkin A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. Embo J 1999; 18:2489-99.

    Google Scholar 

  39. Sorkin A, Mazzotti M, Sorkina T, Scotto L, Beguinot L. Epidermal growth factor interaction with clathrin adaptors is mediated by the Tyr974-containing internalization motif. J. Biol. Chem. 1996; 271:13377-13384.

    Google Scholar 

  40. Motley A, Bright NA, Seaman MN, Robinson MS. Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 2003; 162:909-918.

    Google Scholar 

  41. Huang F, Jiang X, Sorkin A. Tyrosine phosphorylation of the beta2 subunit of clathrin adaptor complex AP-2 reveals the role of a di-leucine motif in the epidermal growth factor receptor trafficking. J Biol Chem 2003; 278:43411-7.

    Google Scholar 

  42. Wang Z, Moran MF. Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 1996; 272:1935-9.

    Google Scholar 

  43. Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2:294-307.

    Google Scholar 

  44. Levkowitz G, Waterman H, Ettenberg SA, et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1 [In Process Citation]. Mol Cell 1999; 4:1029-40.

    Google Scholar 

  45. de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci 2001; 114:2167-78.

    Google Scholar 

  46. Thien CB, Walker F, Langdon WY. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 2001; 7:355-65.

    Google Scholar 

  47. Huang F, Sorkin A. Growth Factor Receptor Binding Protein 2-mediated Recruitment of the RING Domain of Cbl to the Epidermal Growth Factor Receptor Is Essential and Sufficient to Support Receptor Endocytosis. Mol Biol Cell 2005; 16:1268-81.

    Google Scholar 

  48. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 2006; 21:737-48.

    Google Scholar 

  49. Duan L, Miura Y, Dimri M, et al. Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 2003; 278:28950-60.

    Google Scholar 

  50. Hanover JA, Beguinot L, Willingham MC, Pastan IH. Transit of receptors for epidermal growth factor and transferrin through clathrin-coated pits. Analysis of the kinetics of receptor entry. Journal of Biological Chemistry 1985; 260:15938-45.

    Google Scholar 

  51. Tsao PI, von Zastrow M. Type-specific sorting of G protein-coupled receptors after endocytosis. Journal of Biological Chemistry 2000; 275:11130-11140.

    Google Scholar 

  52. Confalonieri S, Salcini AE, Puri C, Tacchetti C, Di Fiore PP. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J Cell Biol 2000; 150:905-12.

    Google Scholar 

  53. Martin NP, Mohney RP, Dunn S, Das M, Scappini E, O'Bryan JP. Intersectin regulates epidermal growth factor receptor endocytosis, ubiquitylation, and signaling. Mol Pharmacol 2006; 70:1643-53.

    Google Scholar 

  54. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 2002; 416:183-7.

    Google Scholar 

  55. Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I. CIN85 participates in Cbl-b-mediated downregulation of receptor tyrosine kinases. J Biol Chem 2002.

    Google Scholar 

  56. Haglund K, Shimokawa N, Szymkiewicz I, Dikic I. Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc Natl Acad Sci U S A 2002; 99:12191-6.

    Google Scholar 

  57. Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson LE. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci 2002; 115:1791-1802.

    Google Scholar 

  58. Orth JD, Krueger EW, Weller SG, McNiven MA. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res 2006; 66:3603-10.

    Google Scholar 

  59. Hopkins CR, Trowbridge IS. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A-431 cells. J. Cell Biol. 1983; 97:508-521.

    Google Scholar 

  60. Hopkins CR, Miller K, Beardmore JM. Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. Journal of Cell Science - Supplement 1985; 3:173-86.

    Google Scholar 

  61. Miller K, Beardmore J, Kanety H, Schlessinger J, Hopkins CR. Localization of epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 1986; 102:500-509.

    Google Scholar 

  62. Dunn WA, Hubbard AC. Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J. Cell Biol. 1984; 98:2148-2159.

    Google Scholar 

  63. Gruenberg J, Maxfield FR. Membrane transport in the endocytic pathway. Curr Opin Cell Biol 1995; 7:552-63.

    Google Scholar 

  64. Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5:121-32.

    Google Scholar 

  65. Sorkin A, Teslenko L, Nikolsky N. The endocytosis of epidermal growth factor in A431 cells: a pH of microenvironment and the dynamics of receptor complexes dissociation. Exp. Cell Res. 1988; 175:192-205.

    Google Scholar 

  66. Galperin E, Verkhusha VV, Sorkin A. Three-chromophore FRET micrsocopy to analyze multiprotein interactions in living cells. Nature Methods 2004; 1:209-217.

    Google Scholar 

  67. Di Gugliemo GM, Baass PC, Ou W-J, Posner B, Bergeron JJM. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 1994; 13:4269-4277.

    Google Scholar 

  68. Sorkin A, Carpenter G. Dimerization of internalized growth factor receptors. J. Biol. Chem. 1991; 266:23453-23460.

    Google Scholar 

  69. Barbieri MA, Roberts RL, Gumusboga A, et al. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J Cell Biol 2000; 151:539-50.

    Google Scholar 

  70. Sorkin A, Krolenko S, Kudrjavtceva N, et al. Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways. J. Cell Biology 1991; 112:55-63.

    Google Scholar 

  71. French AR, Tadaki DK, S.K. N, Lauffenberger DA. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J. Biol. Chem. 1995; 270:4334-4340.

    Google Scholar 

  72. Slagsvold T, Pattni K, Malerod L, Stenmark H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol 2006; 16:317-26.

    Google Scholar 

  73. Carpentier JL, White MF, Orci L, Kahn CR. Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells. J. Cell Biol. 1987; 105:2751-2762.

    Google Scholar 

  74. Murk JL, Humbel BM, Ziese U, et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc Natl Acad Sci U S A 2003; 100:13332-7.

    Google Scholar 

  75. Hopkins CR. Selective membrane protein trafficking: vectorial flow and filter [see comments]. Trends in Biochemical Sciences 1992; 17:27-32.

    Google Scholar 

  76. Babst M, Odorizzi G, Estepa EJ, Emr SD. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 2000; 1:248-58.

    Google Scholar 

  77. Bishop N, Horman A, Woodman P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates. J Cell Biol 2002; 157:91-102.

    Google Scholar 

  78. Bache KG, Brech A, Mehlum A, Stenmark H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 2003; 162:435-42.

    Google Scholar 

  79. Bache KG, Stuffers S, Malerod L, et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol Biol Cell 2006; 17:2513-23.

    Google Scholar 

  80. Bowers K, Piper SC, Edeling MA, et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem 2006; 281:5094-105.

    Google Scholar 

  81. Hurley JH, Emr SD. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 2006; 35:277-98.

    Google Scholar 

  82. Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 2002; 156:843-54.

    Google Scholar 

  83. Doyotte A, Russell MR, Hopkins CR, Woodman PG. Depletion of TSG101 forms a mammalian “Class E” compartment: a multicisternal early endosome with multiple sorting defects. J Cell Sci 2005; 118:3003-17.

    Google Scholar 

  84. Razi M, Futter CE. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell 2006; 17:3469-83.

    Google Scholar 

  85. Tsacoumangos A, Kil SJ, Ma L, Sonnichsen FD, Carlin C. A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J Cell Sci 2005; 118:3959-71.

    Google Scholar 

  86. Kurten RC, Cadena DL, Gill GN. Enhanced degradation of EGF receptors by a sorting nexin, SNX-1. Science 1996; 272:1008-1010.

    Google Scholar 

  87. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. Embo J 2006; 25:1-12.

    Google Scholar 

  88. Rubin C, Gur G, Yarden Y. Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res 2005; 15:66-71.

    Google Scholar 

  89. Wong ES, Fong CW, Lim J, et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. Embo J 2002; 21:4796-808.

    Google Scholar 

  90. Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 2003; 13:297-307.

    Google Scholar 

  91. Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002; 4:850-8.

    Google Scholar 

  92. Feng Q, Baird D, Peng X, et al. Cool-1 functions as an essential regulatory node for EGF receptor- and Src-mediated cell growth. Nat Cell Biol 2006; 8:945-56.

    Google Scholar 

  93. Schmidt MH, Hoeller D, Yu J, et al. Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex. Mol Cell Biol 2004; 24:8981-93.

    Google Scholar 

  94. Tanos B, Pendergast AM. Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem 2006; 281:32714-23.

    Google Scholar 

  95. Kowanetz K, Crosetto N, Haglund K, Schmidt MH, Heldin CH, Dikic I. Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J Biol Chem 2004; 279:32786-95.

    Google Scholar 

  96. Gur G, Rubin C, Katz M, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. Embo J 2004; 23:3270-81.

    Google Scholar 

  97. Kario E, Marmor MD, Adamsky K, et al. Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 2005; 280:7038-48.

    Google Scholar 

  98. Tashiro K, Konishi H, Sano E, Nabeshi H, Yamauchi E, Taniguchi H. Suppression of the ligand-mediated down-regulation of epidermal growth factor receptor by Ymer, a novel tyrosine-phosphorylated and ubiquitinated protein. J Biol Chem 2006; 281:24612-22.

    Google Scholar 

  99. Urbe S, McCullough J, Row P, Prior IA, Welchman R, Clague MJ. Control of growth factor receptor dynamics by reversible ubiquitination. Biochem Soc Trans 2006; 34:754-6.

    Google Scholar 

  100. McCullough J, Clague MJ, Urbe S. AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 2004; 166:487-92.

    Google Scholar 

  101. Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 2005; 16:5163-74.

    Google Scholar 

  102. Alwan HA, van Leeuwen JE. UBPY-mediated EGFR deubiquitination promotes EGFR degradation. J Biol Chem 2006.

    Google Scholar 

  103. Row PE, Prior IA, McCullough J, Clague MJ, Urbe S. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 2006; 281:12618-24.

    Google Scholar 

Download references

Acknowledgements

I thank Dr. Jason Duex and Ms. Melissa Adams for critical reading of the manuscript. This work was supported by NCI grant CA08915 and ACS grant RSG-00-247-04-CSM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sorkin, A. (2008). Internalization and degradation of EGF receptor. In: Haley, J., Gullick, W. (eds) EGFR Signaling Networks in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-356-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-356-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-948-2

  • Online ISBN: 978-1-59745-356-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics