Advertisement

History of Ultrasound in Urology

  • Nikhil Waingankar
  • Bruce R. GilbertEmail author
Chapter
Part of the Current Clinical Urology book series (CCU)

Abstract

Ultrasound is the portion of the acoustic spectrum characterized by sonic waves that emanate at frequencies greater than that of the upper limit of sound audible to humans, 20 kHz. A phenomenon of physics that is found throughout nature, ultrasound is utilized by rodents, dogs, moths, dolphins, whales, frogs, and bats for a variety of purposes, including communication, evading predators, and locating prey [1–4]. Lorenzo Spallazani, an eighteenth-century Italian biologist and physiologist, was the first to provide experimental evidence that non-audible sound exists. Moreover, he hypothesized the utility of ultrasound in his work with bats by demonstrating that bats use sound rather than sight to locate insects and avoid obstacles during flight; this was proven in an experiment where blind-folded bats were able to fly without navigational difficulty while bats with their mouths covered were not. He later determined through operant conditioning that the Eptesicus fuscus bat can perceive tones between 2.5 and 100 kHz [5, 6].

Keywords

Transrectal Ultrasound Piezoelectric Quartz Crystal Pierre Curie United States Atomic Energy Commission Spermatic Cord Torsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Corcoran AJ, Barber JR, Conner WE. Tiger moth jams bat sonar. Science. 2009;325(5938):325–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Dunning DC, Roeder KD. Moth sounds and the insect-catching behavior of bats. Science. 1965;147:173–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Mackay RL, Liaw HM. Dolphin vocalization mechanisms. Science. 1981;212(4495):676–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Ruttimann J. Frogs chat in ultrasound. Nature News, 15 Mar 2006.Google Scholar
  5. 5.
    Galambos R. The avoidance of obstacles by flying bats: Spallazani’s ideas (1794) and later theories. Isis. 1942;34(2):132–40.CrossRefGoogle Scholar
  6. 6.
    Dijkgraaf S. Spallanzani’s unpublished experiments on the sensory basis of object perception in bats. Isis. 1960;51(1):9–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Curie J, Curie P. Sur ‘electricite polaire dans cristaux hemiedres a face inclinees. C R Seances Acad Sci. 1880;91:383.Google Scholar
  8. 8.
    Katzir S. The discovery of the piezoelectric effect. In: Katzir S, editor. The beginnings of piezoelectricity: a study in Mundane Physics. Netherlands: Springer; 2006. p. 15–64.CrossRefGoogle Scholar
  9. 9.
    Curie P. Radioactive substances, especially radium. Nobel Lecture, 6 Jun 1905.Google Scholar
  10. 10.
    Diamantis A, Magiorkinis E, Papadimitriou A, Androutsos G. The contribution of Maria Sklodowska-Curie and Pierre Curie to Nuclear and Medical Physics. A hundred and ten years after the discovery of radium. Hell J Nucl Med. 2008;11(1):33–8.PubMedGoogle Scholar
  11. 11.
    Seitz F. The cosmic inventor: Reginald Aubrey Fessenden (1866-1932). Am Philos Soc. 1999;89:41–6.Google Scholar
  12. 12.
    Chilowsky C, Langevin MP. Procedes et appareils pour la production de signaux sous-marins diriges et pour la localisation a distance d’obstacles sous-marins; French patent #502913, 1916.Google Scholar
  13. 13.
    Martin J. History of ultrasound. In: Sanders RC, Resnick M, editors. Ultrasound in urology. Baltimore, MD: Williams and Wilkins; 1984. p. 1–12.Google Scholar
  14. 14.
    Zimmerman D. Paul Langevin and the discovery of active sonar or Asdic. North Mariner. 2002; 12(1): 39–52.Google Scholar
  15. 15.
    Sokolov SY. The ultra-acoustic microscope. Zh Tekh Fiz. 1949;19:271.Google Scholar
  16. 16.
    Jagannathan J, et al. High-intensity focused ultrasound surgery of the brain: part 1—a historical perspective with modern applications. Neurosurgery. 2009;64(2):201–10. discussion 210–1.CrossRefPubMedGoogle Scholar
  17. 17.
    Dussik K. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. Z Ges Neurol Psych. 1941;174:153–68.CrossRefGoogle Scholar
  18. 18.
    Thomas AMK, Banerjee AK, Busch U. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 141–61.CrossRefGoogle Scholar
  19. 19.
    Shampo MA, Kyle RA. Karl Theodore Dussik–pioneer in ultrasound. Mayo Clin Proc. 1995;70(12):1136.CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas AMK, Banerjee AK, Busch U. Application of echo-ranging techniques to the determination of structure of biological tissues. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 162–9.CrossRefGoogle Scholar
  21. 21.
    Wild JJ, Reid JM. Application of echo-ranging techniques to the determination of structure of biological tissues. Science. 1952;115(2983):226–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. 1954. Clin Physiol Funct Imaging. 2004; 24(3):118–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Fraser AG. Inge Edler and the origins of clinical echocardiography. Eur J Echocardiogr. 2001;2(1):3–5.PubMedGoogle Scholar
  24. 24.
    Holmes JH, et al. The ultrasonic visualization of soft tissue structures in the human body. Trans Am Clin Climatol Assoc. 1954;66:208–25.PubMedGoogle Scholar
  25. 25.
    Donald I, Macvicar J, Brown TG. Investigation of abdominal masses by pulsed ultrasound. Lancet. 1958;1(7032):1188–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Thomas AMK, Banerjee AK, Busch U. Investigation of abdominal masses by pulsed ultrasound. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 213–23.CrossRefGoogle Scholar
  27. 27.
    Doppler C. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh Königl Böhm Ges Wiss. 1843;2:465–82.Google Scholar
  28. 28.
    Satomura S. Ultrasonic Doppler method for the inspection of cardiac function. J Acoust Soc Am. 1957;29:1181–5.CrossRefGoogle Scholar
  29. 29.
    Coman IM. Christian Andreas Doppler–the man and his legacy. Eur J Echocardiogr. 2005;6(1):7–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Hofmann D, Hollander HJ. Intrauterine diagnosis of hydrops fetus universalis using ultrasound. Zentralbl Gynakol. 1968;90(19):667–9.PubMedGoogle Scholar
  31. 31.
    Woo J. A short history of the development of ultrasound in obstetrics and gynecology. http://www.ob-ultrasound.net/site_index.html.
  32. 32.
    Bernstine RL, Callagan DA. Ultrasonic Doppler inspection of the fetal heart. Am J Obstet Gynecol. 1966;95(7):1001–4.PubMedGoogle Scholar
  33. 33.
    Buschmann W. On the diagnosis of carotid thrombosis. Albrecht Von Graefes Arch Ophthalmol. 1964; 166:519–29.PubMedGoogle Scholar
  34. 34.
    Brinker RA, Landiss DJ, Croley TF. Detection of carotid artery bifurcation stenosis by Doppler ultrasound. Preliminary report. J Neurosurg. 1968;29(2):143–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Grossman BL, Wood EH. Evaluation of cerebrovascular disease utilizing a transcutaneous Doppler technic. Radiology. 1968;90(3):586–7.PubMedGoogle Scholar
  36. 36.
    Strandness D Jr. Ultrasonic velocity determination in the diagnosis and evaluation of peripheral vascular disease. In: Symposium on ultrasound. Bloomington, IN: Indiana University Press; 1968.Google Scholar
  37. 37.
    Maroon JC, Campbell RL, Dyken ML. Internal carotid artery occlusion diagnosed by Doppler ultrasound. Stroke. 1970;1(2):122–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Kato K, Izumi T. A new ultrasonic flowmeter that can detect flow direction. In: Proceedings of the 10th scientific meeting of the Japan Society of Ultrasonics in Medicine; Springer 1966. p. 78–9.Google Scholar
  39. 39.
    McLeod F. A directional Doppler flowmeter. In: Digest of the 7th international conference on medical electronics and biological engineering; Royal Academy of Engineering Sciences 1967. p. 213.Google Scholar
  40. 40.
    Bollinger A, Partsch H. Christian Doppler is 200 years young. Vasa. 2003;32(4):225–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Baker DW, Johnson SL. Doppler echocardiograpy. In: Waag RC, Gramiak R, editors. Cardiac ultrasound. St. Louis: CV Mosby; 1974. p. 24.Google Scholar
  42. 42.
    Maulik D, et al. Doppler color flow mapping of the fetal heart. Angiology. 1986;37(9):628–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Hamper UM, et al. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities. Radiographics. 1997; 17(2):499–513.PubMedGoogle Scholar
  44. 44.
    Sheikh K, et al. Real-time, three-dimensional echocardiography: feasibility and initial use. Echocardiography. 1991;8(1):119–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Takahashi H, Ouchi T. The ultrasonic diagnosis in the field of urology. Proc Jpn Soc Ultrasonics Med. 1963;3:7.Google Scholar
  46. 46.
    Watanabe H, et al. Development and application of new equipment for transrectal ultrasonography. J Clin Ultrasound. 1974;2(2):91–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Holm HH, Northeved A. A transurethral ultrasonic scanner. J Urol. 1974;111(2):238–41.PubMedGoogle Scholar
  48. 48.
    Goldberg BB, Pollack HM. Differentiation of renal masses using A-mode ultrasound. J Urol. 1971; 105(6):765–71.PubMedGoogle Scholar
  49. 49.
    Perri AJ, et al. Necrotic testicle with increased blood flow on Doppler ultrasonic examination. Urology. 1976;8(3):265–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Perri AJ, et al. The Doppler stethoscope and the diagnosis of the acute scrotum. J Urol. 1976;116(5): 598–600.PubMedGoogle Scholar
  51. 51.
    Watanabe H, et al. Non-invasive detection of ultrasonic Doppler signals from renal vessels. Tohoku J Exp Med. 1976;118(4):393–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Greene ER, et al. Noninvasive characterization of renal artery blood flow. Kidney Int. 1981;20(4):523–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Arima M, et al. Predictability of renal allograft prognosis during rejection crisis by ultrasonic Doppler flow technique. Urology. 1982;19(4): 389–94.CrossRefPubMedGoogle Scholar
  54. 54.
    Burgess SE, et al. Histologic changes in porcine eyes treated with high-intensity focused ultrasound. Ann Ophthalmol. 1987;19(4):133–8.PubMedGoogle Scholar
  55. 55.
    Madersbacher S, et al. Tissue ablation in benign ­prostatic hyperplasia with high-intensity focused ultrasound. Eur Urol. 1993;23 Suppl 1:39–43.PubMedGoogle Scholar
  56. 56.
    Madersbacher S, et al. Transcutaneous high-intensity focused ultrasound and irradiation: an organ-preserving treatment of cancer in a solitary testis. Eur Urol. 1998; 33(2):195–201.CrossRefPubMedGoogle Scholar
  57. 57.
    Chapelon JY, et al. Treatment of localised prostate cancer with transrectal high intensity focused ultrasound. Eur J Ultrasound. 1999;9(1):31–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Berge V, Baco E, Karlsen SJ. A prospective study of salvage high-intensity focused ultrasound for locally radiorecurrent prostate cancer: early results. Scand J Urol Nephrol. 2010;44(4):223–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Kohrmann KU, et al. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol. 2002;167(6):2397–403.CrossRefPubMedGoogle Scholar
  60. 60.
    Margreiter M, Marberger M. Focal therapy and imaging in prostate and kidney cancer: high-intensity focused ultrasound ablation of small renal tumors. J Endourol. 2010;24(5):745–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Chen SL, et al. Transrectal ultrasound-guided transperineal botulinum toxin a injection to the external urethral sphincter for treatment of detrusor external sphincter dyssynergia in patients with spinal cord injury. Arch Phys Med Rehabil. 2010; 91(3):340–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Ozawa H, et al. The future of urodynamics: non-­invasive ultrasound videourodynamics. Int J Urol. 2010;17(3):241–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.North Shore-Long Island Jewish Health SystemThe Arthur Smith Institute for UrologyNew Hyde ParkUSA
  2. 2.Hofstra North Shore LIJ School of MedicineThe Arthur Smith Institute for UrologyNew Hyde ParkUSA

Personalised recommendations