Skip to main content

History of Ultrasound in Urology

  • Chapter
  • First Online:
  • 1686 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Ultrasound is the portion of the acoustic spectrum characterized by sonic waves that emanate at frequencies greater than that of the upper limit of sound audible to humans, 20 kHz. A phenomenon of physics that is found throughout nature, ultrasound is utilized by rodents, dogs, moths, dolphins, whales, frogs, and bats for a variety of purposes, including communication, evading predators, and locating prey [1–4]. Lorenzo Spallazani, an eighteenth-century Italian biologist and physiologist, was the first to provide experimental evidence that non-audible sound exists. Moreover, he hypothesized the utility of ultrasound in his work with bats by demonstrating that bats use sound rather than sight to locate insects and avoid obstacles during flight; this was proven in an experiment where blind-folded bats were able to fly without navigational difficulty while bats with their mouths covered were not. He later determined through operant conditioning that the Eptesicus fuscus bat can perceive tones between 2.5 and 100 kHz [5, 6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Corcoran AJ, Barber JR, Conner WE. Tiger moth jams bat sonar. Science. 2009;325(5938):325–7.

    Article  CAS  PubMed  Google Scholar 

  2. Dunning DC, Roeder KD. Moth sounds and the insect-catching behavior of bats. Science. 1965;147:173–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mackay RL, Liaw HM. Dolphin vocalization mechanisms. Science. 1981;212(4495):676–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ruttimann J. Frogs chat in ultrasound. Nature News, 15 Mar 2006.

    Google Scholar 

  5. Galambos R. The avoidance of obstacles by flying bats: Spallazani’s ideas (1794) and later theories. Isis. 1942;34(2):132–40.

    Article  Google Scholar 

  6. Dijkgraaf S. Spallanzani’s unpublished experiments on the sensory basis of object perception in bats. Isis. 1960;51(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  7. Curie J, Curie P. Sur ‘electricite polaire dans cristaux hemiedres a face inclinees. C R Seances Acad Sci. 1880;91:383.

    Google Scholar 

  8. Katzir S. The discovery of the piezoelectric effect. In: Katzir S, editor. The beginnings of piezoelectricity: a study in Mundane Physics. Netherlands: Springer; 2006. p. 15–64.

    Chapter  Google Scholar 

  9. Curie P. Radioactive substances, especially radium. Nobel Lecture, 6 Jun 1905.

    Google Scholar 

  10. Diamantis A, Magiorkinis E, Papadimitriou A, Androutsos G. The contribution of Maria Sklodowska-Curie and Pierre Curie to Nuclear and Medical Physics. A hundred and ten years after the discovery of radium. Hell J Nucl Med. 2008;11(1):33–8.

    PubMed  Google Scholar 

  11. Seitz F. The cosmic inventor: Reginald Aubrey Fessenden (1866-1932). Am Philos Soc. 1999;89:41–6.

    Google Scholar 

  12. Chilowsky C, Langevin MP. Procedes et appareils pour la production de signaux sous-marins diriges et pour la localisation a distance d’obstacles sous-marins; French patent #502913, 1916.

    Google Scholar 

  13. Martin J. History of ultrasound. In: Sanders RC, Resnick M, editors. Ultrasound in urology. Baltimore, MD: Williams and Wilkins; 1984. p. 1–12.

    Google Scholar 

  14. Zimmerman D. Paul Langevin and the discovery of active sonar or Asdic. North Mariner. 2002; 12(1): 39–52.

    Google Scholar 

  15. Sokolov SY. The ultra-acoustic microscope. Zh Tekh Fiz. 1949;19:271.

    CAS  Google Scholar 

  16. Jagannathan J, et al. High-intensity focused ultrasound surgery of the brain: part 1—a historical perspective with modern applications. Neurosurgery. 2009;64(2):201–10. discussion 210–1.

    Article  PubMed  Google Scholar 

  17. Dussik K. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. Z Ges Neurol Psych. 1941;174:153–68.

    Article  Google Scholar 

  18. Thomas AMK, Banerjee AK, Busch U. Uber die Moglichkeit, hochfrequente mechanische Schwingungen als diagnostische Mittel zu verwerten. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 141–61.

    Chapter  Google Scholar 

  19. Shampo MA, Kyle RA. Karl Theodore Dussik–pioneer in ultrasound. Mayo Clin Proc. 1995;70(12):1136.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas AMK, Banerjee AK, Busch U. Application of echo-ranging techniques to the determination of structure of biological tissues. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 162–9.

    Chapter  Google Scholar 

  21. Wild JJ, Reid JM. Application of echo-ranging techniques to the determination of structure of biological tissues. Science. 1952;115(2983):226–30.

    Article  CAS  PubMed  Google Scholar 

  22. Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. 1954. Clin Physiol Funct Imaging. 2004; 24(3):118–36.

    Article  CAS  PubMed  Google Scholar 

  23. Fraser AG. Inge Edler and the origins of clinical echocardiography. Eur J Echocardiogr. 2001;2(1):3–5.

    CAS  PubMed  Google Scholar 

  24. Holmes JH, et al. The ultrasonic visualization of soft tissue structures in the human body. Trans Am Clin Climatol Assoc. 1954;66:208–25.

    CAS  PubMed  Google Scholar 

  25. Donald I, Macvicar J, Brown TG. Investigation of abdominal masses by pulsed ultrasound. Lancet. 1958;1(7032):1188–95.

    Article  CAS  PubMed  Google Scholar 

  26. Thomas AMK, Banerjee AK, Busch U. Investigation of abdominal masses by pulsed ultrasound. In: Banerjee AK, Thomas AMK, Busch U, editors. Classic papers in modern diagnostic radiology. Berlin: Springer; 2005. p. 213–23.

    Chapter  Google Scholar 

  27. Doppler C. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh Königl Böhm Ges Wiss. 1843;2:465–82.

    Google Scholar 

  28. Satomura S. Ultrasonic Doppler method for the inspection of cardiac function. J Acoust Soc Am. 1957;29:1181–5.

    Article  Google Scholar 

  29. Coman IM. Christian Andreas Doppler–the man and his legacy. Eur J Echocardiogr. 2005;6(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann D, Hollander HJ. Intrauterine diagnosis of hydrops fetus universalis using ultrasound. Zentralbl Gynakol. 1968;90(19):667–9.

    CAS  PubMed  Google Scholar 

  31. Woo J. A short history of the development of ultrasound in obstetrics and gynecology. http://www.ob-ultrasound.net/site_index.html.

  32. Bernstine RL, Callagan DA. Ultrasonic Doppler inspection of the fetal heart. Am J Obstet Gynecol. 1966;95(7):1001–4.

    CAS  PubMed  Google Scholar 

  33. Buschmann W. On the diagnosis of carotid thrombosis. Albrecht Von Graefes Arch Ophthalmol. 1964; 166:519–29.

    CAS  PubMed  Google Scholar 

  34. Brinker RA, Landiss DJ, Croley TF. Detection of carotid artery bifurcation stenosis by Doppler ultrasound. Preliminary report. J Neurosurg. 1968;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  35. Grossman BL, Wood EH. Evaluation of cerebrovascular disease utilizing a transcutaneous Doppler technic. Radiology. 1968;90(3):586–7.

    CAS  PubMed  Google Scholar 

  36. Strandness D Jr. Ultrasonic velocity determination in the diagnosis and evaluation of peripheral vascular disease. In: Symposium on ultrasound. Bloomington, IN: Indiana University Press; 1968.

    Google Scholar 

  37. Maroon JC, Campbell RL, Dyken ML. Internal carotid artery occlusion diagnosed by Doppler ultrasound. Stroke. 1970;1(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kato K, Izumi T. A new ultrasonic flowmeter that can detect flow direction. In: Proceedings of the 10th scientific meeting of the Japan Society of Ultrasonics in Medicine; Springer 1966. p. 78–9.

    Google Scholar 

  39. McLeod F. A directional Doppler flowmeter. In: Digest of the 7th international conference on medical electronics and biological engineering; Royal Academy of Engineering Sciences 1967. p. 213.

    Google Scholar 

  40. Bollinger A, Partsch H. Christian Doppler is 200 years young. Vasa. 2003;32(4):225–33.

    Article  PubMed  Google Scholar 

  41. Baker DW, Johnson SL. Doppler echocardiograpy. In: Waag RC, Gramiak R, editors. Cardiac ultrasound. St. Louis: CV Mosby; 1974. p. 24.

    Google Scholar 

  42. Maulik D, et al. Doppler color flow mapping of the fetal heart. Angiology. 1986;37(9):628–32.

    Article  CAS  PubMed  Google Scholar 

  43. Hamper UM, et al. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities. Radiographics. 1997; 17(2):499–513.

    CAS  PubMed  Google Scholar 

  44. Sheikh K, et al. Real-time, three-dimensional echocardiography: feasibility and initial use. Echocardiography. 1991;8(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi H, Ouchi T. The ultrasonic diagnosis in the field of urology. Proc Jpn Soc Ultrasonics Med. 1963;3:7.

    Google Scholar 

  46. Watanabe H, et al. Development and application of new equipment for transrectal ultrasonography. J Clin Ultrasound. 1974;2(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  47. Holm HH, Northeved A. A transurethral ultrasonic scanner. J Urol. 1974;111(2):238–41.

    CAS  PubMed  Google Scholar 

  48. Goldberg BB, Pollack HM. Differentiation of renal masses using A-mode ultrasound. J Urol. 1971; 105(6):765–71.

    CAS  PubMed  Google Scholar 

  49. Perri AJ, et al. Necrotic testicle with increased blood flow on Doppler ultrasonic examination. Urology. 1976;8(3):265–7.

    Article  CAS  PubMed  Google Scholar 

  50. Perri AJ, et al. The Doppler stethoscope and the diagnosis of the acute scrotum. J Urol. 1976;116(5): 598–600.

    CAS  PubMed  Google Scholar 

  51. Watanabe H, et al. Non-invasive detection of ultrasonic Doppler signals from renal vessels. Tohoku J Exp Med. 1976;118(4):393–4.

    Article  CAS  PubMed  Google Scholar 

  52. Greene ER, et al. Noninvasive characterization of renal artery blood flow. Kidney Int. 1981;20(4):523–9.

    Article  CAS  PubMed  Google Scholar 

  53. Arima M, et al. Predictability of renal allograft prognosis during rejection crisis by ultrasonic Doppler flow technique. Urology. 1982;19(4): 389–94.

    Article  CAS  PubMed  Google Scholar 

  54. Burgess SE, et al. Histologic changes in porcine eyes treated with high-intensity focused ultrasound. Ann Ophthalmol. 1987;19(4):133–8.

    CAS  PubMed  Google Scholar 

  55. Madersbacher S, et al. Tissue ablation in benign ­prostatic hyperplasia with high-intensity focused ultrasound. Eur Urol. 1993;23 Suppl 1:39–43.

    PubMed  Google Scholar 

  56. Madersbacher S, et al. Transcutaneous high-intensity focused ultrasound and irradiation: an organ-preserving treatment of cancer in a solitary testis. Eur Urol. 1998; 33(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  57. Chapelon JY, et al. Treatment of localised prostate cancer with transrectal high intensity focused ultrasound. Eur J Ultrasound. 1999;9(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  58. Berge V, Baco E, Karlsen SJ. A prospective study of salvage high-intensity focused ultrasound for locally radiorecurrent prostate cancer: early results. Scand J Urol Nephrol. 2010;44(4):223–7.

    Article  PubMed  Google Scholar 

  59. Kohrmann KU, et al. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol. 2002;167(6):2397–403.

    Article  PubMed  Google Scholar 

  60. Margreiter M, Marberger M. Focal therapy and imaging in prostate and kidney cancer: high-intensity focused ultrasound ablation of small renal tumors. J Endourol. 2010;24(5):745–8.

    Article  PubMed  Google Scholar 

  61. Chen SL, et al. Transrectal ultrasound-guided transperineal botulinum toxin a injection to the external urethral sphincter for treatment of detrusor external sphincter dyssynergia in patients with spinal cord injury. Arch Phys Med Rehabil. 2010; 91(3):340–4.

    Article  PubMed  Google Scholar 

  62. Ozawa H, et al. The future of urodynamics: non-­invasive ultrasound videourodynamics. Int J Urol. 2010;17(3):241–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Gilbert MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waingankar, N., Gilbert, B.R. (2013). History of Ultrasound in Urology. In: Fulgham, P., Gilbert, B. (eds) Practical Urological Ultrasound. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-351-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-351-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-58829-602-3

  • Online ISBN: 978-1-59745-351-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics