Skip to main content

Neuroimaging for the Evaluation of CAM Mechanisms

  • Chapter
Book cover Integrative Pain Medicine

Part of the book series: Contemporary Pain Medicine ((CPM))

  • 3296 Accesses

Summary

Complementary and alternative medicine (CAM) research is entering a new era where state-of-the-art neuroimaging modalities are able noninvasively to measure brain response in humans to both simple and complex CAM stimuli. While the neurophysiological mechanisms of action for many CAM treatments and pain are not well understood and controversy regarding their clinical efficacy remains, neuroimaging research can begin to decode any specific treatment-related mechanisms, if indeed they exist. This chapter will briefly outline the pain neuromatrix and modern neuroimaging techniques such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), and magnetoencephalography (MEG). We will also summarize neuroimaging results for several CAM treatments, though the focus will be on acupuncture, which has been most extensively researched with neuroimaging. Acupuncture is an ancient healing modality that originated in China and has been in use for over 2000 years. Importantly, acupuncture needling often evokes complex somatosensory sensations and may modulate the cognitive/affective perception of pain, suggesting that many effects are mediated by the brain and extending central nervous system (CNS) networks. Other CAM modalities evaluated with neuroimaging include meditation and biofeedback. We will also discuss future directions for CAM neuroimaging research, as this is a very dynamic and evolving field which may ultimately shed light on the mechanisms of action for several CAM treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992;89(12):5675–5679.

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89(13):5951–5955.

    Google Scholar 

  3. Rosen BR, Buckner RL, Dale AM. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci USA 1998;95(3):773–780.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Ruger A, Galldiks N, Schaller B, Sobesky J, Kracht L, Monfared P, Klein M, Vollmar S, Bauer B, Wagner R, Graf R, Wienhard K, Herholz K, Heiss WD. PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 2003;30(7):1051–1065.

    Article  PubMed  CAS  Google Scholar 

  5. Nunez PL. Localization of brain activity with electroencephalography. Adv Neurol 1990;54:39–65.

    PubMed  CAS  Google Scholar 

  6. Hamalainen MS. Magnetoencephalography: a tool for functional brain imaging. Brain Topogr 1992;5(2):95–102.

    Article  PubMed  CAS  Google Scholar 

  7. Niedermeyer E. Dipole theory and electroencephalography. Clin Electroencephalogr 1996;27(3): 121–131.

    PubMed  CAS  Google Scholar 

  8. Berger H. On the electroencephalogram of man. Archiv. fur Psychiatrie Nervenkrankheiten 1929; 527–570.

    Google Scholar 

  9. Portin K, Salenius S, Salmelin R, Hari R. Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. Cereb Cortex 1998;8(3):253–260.

    Article  PubMed  CAS  Google Scholar 

  10. Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989;338(6213):334–337.

    Article  PubMed  CAS  Google Scholar 

  11. Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 1994;60(2):537–550.

    Article  PubMed  CAS  Google Scholar 

  12. Dale AM, Halgren E. Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 2001;11(2):202-208.

    Article  PubMed  CAS  Google Scholar 

  13. Borsook D, Becerra L. Functional imaging of pain and analgesia-a valid diagnostic tool? Pain 2005;117(3):247–250.

    Article  PubMed  Google Scholar 

  14. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9(4):463–484.

    Article  PubMed  Google Scholar 

  15. Melzack R. Labat lecture. Phantom limbs. Reg Anesth 1989;14(5):208–211.

    PubMed  CAS  Google Scholar 

  16. Ingvar M. Pain and functional imaging. Philos Trans R Soc Lond B Biol Sci 1999;354(1387): 1347–1358.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 2005;207(1):19–33.

    Article  PubMed  Google Scholar 

  18. Cho ZH, Chung SC, Jones JP, Park JB, Park HJ, Lee HJ, Wong EK, Min BI. New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. Proc Natl Acad Sci USA 1998;95(5):2670–2673.

    Article  PubMed  CAS  Google Scholar 

  19. Li G, Cheung RT, Ma QY, Yang ES. Visual cortical activations on fMRI upon stimulation of the vision-implicated acupoints. Neuroreport 2003;14(5):669–673.

    Article  PubMed  Google Scholar 

  20. Gareus IK, Lacour M, Schulte AC, Hennig J. Is there a BOLD response of the visual cortex on stimulation of the vision-related acupoint GB 37? J Magn Reson Imaging 2002;5(3):227–232.

    Article  Google Scholar 

  21. Cho ZH, Chung SC, Lee HJ, Wong EK, Min BI. Retraction. New findings of the correlation between acupoints and corresponding brain cortices using functional MRI. Proc Natl Acad Sci USA 2006a;103(27):10527.

    CAS  Google Scholar 

  22. Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY, Chen CJ, Liao JR, Lai PH, Chu KA, Pan HB, Yang CF. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage 2002;16(4):1028–1037.

    Article  PubMed  Google Scholar 

  23. Yamauchi N, Okazari N, Sato T, Fujitani Y, Kuda K. The effects of electrical acupuncture on human somatosensory evoked potentials and spontaneous brain waves. Yonago Acta Med 1976;20(2):88–100.

    PubMed  CAS  Google Scholar 

  24. Wei H, Kong J, Zhuang D, Shang H, Yang X. Early-latency somatosensory evoked potentials elicited by electrical acupuncture after needling acupoint LI-4. Clin Electroencephalogr 2000;31(3):160–164.

    PubMed  CAS  Google Scholar 

  25. Vincent CA, Richardson PH, Black JJ, Pither CE. The significance of needle placement site in acupuncture. J Psychosom Res 1989;33(4):489–496.

    Article  PubMed  CAS  Google Scholar 

  26. Hsieh JC, Cheng FP, Tu CH, Tsai JS, Huang DF, Lee TY, Liu RS. Brain activation by acupuncture with "de-qi": a PET study. J Nuclear Med 1998;39(5 suppl.):205.

    Google Scholar 

  27. Wu MT, Hsieh JC, Xiong J, Yang CF, Pan HB, Chen YC, Tsai G, Rosen BR, Kwong KK. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain-preliminary experience. Radiology 1999;212(1):133–141.

    PubMed  CAS  Google Scholar 

  28. Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI, Kennedy DN, Rosen BR, Kwong KK. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp 2000;9(1):13–25.

    Article  PubMed  CAS  Google Scholar 

  29. Yoo SS, The EK, Blinder RA, Jolesz FA. Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. Neuroimage 2004;22(2):932–940.

    Article  PubMed  Google Scholar 

  30. Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 2005b;24(3): 193–205.

    Article  Google Scholar 

  31. Pariente J, White P, Frackowiak RS, Lewith G. Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage 2005;25(4):1161–1167.

    Article  PubMed  Google Scholar 

  32. Zald DH. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev 2003;41(1):88–123.

    Article  PubMed  Google Scholar 

  33. Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 2000;30(5):263–288.

    Article  PubMed  CAS  Google Scholar 

  34. Casey KL. Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci USA 1999;96(14):7668–7674.

    Article  PubMed  CAS  Google Scholar 

  35. Pomeranz B. (2001). Acupuncture Analgesia-Basic Research. In Clinical Acupuncture: Scientific Basis. Stux G, Hammerschlag R, Eds. Berlin: Springer. pp 1–28.

    Google Scholar 

  36. McMahon S, Koltzenburg M, Eds. 2005. Wall and Melzack’s Textbook of Pain. Churchill Livingstone.

    Google Scholar 

  37. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci 2004;5(7):565–575.

    Article  PubMed  CAS  Google Scholar 

  38. Hui KK, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK, Kennedy DN, Makris N. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage 2005;27(3):479–496.

    Article  PubMed  Google Scholar 

  39. Zhang WT, Jin Z, Cui GH, Zhang KL, Zhang K, Zeng YW, Luo F, Chen AC, Han JS. Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res 2003;982(2):168–178.

    Article  PubMed  CAS  Google Scholar 

  40. Chen AC, Liu FJ, Wang L, Arendt-Nielsen L. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging. Neuroimage 2006;29(4): 1080–1091.

    Article  PubMed  Google Scholar 

  41. NCCAM_Clearinghouse. 2005. P.O. Box 7923. Gaithersburg, MD. 1-888-644-6226. Single copies of the CD are available.

    Google Scholar 

  42. Cho Z, Oleson T, Alimi D, Niemtzow R. Acupuncture: the search for biologic evidence with functional magnetic resonance imaging positron emission tomography techniques. J Alter Complement Med 2002;8(4):399–401.

    Article  Google Scholar 

  43. Carlsson C. Acupuncture mechanisms for clinically relevant long-term effects-reconsideration and a hypothesis. Acupunct Med 2002;20(2-3):82–99.

    Article  PubMed  Google Scholar 

  44. Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965;150(699):971–979.

    Article  PubMed  CAS  Google Scholar 

  45. Abad-Alegria F, Melendo JA, Prieto M, Martinez T. Somatosensory evoked potential elicited by acupoint’s stimulus. Clin Electroencephalogr 1995;26(4):219–224.

    PubMed  CAS  Google Scholar 

  46. Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 1979a;6(3):283–304.

    Article  CAS  Google Scholar 

  47. Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 1979b;6(3):305–327.

    Article  CAS  Google Scholar 

  48. Price DD, Rafii A, Watkins LR, Buckingham B. A psychophysical analysis of acupuncture analgesia. Pain 1984;19(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  49. Flor H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 2002;1(3):182–189.

    Article  PubMed  Google Scholar 

  50. Maihofner C, Handwerker HO, Neundorfer B, Birklein F. Patterns of cortical reorganization in complex regional pain syndrome. Neurology 2003;61(12):1707–1715.

    PubMed  Google Scholar 

  51. Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK. Somatosensory cortical plasticity in carpal tunnel syndrome–a cross-sectional fMRI evaluation. Neuroimage 2006, June;31(2): 520–530.

    Google Scholar 

  52. Napadow V, Liu J, Li M, Kettner N, Ryan A, Kwong KK, Hui KKS, Audette J. Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Human Brain Mapp. 2007, March;28(3):159–171.

    Google Scholar 

  53. Li G, Jack Jr. CR, Yang ES. An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients. J Magn Reson Imaging 2006.

    Google Scholar 

  54. Lee JD, Chon JS, Jeong HK, Kim HJ, Yun M, Kim DY, Kim DI, Park CI, Yoo HS. The cerebrovascular response to traditional acupuncture after stroke. Neuroradiology 2003;45(11):780–784.

    Article  PubMed  CAS  Google Scholar 

  55. Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med 2005;257(2):156–166.

    Article  PubMed  CAS  Google Scholar 

  56. Nishijo K, Mori H, Yosikawa K, Yazawa K. Decreased heart rate by acupuncture stimulation in humans via facilitation of cardiac vagal activity and suppression of cardiac sympathetic nerve. Neurosci Lett 1997;227(3):165–168.

    Article  PubMed  CAS  Google Scholar 

  57. Haker E, Egekvist H, Bjerring P. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. J Auton Nerv Syst 2000;79(1):52–59.

    Article  PubMed  CAS  Google Scholar 

  58. Huang ST, Chen GY, Lo HM, Lin JG, Lee YS, Kuo CD. Increase in the vagal modulation by acupuncture at neiguan point in the healthy subjects. Am J Chin Med 2005;33(1):157–164.

    Article  PubMed  Google Scholar 

  59. Li Z, Wang C, Mak AF, Chow DH. Effects of acupuncture on heart rate variability in normal subjects under fatigue and non-fatigue state. Eur J Appl Physiol 2005;94(5-6):633–640.

    Article  PubMed  Google Scholar 

  60. Knardahl S, Elam M, Olausson B, Wallin BG. Sympathetic nerve activity after acupuncture in humans. Pain 1998;75:19–25.

    Article  PubMed  CAS  Google Scholar 

  61. Napadow V, Dhond R, Purdon P, Kettner N, Makris N, Kwong K, Hui K. 2005a. Correlating acupuncture fMRI in the human brainstem with heart rate variability. 27th Annual International IEEE EMBS Conference, Shanghai, China.

    Google Scholar 

  62. Tracey KJ. The inflammatory reflex. Nature 2002;420(6917):853–859.

    Article  PubMed  CAS  Google Scholar 

  63. Cho ZH, Hwang SC, Wong EK, Son YD, Kang CK, Park TS, Bai SJ, Kim YB, Lee YB, Sung KK, Lee BH, Shepp LA, Min KT. Neural substrates, experimental evidences and functional hypothesis of acupuncture mechanisms. Acta Neurol Scand 2006b;113(6):370–377.

    Article  CAS  Google Scholar 

  64. Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N, Audette J, Hui KK. Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 2007;130(3):254–266.

    Article  PubMed  CAS  Google Scholar 

  65. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999;283(5408):1657–1661.

    Article  PubMed  CAS  Google Scholar 

  66. Chapman CR, Colpitts YM, Benedetti C, Kitaeff R, Gehrig JD. Evoked potential assessment of acupunctural analgesia: attempted reversal with naloxone. Pain 1980;9(2):183–197.

    Article  PubMed  CAS  Google Scholar 

  67. Chernyak G, Sengupta P, Lenhardt R, Liem E, Doufas AG, Sessler DI, Akca O. The timing of acupuncture stimulation does not influence anesthetic requirement. Anesth Analg 2005;100(2): 387–392.

    Article  PubMed  Google Scholar 

  68. Meissner W, Weiss T, Trippe RH, Hecht H, Krapp C, Miltner WH. Acupuncture decreases somatosensory evoked potential amplitudes to noxious stimuli in anesthetized volunteers. Anesth Analg 2004;98(1):141–147, (table of contents).

    Article  PubMed  Google Scholar 

  69. Hammerschlag R, Zwickey H. Evidence-based complementary and alternative medicine: back to basics. J Altern Complement Med 2006;12(4):349–350.

    Article  PubMed  Google Scholar 

  70. Levine DW, Simmons BP, Koris MJ, Daltroy LH, Hohl GG, Fossel AH, Katz JN. A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. J Bone Joint Surg Am 1993;75(11):1585–1592.

    PubMed  CAS  Google Scholar 

  71. Hoffman GA, Harrington A, Fields HL. Pain and the placebo: what we have learned. Perspect Biol Med 2005;48(2):248–265.

    Article  PubMed  Google Scholar 

  72. Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, Nichols TE, Stohler CS. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci 2005;25(34): 7754–7762.

    Article  PubMed  CAS  Google Scholar 

  73. Zubieta JK, Yau WY, Scott DJ, Stohler CS. Belief or need? Accounting for individual variations in the neurochemistry of the placebo effect. Brain Behav Immun 2006;20(1):15–26.

    Article  PubMed  CAS  Google Scholar 

  74. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004;303(5661):1162–1167.

    Article  PubMed  CAS  Google Scholar 

  75. Petrovic P, Ingvar M. Imaging cognitive modulation of pain processing. Pain 2002;95(1-2):1–5.

    Article  PubMed  Google Scholar 

  76. Kong J, Gollub RL, Rosman IS, Webb JM, Vangel MG, Kirsch I, Kaptchuk TJ. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci 2006;26(2):381–388.

    Article  PubMed  CAS  Google Scholar 

  77. Streitberger K, Kleinhenz J. Introducing a placebo needle into acupuncture research. Lancet 1998;352(9125):364–365.

    Article  PubMed  CAS  Google Scholar 

  78. Park H, Park J, Lee H. Does Deqi (needle sensation) exist? Am J Chin Med 2002;30(1):45–50.

    Article  PubMed  Google Scholar 

  79. Sherman KJ, Hogeboom CJ, Cherkin DC, Deyo RA. Description and validation of a noninvasive placebo acupuncture procedure. J Altern Complement Med 2002;8(1): 11–19.

    Article  PubMed  Google Scholar 

  80. Tsukayama H, Yamashita H, Kimura T, Otsuki K. Factors that influence the applicability of sham needle in acupuncture trials: two randomized, single-blind, crossover trials with acupuncture-experienced subjects. Clin J Pain 2006;22(4):346–349.

    Article  PubMed  Google Scholar 

  81. Rainville P, Carrier B, Hofbauer RK, Bushnell MC, Duncan GH. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 1999;82(2):159–171.

    Article  PubMed  CAS  Google Scholar 

  82. Faymonville ME, Laureys S, Degueldre C, DelFiore G, Luxen A, Franck G, Lamy M, Maquet P. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 2000;92(5):1257–1267.

    Article  PubMed  CAS  Google Scholar 

  83. Faymonville ME, Roediger L, Del Fiore G, Delgueldre C, Phillips C, Lamy M, Luxen A, Maquet P, Laureys S. Increased cerebral functional connectivity underlying the antinociceptive effects of hypnosis. Brain Res Cogn Brain Res 2003;17(2):255–262.

    Article  PubMed  Google Scholar 

  84. Horton JE, Crawford HJ, Harrington G, Downs H, III. Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 2004;127(Pt 8): 1741–1747.

    Article  PubMed  Google Scholar 

  85. Manuck SB. The voluntary control of heart rate under differential somatic restraint. Biofeedback Self Regul 1976;1(3):273–284.

    Article  PubMed  CAS  Google Scholar 

  86. Zeier H. Arousal reduction with biofeedback-supported respiratory meditation. Biofeedback Self Regul 1984;9(4):497–508.

    Article  PubMed  CAS  Google Scholar 

  87. Nowlis DP, Kamiya J. The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology 1970;6(4):476–484.

    Article  PubMed  CAS  Google Scholar 

  88. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 2003;19(3):577–586.

    Article  PubMed  Google Scholar 

  89. Wickramasekera I. How does biofeedback reduce clinical symptoms and do memories and beliefs have biological consequences? Toward a model of mind-body healing. Appl Psychophysiol Biofeedback 1999;24(2):91–105.

    Article  PubMed  CAS  Google Scholar 

  90. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JD, Mackey SC. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci USA 2005;102(51):18626–18631.

    Article  PubMed  CAS  Google Scholar 

  91. Kakigi R, Nakata H, Inui K, Hiroe N, Nagata O, Honda M, Tanaka S, Sadato N, Kawakami M. Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation. Eur J Pain 2005;9(5):581–589.

    Article  PubMed  Google Scholar 

  92. Lehmann D, Faber PL, Achermann P, Jeanmonod D, Gianotti LR, Pizzagalli D. Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatry Res 2001;108(2):111–121.

    Article  PubMed  CAS  Google Scholar 

  93. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 2004;101(46): 16369–16373.

    Article  PubMed  CAS  Google Scholar 

  94. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, McGarvey M, Quinn BT, Dusek JA, Benson H, Rauch SL, Moore CI, Fischl B. Meditation experience is associated with increased cortical thickness. Neuroreport 2005;16(17):1893–1897.

    Article  PubMed  Google Scholar 

  95. Orme-Johnson DW, Schneider RH, Son YD, Nidich S, Cho ZH. Neuroimaging of meditation’s effect on brain reactivity to pain. Neuroreport 2006;17(12):1359–1363.

    Article  PubMed  Google Scholar 

  96. MacPherson H, White A, Cummings M, Jobst KA, Rose K, Niemtzow RC. Standards for reporting interventions in controlled trials of acupuncture: the STRICTA recommendations. J Altern Complement Med 2002;8(1):85–89.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Napadow, V., Dhond, R.P., Kettner, N.W. (2008). Neuroimaging for the Evaluation of CAM Mechanisms. In: Audette, J.F., Bailey, A. (eds) Integrative Pain Medicine. Contemporary Pain Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-344-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-344-8_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-786-0

  • Online ISBN: 978-1-59745-344-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics