Skip to main content

Contemporary Aquatic Therapy andPain Management

  • Chapter
Integrative Pain Medicine

Part of the book series: Contemporary Pain Medicine ((CPM))

Summary

Though the therapeutic use of water is an ancient practice, American interest waned after the end of the polio epidemic in the 1950s. NASA studies and research into the physiological effects of immersion, however, revived interest in the 1990s. Meanwhile, physicians and therapists in other countries continued to research and to develop techniques that now compose the primary approaches to aquatic therapy and rehabilitation in the United States. Aquatic therapy and rehabilitation is considered a multi-disciplinary specialty with some technique certifications and overall certification offered by the National Commission for the Credentialing of Aquatic Rehabilitation Disciplines (NCCARD).

The essential properties of water—density, buoyancy, viscosity and specific heat—act on essentially every homeostatic system of the body, reducing edema, enhancing circulation, measurably reducing weight-bearing stress, and relieving pain.

Turbulence, caused by moving water around the body, or by moving the body through water, provides further therapeutic benefits: thermal conductivity is enhanced; drag forces challenge movement and balance to strengthen muscles and improve proprioception; viscosity helps prevent the risk of falling; resistance to movement can be balanced between agonists and antagonists; painful movements can be stopped instantly to prevent damage; and combined with hydrostatic pressure, turbulence acts to further reduce pain.

The multiple effects of immersion and movement in water provide a rich field for research. While research is not lacking internationally, much that has been done with aquatic therapy and rehabilitation is based on anecdotal or experiential evidence. With modern tools for measurement and quantification, scientific evidence for the value of the therapeutic use of water could lead to its greater acceptance and utilization, reducing healthcare costs and improving outcomes for millions of Americans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Vierville J. 1997. A History of aquatic rehabilitation. In: Comprehensive Aquatic Rehabilitation. First edition. Becker BE, CA, Ed. Newton MA: Butterworth-Heinemann.

    Google Scholar 

  2. De Vierville JP. 2004. Aquatic Rehabilitation: A Historical Perspective. In: Comprehensive Aquatic Therapy. Second edition. Cole AJ BB, ed. Philadelphia, PA: Butterworth Heineman, pp 1–18.

    Google Scholar 

  3. Lambeck J GU. History of Bad Ragaz Ring Method. http://www.multimediasupport.nl/badragaz/index_E.html. (online)

    Google Scholar 

  4. Becker BE. 2004. Biophysiologic aspects of hydrotherapy. In: Comprehensive Aquatic Therapy. Cole AJ BB, Ed. Philadelphia PA: Elsevier, Inc, pp 19–56.

    Google Scholar 

  5. Arborelius M, Jr., Balldin UI, Lilja B, Lundgren CE. Regional lung function in man during immersion with the head above water. Aerosp Med. 1972;43(7):701–707.

    PubMed  Google Scholar 

  6. Arborelius M, Jr., Balldin UI, Lilja B, Lundgren CE. Hemodynamic changes in man during immersion with the head above water. Aerosp Med. 1972;43(6):592–598.

    PubMed  Google Scholar 

  7. Hong SK, Cerretelli P, Cruz JC, Rahn H. Mechanics of respiration during submersion in water. J Appl Physiol. 1969;27(4):535–538.

    PubMed  CAS  Google Scholar 

  8. Taylor NA, Morrison JB. Pulmonary flow-resistive work during hydrostatic loading. Acta Physiol Scand. 1991;142(3):307–312.

    PubMed  CAS  Google Scholar 

  9. Taylor NA, Morrison JB. Static and dynamic pulmonary compliance during upright immersion. Acta Physiol Scand. 1993;149(4):413–417.

    Article  PubMed  CAS  Google Scholar 

  10. Taylor NA, Morrison JB. Static respiratory muscle work during immersion with positive and negative respiratory loading. J Appl Physiol. 1999;87(4):1397–1403.

    PubMed  CAS  Google Scholar 

  11. Epstein M. Cardiovascular and renal effects of head-out water immersion in man: application of the model in the assessment of volume homeostasis. Circ Res. 1976;39(5):619–628.

    PubMed  CAS  Google Scholar 

  12. Epstein M. Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev. 1992;72(3):563–621.

    PubMed  CAS  Google Scholar 

  13. Epstein M, Levinson R, Loutzenhiser R. Effects of water immersion on renal hemodynamics in normal man. J Appl Physiol. 1976;41(2):230–233.

    PubMed  CAS  Google Scholar 

  14. Mano T, Iwase S, Yamazaki Y, Saito M. Sympathetic nervous adjustments in man to simulated weightlessness induced by water immersion. J Uoeh. 1985;7(Suppl):215–227.

    PubMed  Google Scholar 

  15. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(699):971–979.

    Article  PubMed  CAS  Google Scholar 

  16. Mannerkorpi K, Nyberg B, Ahlmen M, Ekdahl C. Pool exercise combined with an education program for patients with fibromyalgia syndrome. A prospective, randomized study. J Rheumatol 2000;27(10):2473–2481.

    PubMed  CAS  Google Scholar 

  17. Jentoft ES, Kvalvik AG, Mengshoel AM. Effects of pool-based and land-based aerobic exercise on women with fibromyalgia/chronic widespread muscle pain. Arthritis Rheum Feb 2001;45(1):42–47.

    Article  CAS  Google Scholar 

  18. Hall J, Skevington SM, Maddison PJ, Chapman K. A randomized and controlled trial of hydrotherapy in rheumatoid arthritis. Arthritis Care Res 1996;9(3):206–215.

    Article  PubMed  CAS  Google Scholar 

  19. Danneskiold-Samsoe B, Lyngberg K, Risum T, Telling M. The effect of water exercise therapy given to patients with rheumatoid arthritis. Scand J Rehabil Med 1987;19(1):31–35.

    PubMed  CAS  Google Scholar 

  20. Melzack R. From the gate to the neuromatrix. Pain Aug 1999;(Suppl 6):S121–126.

    CAS  Google Scholar 

  21. Melzack R. Pain—an overview. Acta Anaesthesiol Scand 1999;43(9):880–884.

    Article  PubMed  CAS  Google Scholar 

  22. Melzack R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci 1990;13(3):88–92.

    Article  PubMed  CAS  Google Scholar 

  23. Selye H. The evolution of the stress concept. Am Sci 1973;61(6):692–699.

    PubMed  CAS  Google Scholar 

  24. Selye H. Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J. 1976;115(1):53–56.

    PubMed  CAS  Google Scholar 

  25. Selye H. Stress and the reduction of distress. JSC Med Assoc 1979;75(11):562–566.

    CAS  Google Scholar 

  26. Mano T, Iwase S, Yamazaki Y, Saito M. Sympathetic nervous adjustments in man to simulated weightlessness induced by water immersion. J Uoeh 1985;7(Suppl):215–227.

    PubMed  Google Scholar 

  27. Miwa C, Sugiyama Y, Mano T, Iwase S, Matsukawa T. Spectral characteristics of heart rate and blood pressure variabilities during head-out water immersion. Environ Med 1996;40(1):91–94.

    PubMed  CAS  Google Scholar 

  28. Robiner WN. Psychological and physical reactions to whirlpool baths. J Behav Med 1990;13(2): 157–173.

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe E, Takeshima N, Okada A, Inomata K. Comparison of water- and land-based exercise in the reduction of state anxiety among older adults. Percept Mot Skills 2000;91(1):97–104.

    Article  PubMed  CAS  Google Scholar 

  30. Kottke F. 1971. Therapeutic exercise. In: Handbook of Physical Medicine and Rehabilitation. Krusen K, Ellwood, Ed. Philadelphia, PA: W. B. Saunders 424–426.

    Google Scholar 

  31. Mathew L, Purkayastha SS, Selvamurthy W, Malhotra MS. Cold-induced vasodilatation and peripheral blood flow under local cold stress in man at altitude. Aviat Space Environ Med 1977;48(6):497–500.

    PubMed  CAS  Google Scholar 

  32. Bonde-Petersen F, Schultz-Pedersen L, Dragsted N. Peripheral and central blood flow in man during cold, thermoneutral, and hot water immersion. Aviat Space Environ Med 1992;63(5):346–350.

    PubMed  CAS  Google Scholar 

  33. Koga S. The regional difference of thermal response to immersion during rest and exercise. Ann Physiol Anthropol 1985;4(2):191–192.

    PubMed  CAS  Google Scholar 

  34. Craig AB, Jr., Dvorak M. Thermal regulation of man exercising during water immersion. J Appl Physiol 1968;25(1):28–35.

    PubMed  Google Scholar 

  35. Swenson C, Sward L, Karlsson J. Cryotherapy in sports medicine. Scand J Med Sci Sports 1996;6(4):193–200.

    Article  PubMed  CAS  Google Scholar 

  36. Peterson C. Exercise in 94 degrees F water for a patient with multiple sclerosis. Phys Ther 2001;81(4):1049–1058.

    PubMed  CAS  Google Scholar 

  37. Balldin UI, Lundgren CE, Lundvall J, Mellander S. Changes in the elimination of 133 xenon from the anterior tibial muscle in man induced by immersion in water and by shifts in body position. Aerosp Med 1971;42(5):489–493.

    PubMed  CAS  Google Scholar 

  38. Ariyoshi M, Sonoda K, Nagata K, et al. Efficacy of aquatic exercises for patients with low-back pain. Kurume Med J 1999;46(2):91–96.

    PubMed  CAS  Google Scholar 

  39. Sjogren T, Long N, Storay I, Smith J. Group hydrotherapy versus group land-based treatment for chronic low back pain. Physiother Res Int 1997;2(4):212–222.

    Article  PubMed  CAS  Google Scholar 

  40. Constant F, Collin JF, Guillemin F, Boulange M. Effectiveness of spa therapy in chronic low back pain: a randomized clinical trial. J Rheumatol 1995;22(7):1315–1320.

    PubMed  CAS  Google Scholar 

  41. Queneau P, Francon A, Graber-Duvernay B. Methodological reflections on 20 randomized clinical hydrotherapy trials in rheumatology. Therapie 2001;56(6):675–684.

    PubMed  CAS  Google Scholar 

  42. Balogh Z, Ordogh J, Gasz A, Nemet L, Bender T. Effectiveness of balneotherapy in chronic low back pain—a randomized single-blind controlled follow-up study. Forsch Komplementarmed Klass Naturheilkd. 2005;12(4):196–201.

    Article  Google Scholar 

  43. LeFort SM, Hannah TE. Return to work following an aquafitness and muscle strengthening program for the low back injured. Arch Phys Med Rehabil 1994;75(11):1247–1255.

    Article  PubMed  CAS  Google Scholar 

  44. Altan L, Bingol U, Aykac M, Koc Z, Yurtkuran M. Investigation of the effects of pool-based exercise on fibromyalgia syndrome. Rheumatol Int 2004;24(5):272–277.

    Article  PubMed  Google Scholar 

  45. Nampiaparampil DE, Shmerling RH. A review of fibromyalgia. Am J Manag Care 2004;10 (11 Pt 1):794–800.

    Google Scholar 

  46. Schoedinger P. Benefits of Watsu for People with Orthopedic, Neurologic and Rheumatologic Special Needs. (online reference) http://www.waba.edu/watsu/Watsu%20with%20Special%20Needs.htm.

    Google Scholar 

  47. Essert M. Breast Cancer Water Work Management Through Aquatic Exercise and Rehab Techniques. Conway AR: Essert Associates; 2004.

    Google Scholar 

  48. Gresswell A MJ. Principles of Halliwick and Its Application for Children and Adults with Neurological Conditions. Paper presented at: HACP Study Day, 2000.

    Google Scholar 

  49. Lambeck J SF, Kinnaird DW. 2004. The Halliwick concept. In: Comprehensive Aquatic Therapy. Second edition. Cole AJ BB, Ed. Philadelphia PA: Butterworth Heinemann, pp 73–98.

    Google Scholar 

  50. Burdenko I. 2000. Functional Rehab—The Burdenko Method. Paper presented at: Aquatic Therapy and Rehab Symposium, Orlando FL.

    Google Scholar 

  51. Sova R KJ. 1999. Ai Chi—Balance, Harmony & Healing. Port Washington WI: DSL Ltd.

    Google Scholar 

  52. Lai JS WN, Lan C, Chong CK, Lien IN. Cardiorespiratory responses of t’ai chi Ch’uan practitioners and sedentary subjects during cycle ergometry. J Formosan Med Assoc 1993;92:894–899.

    PubMed  Google Scholar 

  53. Jin P. Changes in heart rate, noradrenaline, cortisol and mood during Tai Chi. J Psychosom Res 1989;33(2):197–206.

    Article  PubMed  CAS  Google Scholar 

  54. Thein JM, Brody LT. Aquatic-based rehabilitation and training for the elite athlete. J Orthop Sports Phys Ther 1998;27(1):32–41.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Kinnaird, D.W., Becker, B.E. (2008). Contemporary Aquatic Therapy andPain Management. In: Audette, J.F., Bailey, A. (eds) Integrative Pain Medicine. Contemporary Pain Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-344-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-344-8_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-786-0

  • Online ISBN: 978-1-59745-344-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics