Skip to main content

Cartilage Repair With Chitosan-Glycerol Phosphate-Stabilized Blood Clots

  • Chapter
Cartilage Repair Strategies

Abstract

A new biomaterial for cartilage repair has been developed and investigated in animal studies and in a clinical cohort. The biomaterial is a physiological solution of chitosan (a natural polysaccharide containing glucosamine residues) in a buffer containing glycerol phosphate (GP). The soluble and physiological characteristics of this polymer solution permit its combination with freshly drawn autologous whole blood to form a hybrid polymer-blood mixture that can be applied to cartilage and bone surfaces, to which it adheres and solidifies as a polymer-stabilized clot. Histology and electron microscopy analysis of in vitro-generated chitosan-GP/blood clots revealed the chitosan component to be dispersed among the blood components, to interact closely with platelets, and to impede platelet-mediated clot contraction, thereby maintaining a voluminous bioactive and adhesive clot at the site of application. Experiments in microdrilled cartilage lesions in adult rabbits comparing chitosan-GP/blood clots to controls (microdrilled only) highlighted the ability of chitosan-GP/blood clots to recruit more host cells and to increase subchondral vascularization and bone-remodeling activity during acute and intermediate stages of repair. This led to the establishment of more hyaline repair cartilage that was integrated with a porous subchondral bone plate. Microfractured cartilage defects in adult sheep treated with chitosan-GP/blood clots resulted in a statistically significant increase in tissue fill with a greater proportion of hyaline cartilage compared to controls (microfracture only). Patients with femoral condyle cartilage lesions have received chitosan-GP/blood implants to resurface articular cartilage as part of a compassionate use program for medical devices. Results to date suggest safety and clinical benefit of this approach that is free from both donor site morbidity and suture damage to healthy adjacent cartilage. This single-intervention approach is now the subject of a multicenter, randomized comparative clinical trial designed and initiated to investigate cartilage repair resulting from treatment with chitosan-GP and microfracture vs microfracture alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schenk RK, Eggli PS, Hunziker EB. Articular cartilage morphology. In Kuettner KE, Schleyerbach R, Hascall VC, eds., Articular Cartilage Biochemistry. New York: Raven Press; 1986;3–23.

    Google Scholar 

  2. Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 1994;311:144–152.

    Article  PubMed  CAS  Google Scholar 

  3. McCutchen CW. Lubrication of joints. In Sokoloff L, ed., The Joints and Synovial Fluid. London: Academic Press; 1980;438–483.

    Google Scholar 

  4. Hills BA. Boundary lubrication in vivo. Proc Inst Mech Eng [H] 2000;214:83–94.

    CAS  Google Scholar 

  5. Hunziker EB. Articular cartilage structure in human and experimental animal models. In Kuettner KE, Schleyerbach R, Hascall VC, eds., Articular Cartilage and Osteoarthritis. New York: Raven Press; 1992;183–199.

    Google Scholar 

  6. Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 2002; 10:564–572.

    Article  PubMed  CAS  Google Scholar 

  7. Buschmann MD, Grodzinsky AJ. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 1995; 117:179–192.

    PubMed  CAS  Google Scholar 

  8. Eisenberg SR, Grodzinsky AJ. Electrokinetic micromodel of extracellular-matrix and other polyelectrolyte networks. Physicochemical. Hydrodynamics 1988; 10:517–539.

    CAS  Google Scholar 

  9. Cohen B, Lai WM, Mow VC. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 1998;120:491–496.

    PubMed  CAS  Google Scholar 

  10. Fortin M, Soulhat J, Shirazi-Adl A, Hunziker EB, Buschmann MD. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J Biomech Eng 2000; 122:1–6.

    Article  Google Scholar 

  11. Korhonen RK, Laasanen MS, Toyras J, Lappalainen R, Helminen HJ, Jurvelin JS. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech 2003;36:1373–1379.

    Article  PubMed  Google Scholar 

  12. Li LP, Shirazi-Adl A, Buschmann MD. Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties—a nonhomogeneous poroelastic model study. Comput Methods Biomech Biomed Eng 2002;5:45–52.

    Article  CAS  Google Scholar 

  13. Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech 1999; 1–10.

    Google Scholar 

  14. Soltz MA, Ateshian GA. A conewise linear elasticity mixture model for the analysis of tensioncompression nonlinearity in articular cartilage. J Biomech Eng 2000; 122:576–586.

    Article  PubMed  CAS  Google Scholar 

  15. Soulhat J, Buschmann MD, Shirazi-Adl A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng 1999;121:340–347.

    PubMed  CAS  Google Scholar 

  16. Poole AR. The growth plate: cellular physiology, cartilage assembly and mineralisation. In Hall B, Newman S, eds., Cartilage: Molecular Aspects. Boca Raton, FL: CRC Press; 1991;179–213.

    Google Scholar 

  17. Hunziker EB. Growth plate structure and function. Pathol Immunopathol Res 1988;7:9–13.

    Article  PubMed  CAS  Google Scholar 

  18. Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 2001;203:469–479.

    Article  CAS  Google Scholar 

  19. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117:889–897.

    Article  PubMed  CAS  Google Scholar 

  20. Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum 1998;41:1331–1342.

    Article  PubMed  CAS  Google Scholar 

  21. Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med 1974;291:1285–1292.

    Article  PubMed  CAS  Google Scholar 

  22. Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (second of two parts). N Engl J Med 1974;291:1335–1340.

    Article  PubMed  CAS  Google Scholar 

  23. Dell’Accio F, Vanlauwe J, Bellemans J, Neys J, De Bari C, Luyten FP. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 2003;21:123–131.

    Article  PubMed  Google Scholar 

  24. Grande DA, Pitman MI, Peterson L, Menche D, Klein M. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 1989;7:208–218.

    Article  PubMed  CAS  Google Scholar 

  25. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002;10:432–463.

    Article  PubMed  CAS  Google Scholar 

  26. Alford JW, Cole BJ. Cartilage restoration, part 2: techniques, outcomes, and future directions. Am J Sports Med 2005;33:443–460.

    Article  PubMed  Google Scholar 

  27. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation vs matrixinduced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005;87:640–645.

    Article  PubMed  CAS  Google Scholar 

  28. Briggs TW, Mahroof S, David LA, Flannelly J, Pringle J, Bayliss M. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee. J Bone Joint Surg Br 2003;85:1077–1083.

    Article  PubMed  CAS  Google Scholar 

  29. Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at 3 and 12 months. J Bone Joint Surg Br 2003;85:1060–1066.

    Article  PubMed  CAS  Google Scholar 

  30. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 2003;85-A:185–192.

    PubMed  CAS  Google Scholar 

  31. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004;86-A: 455–464.

    PubMed  Google Scholar 

  32. Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop 1999;365:149–162.

    Article  PubMed  Google Scholar 

  33. Roberts S, McCall IW, Darby AJ, et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 2003;5:R60–R73.

    Article  PubMed  Google Scholar 

  34. Russlies M, Behrens P, Ehlers EM, et al. Periosteum stimulates subchondral bone densification in autologous chondrocyte transplantation in a sheep model. Cell Tissue Res 2005;319:133–142.

    Article  PubMed  Google Scholar 

  35. Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 2005;13:655–664.

    Article  PubMed  CAS  Google Scholar 

  36. Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 1997;79:1439–1451.

    PubMed  CAS  Google Scholar 

  37. Nehrer S, Breinan HA, Ramappa A, et al. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998;19:2313–2328.

    Article  PubMed  CAS  Google Scholar 

  38. Vasara AI, Hyttinen MM, Lammi MJ, et al. Subchondral bone reaction associated with chondral defect and attempted cartilage repair in goats. Calcif Tissue Int 2004;74:107–114.

    Article  PubMed  CAS  Google Scholar 

  39. Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 1992; 10:745–758.

    Article  PubMed  CAS  Google Scholar 

  40. Martin I, Obradovic B, Treppo S, et al. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 2000;37:141–147.

    PubMed  CAS  Google Scholar 

  41. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng 2004;10:1323–1331.

    PubMed  CAS  Google Scholar 

  42. Tanaka T, Komaki H, Chazono M, Fujii K. Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng 2005; 11:331–339.

    Article  PubMed  CAS  Google Scholar 

  43. Insall JN. Intra-articular surgery for degenerative arthritis of the knee. A report of the work of the late K. H. Pridie. J Bone Joint Surg Br 1967;49:211–228.

    PubMed  CAS  Google Scholar 

  44. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 1986;2:54–69.

    Article  PubMed  CAS  Google Scholar 

  45. Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique for full-thickness chondral defects: technique and clinical results. Operative techniques in orthopaedics. 1997;7:300–304.

    Article  Google Scholar 

  46. Browne JE, Anderson AF, Arciero R, et al. Clinical outcome of autologous chondrocyte implantation at 5 yr in US subjects. Clin Orthop Relat Res 2005;436:237–245.

    Article  PubMed  Google Scholar 

  47. Fox JA, Kalsi RS, Cole BJ. Update on articular cartilage restoration. Tech Knee Surg 2003;2:2–17.

    Article  Google Scholar 

  48. Lu C, Miclau T, Hu D, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res 2005;23:1300–1307.

    PubMed  CAS  Google Scholar 

  49. Meachim G, Roberts C. Repair of the joint surface from subarticular tissue in the rabbit knee. J Anat 1971;109:317–327.

    PubMed  CAS  Google Scholar 

  50. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 1986;68:1017–1035.

    PubMed  CAS  Google Scholar 

  51. Wei X, Messner K. Maturation-dependent durability of spontaneous cartilage repair in rabbit knee joint. J Biomed Mater Res 1999;46:539–548.

    Article  PubMed  CAS  Google Scholar 

  52. Yamamoto T, Wakitani S, Imoto K, et al. Fibroblast growth factor-2 promotes the repair of partial thickness defects of articular cartilage in immature rabbits but not in mature rabbits. Osteoarthritis Cartilage 2004; 12:636–641.

    Article  PubMed  Google Scholar 

  53. Hurtig MB, Fretz PB, Doige CE, Schnurr DL. Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 1988;52:137–146.

    PubMed  CAS  Google Scholar 

  54. Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage. 2006 Sep 25; [Epub ahead of print].

    Google Scholar 

  55. Chevrier A, Sun J, Hoemann CD, Buschmann MD. Early reparative events in adult rabbits with drilled chondral defects treated with an injectable chitosan-glycerol phosphate implant. Trans Int Soc Cartilage Repair. 2004; Gent, Belgium, May 26–29.

    Google Scholar 

  56. Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am 1976;58:230–233.

    PubMed  CAS  Google Scholar 

  57. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75A:532–553.

    Google Scholar 

  58. Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects. An experimental study in horses. Clin Orthop Relat Res 1972;82:253–262.

    Article  PubMed  CAS  Google Scholar 

  59. Jackson DW, Lalor PA, Aberman HM, Simon TM. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 2001; 83-A:53–64.

    PubMed  CAS  Google Scholar 

  60. Mandelbaum BR, Browne JE, Fu F, et al. Articular cartilage lesions of the knee. Am J Sports Med 1998;26:853–861.

    PubMed  CAS  Google Scholar 

  61. Otsuka Y, Mizuta H, Takagi K, et al. Requirement of fibroblast growth factor signaling for regeneration of epiphyseal morphology in rabbit full-thickness defects of articular cartilage. Dev Growth Differ 1997;39:143–156.

    Article  PubMed  CAS  Google Scholar 

  62. Howard RD, McIlwraith CW, Trotter GW, et al. Long-term fate and effects of exercise on sternal cartilage autografts used for repair of large osteochondral defects in horses. Am J Vet Res 1994;55:1158–1167.

    PubMed  CAS  Google Scholar 

  63. Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop 2001;S306–S317.

    Google Scholar 

  64. O’Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 1988;70:595–606.

    PubMed  CAS  Google Scholar 

  65. Brown TD, Pope DF, Hale JE, Buckwalter JA, Brand RA. Effects of osteochondral defect size on cartilage contact stress. J Orthop Res 1991;9:559–567.

    Article  PubMed  CAS  Google Scholar 

  66. Frisbie DD, Oxford JT, Southwood L, et al. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop 2003;215–227.

    Google Scholar 

  67. Frisbie DD, Trotter GW, Powers BE, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999;28:242–255.

    PubMed  CAS  Google Scholar 

  68. Hanie EA, Sullins KE, Powers BE, Nelson PR. Healing of full-thickness cartilage compared with full-thickness cartilage and subchondral bone defects in the equine third carpal bone. Equine Vet J 1992;24:382–386.

    Article  PubMed  CAS  Google Scholar 

  69. Hoemann CD, Hurtig M, Rossomacha E, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005;87:2671–2686.

    Article  PubMed  Google Scholar 

  70. Vachon A, Bramlage LR, Gabel AA, Weisbrode S. Evaluation of the repair process of cartilage defects of the equine third carpal bone with and without subchondral bone perforation. Am J Vet Res 1986;47:2637–2645.

    PubMed  CAS  Google Scholar 

  71. Colman RW, Hirsh J, Marder VJ, Clowes AW, George FN. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. New York: Lippincott Williams and Wilkins; 2001.

    Google Scholar 

  72. Morgenstern E, Ruf A, Patscheke H. Ultrastructure of the interaction between human platelets and polymerizing fibrin within the first minutes of clot formation. Blood Coagul Fibrinolysis 1990;1:543–546.

    Article  PubMed  CAS  Google Scholar 

  73. Hoemann CD, Sun J, McKee MD, et al. Rabbit hyaline cartilage repair after marrow stimulation depends on the surgical approach and a chitosan-GP stabilised in-situ blood clot. Trans Orthop Res Soc 2005;30:1372.

    Google Scholar 

  74. Johnson LL. Characteristics of the immediate postarthroscopic blood clot formation in the knee joint. Arthroscopy 1991;7:14–23.

    Article  PubMed  CAS  Google Scholar 

  75. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155–2161.

    Article  PubMed  CAS  Google Scholar 

  76. Skjak-Braek G, Anthonsen T, Sandford P. Chitin and Chitosan. New York: Elsevier Applied Science; 1989.

    Google Scholar 

  77. Shigemasa Y, Minami S. Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 1996;13:383–420.

    PubMed  CAS  Google Scholar 

  78. Cho YW, Cho YN, Chung SH, Yoo G, Ko SW. Water-soluble chitin as a wound healing accelerator. Biomaterials 1999;20:2139–2145.

    Article  PubMed  CAS  Google Scholar 

  79. Sall KN, Kreter JK, Keates RH. The effect of chitosan on corneal wound healing. Ann Ophthalmol 1987; 19:31–33.

    PubMed  CAS  Google Scholar 

  80. DiMartino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissueengineering. Biomaterials 2005;26:5983–5990.

    Article  PubMed  CAS  Google Scholar 

  81. Inui H, Tsujikubo M, Hirano S. Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells. Biosci Biotechnol Biochem 1995;59:2111–2114.

    Article  PubMed  CAS  Google Scholar 

  82. Chou T-C, Fu E, Wu C-J, Yeh J-H. Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun 2003;302:480–483.

    Article  PubMed  CAS  Google Scholar 

  83. Malette WG, Quigley HJ, Gaines RD, Johnson ND, Rainer WG. Chitosan: a new hemostatic. Ann Thorac Surg 1983;36:55–58.

    Article  PubMed  CAS  Google Scholar 

  84. Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 1997;34:21–28.

    Article  PubMed  CAS  Google Scholar 

  85. Aerts JMFG, Boot RG, Renkema GH, et al. Chitotriosidase: a human macrophage chitinase that is a marker for Gaucher disease manifestation. Chitin Enzymol Proc Int Symp Chitin Enzymol 1996;1:3–10.

    Google Scholar 

  86. Muzzarelli RA. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 1997;53:131–140.

    Article  PubMed  CAS  Google Scholar 

  87. Varum KM, Myhr MM, Hjerde RJ, Smidsrod O. In vitro degradation rates of partially N-acetylated chitosans in human serum. CarbohydrRes 1997;299:99–101.

    Article  CAS  Google Scholar 

  88. Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 1998;20:175–182.

    Article  Google Scholar 

  89. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. 2001;46:39–47.

    CAS  Google Scholar 

  90. Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage 2005;13:318–329.

    Article  PubMed  CAS  Google Scholar 

  91. Rossomacha E, Hoemann CD, Shive M. Simple methods for staining chitosan in biotechnological applications. J Histotechnol 2004;27:1–6.

    Google Scholar 

  92. Solchaga LA, Temenoff JS, Gao J, Mikos AG, Caplan AI, Goldberg VM. Repair of osteochondral defects with hyaluronanand polyester-based scaffolds. Osteoarthritis Cartilage 2005;13:297–309.

    Article  PubMed  Google Scholar 

  93. Hoemann CD, Sun J, McKee MD, et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage. 2006 Sep 25; [Epub ahead of print].

    Google Scholar 

  94. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 1988;15:1833–1840.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Buschmann, M.D., Hoemann, C.D., Hurtig, M.B., Shive, M.S. (2007). Cartilage Repair With Chitosan-Glycerol Phosphate-Stabilized Blood Clots. In: Williams, R.J. (eds) Cartilage Repair Strategies. Humana Press. https://doi.org/10.1007/978-1-59745-343-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-343-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-629-0

  • Online ISBN: 978-1-59745-343-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics