Skip to main content

The Cancer Epigenome

Can it be Targeted for Therapy?

  • Chapter
Molecular Targeting in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

It has become increasingly clear in recent years that reversible alterations in the epigenome, which comprises the chromatin terrain and determines individual gene expression, has as great a role in defining the normal or malignant phenotype of a cell as does the more-familiar fixed genomic DNA sequence upon which it is superimposed. The “epigenomic code” is defined by DNA methylation patterns, unique combinations of post-translational modifications of histones and non-histone proteins, the nature of the remodeled chromatin structure, and the identity of nucleoprotein complexes assembled on the chromatin. The distinctive epigenomic code associated with each individual gene dictates the expression status of that gene, dependent upon its localization and the associated unique chromatin organization. For example, silencing of gene expression, including silencing of tumor suppressor genes, is associated with local deacetylation of histones, and often localized to genomic regions containing DNA methylation as well as methylation at lysine residues 9 and 27 of histone H3, and lysine residue 20 of histone H4. In contrast, activation of gene expression, including activation of oncogenes, is associated with locally acetylated histones and methylation at lysine residues 4, 36, and 79 of histone H3. Currently, there are two groups of drugs targeting the epigenome: inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. These agents have been employed with some success in pre-clinical studies and in early limited clinical trials. In the long term, the development of therapeutic agents which can target with precision the activities of a wide array of specific chromatin-modifying enzymes may become useful in reversing the epigenomic alterations which define the cancer cell (the cancer epigenome) and provide a novel therapeutic approach to malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol 2000 183:145–54.

    Article  PubMed  CAS  Google Scholar 

  2. Robertson KD, Jones PA. DNA methylation: past, present and future directions. Carcinogenesis 2000 21: 461–7.

    Article  PubMed  CAS  Google Scholar 

  3. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003 349:2042–54.

    Article  PubMed  CAS  Google Scholar 

  4. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987 Jul 20; 196(2):261–82.

    Google Scholar 

  5. Lander ES, et al. Initial sequencing and analysis of the human genome. Nature 2001 Feb 15; 409(6822):860–921.

    Google Scholar 

  6. Okano M, Xie S, Li E Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998 Jul; 19(3):219–20.

    Google Scholar 

  7. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001 Aug 10; 293(5532):1068–70.

    Google Scholar 

  8. Brandeis M, Ariel M, Cedar H. Dynamics of DNA methylation during development. Bioessays 1993 Nov; 15(11):709–13.

    Google Scholar 

  9. Bird A. Molecular biology. Methylation talk between histones and DNA. Science 2001 Dec 7; 294(5549):2113–5.

    Google Scholar 

  10. Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 2003 Jan; 3(1):89–95.

    Google Scholar 

  11. Li E. The mojo of methylation. Nat Genet 1999 Sep; 23(1):5–6.

    Google Scholar 

  12. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 2003 Feb 7; 278(6):4035–40.

    Google Scholar 

  13. Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A, Ouyang X, Brockdorff N, Abate-Shen C, Farnham P, Reinberg D. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 2005 Feb 8; 102(6):1859–64.

    Google Scholar 

  14. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004 Jul 27; 14(14):R546–51.

    Google Scholar 

  15. Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006 May 19; 34(9):2653–62.

    Google Scholar 

  16. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996 Mar 22; 84(6):843–51.

    Google Scholar 

  17. Isenberg H. Histones. Annu Rev Biochem 1979; 48:159–91.

    Article  PubMed  CAS  Google Scholar 

  18. Wolffe AP. Chromatin: Structure and Function, 3rd Ed., 1999, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  19. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000 Jan 6; 403(6765):41–5.

    Google Scholar 

  20. Jenuwein T, Allis CD. Translating the histone code. Science 2001 Aug 10; 293(5532):1074–80.

    Google Scholar 

  21. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 2003 Mar; 983:84–100.

    Google Scholar 

  22. Gibbons RJ. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 2005 Apr 15; 14 Spec No 1:R85–92.

    Google Scholar 

  23. Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001 Sep 15; 15(18):2343–60.

    Google Scholar 

  24. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005 Aug 25; 436(7054):1103–6.

    Google Scholar 

  25. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004 Dec 29; 119(7):941–53.

    Google Scholar 

  26. Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan CH, Dai S, Hagman J, Hansen K, Shi Y, Zhang G. Structural insights into histone demethylation by JMJD2 family members. Cell 2006 May 19; 125(4):691–702.

    Google Scholar 

  27. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins Nature 2006 Feb 16; 439(7078):811–6.

    Google Scholar 

  28. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 2006 May 5; 125(3):467–81.

    Google Scholar 

  29. Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, Allis CD. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 2001 Jun 26; 11(12):996–1000.

    Google Scholar 

  30. Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 2001 Aug 3; 293(5531):853–7.

    Google Scholar 

  31. An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 2004 June 11; 117(6):735–48.

    Google Scholar 

  32. Covic M, Hassa PO, Saccani S, Buerki C, Meier NI, Lombardi C, Imhof R, Bedford MT, Natoli G, Hottiger MO. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. EMBO J 2005 Jan 12; 24(1):85–96.

    Google Scholar 

  33. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, Gannon F. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003 Dec 12; 115(6):751–63.

    Google Scholar 

  34. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T. Histone deimination antagonizes arginine methylation Cell 2004 Sep 3; 118(5):545–53.

    Google Scholar 

  35. Nowak SJ, Corces VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 2004 Apr; 20(4):214–20.

    Google Scholar 

  36. Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 1999 274:25543–9.

    Article  PubMed  CAS  Google Scholar 

  37. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 2002 Aug 1; 418(6897):498.

    Google Scholar 

  38. Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis Dev Biol 1999 Mar 15; 207(2):322–33.

    Google Scholar 

  39. Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005 Oct; 15(5):536–41.

    Google Scholar 

  40. Uchimura Y, Ichimura T, Uwada J, Tachibana T, Sugahara S, Nakao M, Saitoh H. Involvement of SUMO modification in MBD1- and MCAF1-mediated heterochromatin formation. J Biol Chem. 2006 Aug 11; 281(32): 23180–90.

    Google Scholar 

  41. Dynek JN, Smith S. Resolution of sister telomere association is required for progression through mitosis. Science 2004 Apr 2;304(5667):97–100.

    Google Scholar 

  42. Earle E, Saxena A, MacDonald A, Hudson DF, Shaffer LG, Saffery R, Cancilla MR, Cutts SM, Howman E, Choo KH. Poly(ADP-ribose) polymerase at active centromeres and neocentromeres at metaphase. Hum Mol Genet 2000 Jan 22; 9(2):187–94.

    Google Scholar 

  43. Langst G, Becker PB. Nucleosome remodeling: one mechanism, many phenomena? Biochim Biophys Acta 2004 Mar 15; 1677(1–3):58–63.

    Google Scholar 

  44. Jacobson RH, Ladurner AG, King DS, Tjian R. Structure and function of a human TAFII250 double bromodomain module. Science 2000 May 26; 288(5470):1422–5.

    Google Scholar 

  45. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001 Mar 1; 410(6824):120–4.

    Google Scholar 

  46. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 2004 Nov 18; 432(7015):406–11.

    Google Scholar 

  47. Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 2005 Jun 17; 121(6):859–72.

    Google Scholar 

  48. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001 Mar 1; 410(6824):116–20.

    Google Scholar 

  49. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983 Jan 6; 301(5895):89–92.

    Google Scholar 

  50. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999 21:163–167.

    Article  PubMed  CAS  Google Scholar 

  51. Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 1983 Feb 28; 111(1):47–54.

    Google Scholar 

  52. Bestor TH, Tycko B. Creation of genomic methylation patterns. Nat Genet 1996 Apr; 12(4):363–7.

    Google Scholar 

  53. De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA 1996 Jul 9; 93(14):7149–53.

    Google Scholar 

  54. Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 1997 Mar 18; 94(6):2545–50.

    Google Scholar 

  55. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R. Induction of tumors in mice by genomic hypomethylation. Science 2003 Apr 18; 300(5618):489–92.

    Google Scholar 

  56. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002 Jun; 3(6):415–28.

    Google Scholar 

  57. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001 61:3225–9.

    PubMed  CAS  Google Scholar 

  58. Kinzler KW, Vogelstein B. Lessons from hereditary colon cancer. Cell 1996 87:159–170.

    Article  PubMed  CAS  Google Scholar 

  59. Russo AL, Thiagalingam A, Pan H, Califano J, Cheng KH, Ponte JF, Chinnappan D, Nemani P, Sidransky D, Thiagalingam S. Differential DNA hypermethylation of critical genes mediate the stage specific tobacco smoke induced neoplastic progression of lung cancer. Clin Cancer Res 2005 Apr 1; 11(7):2466–70.

    Google Scholar 

  60. Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K, Haney J, Kennedy TC, Hirsch FR, Miller Y, Franklin WA, Herman JG, Baylin SB, Bunn PA, Byers T. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006 Mar 15; 66(6):3338–44.

    Google Scholar 

  61. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005 Apr; 37(4):391–400.

    Google Scholar 

  62. Esteller M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 2006 Jan 30; 94(2):179–83.

    Google Scholar 

  63. Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 2005 Nov; 41(16):2381–402.

    Google Scholar 

  64. Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K, Ghaffari S, Iliev D, Penn B, Woodland AM, Smith R, Salada G, Carillo A, Laity K, Gupte J, Swedlund B, Tavtigian SV, Teng DH, Lees E. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 2000 Nov 1; 60(21):6171–7.

    Google Scholar 

  65. Monni O, Knuutila S. 11q deletions in hematological malignancies. Leuk Lymphoma 2001 Jan; 40(3–4):259–66.

    Google Scholar 

  66. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 2002 Apr; 12(2):162–9.

    Google Scholar 

  67. Giet R, Petretti C, Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 2005 May; 15(5):241–50.

    Google Scholar 

  68. Das BR. Increased ADP-ribosylation of histones in oral cancer. Cancer Lett 1993 Sep 15; 73(1):29–34.

    Google Scholar 

  69. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006 Jan; 5(1):37–50.

    Google Scholar 

  70. Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 2006 Mar 1; 66(5):2794–800.

    Google Scholar 

  71. Gilbert J, Gore SD, Herman JG, Carducci MA. The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 2004 Jul 15; 10(14):4589–96.

    Google Scholar 

  72. Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003 Mar 5; 95(5):399–409.

    Google Scholar 

  73. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005 Oct 19; 97(20):1498–506.

    Google Scholar 

  74. Mork CN, Faller DV, Spanjaard RA. A mechanistic approach to anticancer therapy: targeting the cell cycle with histone deacetylase inhibitors. Curr Pharm Des 2005; 11(9):1091–104.

    Google Scholar 

  75. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006 Jan; 6(1):38–51.

    Google Scholar 

  76. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 2005 Jul 1; 11(13):4912–22.

    Google Scholar 

  77. de Vos D. Epigenetic drugs: a longstanding story. Semin Oncol 2005 Oct; 32(5):437–42.

    Google Scholar 

  78. Inche AG, La Thangue NB. Chromatin control and cancer-drug discovery: realizing the promise. Drug Discov Today 2006 Feb; 11(3–4):97–109.

    Google Scholar 

  79. Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 2001 Jan 2; 98(1):87–92.

    Google Scholar 

  80. Batova A, Shao LE, Diccianni MB, Yu AL, Tanaka T, Rephaeli A, Nudelman A, Yu J. The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood 2002 Nov 1; 100(9):3319–24.

    Google Scholar 

  81. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45:495–528.

    Article  PubMed  CAS  Google Scholar 

  82. Novik KL, Nimmrich I, Genc B, Maier S, Piepenbrock C, Olek A, Beck S. Epigenomics: genome-wide study of methylation phenomena. Curr Issues Mol Biol 2002 Oct; 4(4):111–28.

    Google Scholar 

  83. Bradbury J. Human epigenome project–up and running. PLoS Biol 2003 Dec; 1(3):E82.

    Google Scholar 

  84. Jones PA, Martienssen R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 2005 Dec 15; 65(24):11241–6.

    Google Scholar 

  85. Thiagalingam S, A cascade of modules of a network defines cancer progression. Cancer Res. 2006 Aug 1; 66(15):7379–85.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Thiagalingam, S., Faller, D.V. (2008). The Cancer Epigenome. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics