Skip to main content

Nucleic Acid Therapies for Cancer Treatment

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

A better understanding of the biochemical pathways mediating tumor growth and progression has provided a new set of targets for therapeutic intervention. The ability to target highly specific segments of genetic material using oligonucleotide probes has been the subject of nucleic acid based therapy and is being applied to a variety of human diseases, including cancer. This chapter will discuss the various strategies utilizing nucleic acids for inhibiting gene transcription and translation with a major focus on RNAi and antisense oligodeoxynucleotides. Specific targets will be described and results of preliminary clinical trials reported. Future challenges in the clinical translation of nucleic acid treatments will also be described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Melton DW. Gene targeting in the mouse. Bioessays 1994;16:633–638. Stasiak A. Getting down to the core of homologous recombination. Science 1996;272:828–829.

    Article  PubMed  CAS  Google Scholar 

  2. Stasiak A. Getting down to the core of homologous recombination. Science 1996;272:828–829.

    Article  Google Scholar 

  3. Helene C. Control of oncogene expression by antisense nucleic acids. Eur J Cancer 1994;30A: 1721–1726.

    Article  PubMed  CAS  Google Scholar 

  4. Knauert MP, Glazer PM. Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum Mol Genet 2001;10:2243–2251.

    Article  PubMed  CAS  Google Scholar 

  5. Kielkopf CL, Bremer RE, White S, et al. Structural effects of DNA sequence on T.A recognition by hydroxypyrrole/pyrrole pairs in the minor groove. J Mol Biol 2000;295:557–567.

    Article  PubMed  CAS  Google Scholar 

  6. Kielkopf CL, Baird EE, Dervan PB, Rees DC. Structural basis for G.C recognition in the DNA minor groove. Nat Struct Biol 1998;5:104–109.

    Article  PubMed  CAS  Google Scholar 

  7. Kielkopf CL, White S, Szewczyk JW, et al. A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. Science 1998;282:111–115.

    Article  PubMed  CAS  Google Scholar 

  8. Corey DR. Regulating mammalian transcription with RNA. Trends Biochem Sci 2005;9.

    Google Scholar 

  9. Sharma HW, Perez JR, Higgins-Sochaski K, Hsiao R, Narayanan R. Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res 1996;16:61–69.

    PubMed  CAS  Google Scholar 

  10. Earnshaw DJ, Gait MJ. Progress toward the structure and therapeutic use of the hairpin ribozyme. Antisense Nucleic Acid Drug Dev 1997;7:403–411.

    PubMed  CAS  Google Scholar 

  11. Hampel A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. Prog Nucleic Acid Res Mol Biol 1998;58:1–39.

    Article  PubMed  CAS  Google Scholar 

  12. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997;94:4262–4266.

    Article  PubMed  CAS  Google Scholar 

  13. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001;15:188–200.

    Article  PubMed  CAS  Google Scholar 

  14. Ambros V. The functions of animal microRNAs. Nature 2004;431:350–355.

    Article  PubMed  CAS  Google Scholar 

  15. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004;431:371–378.

    Article  PubMed  CAS  Google Scholar 

  16. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001;20:6877–6888.

    Article  PubMed  CAS  Google Scholar 

  17. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990;2:279–289.

    Article  PubMed  CAS  Google Scholar 

  18. van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990;2:291–299.

    Article  PubMed  Google Scholar 

  19. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–854.

    Article  PubMed  CAS  Google Scholar 

  20. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000;403:901.

    Article  PubMed  CAS  Google Scholar 

  21. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003;113:36.

    Article  Google Scholar 

  22. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003;13:795.

    Article  Google Scholar 

  23. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.

    Article  PubMed  CAS  Google Scholar 

  24. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:498.

    Article  Google Scholar 

  25. Dorsett Y, Tuschl T. siRNAS: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004;3:318.

    Article  PubMed  CAS  Google Scholar 

  26. Bertrand J-R, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 2002;296:1004.

    Article  CAS  Google Scholar 

  27. Barik S. Development of gene-specific double-stranded RNA drugs. Ann Med 2004;36:540–551.

    Article  PubMed  CAS  Google Scholar 

  28. Seo MY, Abrignani S, Houghton M, Han JH. Small interfering RNA-mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7. J Virol 2003;77:810–812.

    Article  PubMed  CAS  Google Scholar 

  29. Mack PC, Burich RA, Axentiev P, Gandara DR, Devere White RW. Inhibition of BCL-2 by Stealth siRNA results in growth suppression of LNCaP cells. Am Soc Clin Oncol 2005; 867s.

    Google Scholar 

  30. Nichols GL, Benimetskaya L, Stein CA. Inhibition of Bcl-2 by anti-sense oligonucleotide and siRNA in specimens from patients with Waldenström’s macroglobulinemia (WM). Am Soc Hematol 2004.

    Google Scholar 

  31. Tebes SJ, Johnson NC, Fiorica JV, Kruk PA. Inhibition of Telomerase in Ovarian Cancer using siRNA Technology. Am Soc Clin Oncol 2005; 236s.

    Google Scholar 

  32. Glienke W, Seil I, Bauer N, Bergmann L. siRNA mediated silencing of Wilms tumor gene-1 (WT1) in leukemia cell lines. Am Soc Hematol 2005.

    Google Scholar 

  33. Elahi A, Martino MA, Cragun J, et al. Silencing pathways that underlie platinum resistance in ovarian cancer cells using small interfering RNA. Am Soc Hematol 2005; 483s.

    Google Scholar 

  34. Becerra CR, Verma U, Guo J, Gaynor RB. Enhanced chemosensitivity of CPT-11 in colon cancer by RNA interference of NF-kB p65 subunit. Am Soc Clin Oncol (Gastroint Cancers Symp) 2004; 344s.

    Google Scholar 

  35. Henningson CT, Jr., Demir G, Robbins M, Kalota A, Gewirtz AM. Inhibition of c-Kit receptor expression in malignant human neuroepithelial cells by RNA interference. Am Soc Clin Oncol 2002.

    Google Scholar 

  36. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002;2:247.

    Article  Google Scholar 

  37. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003;101:1566–1569.

    Article  PubMed  CAS  Google Scholar 

  38. Wohlbold L, van der Kuip H, Moehring A, et al. Repeated application of sequence-specific siRNA molecules leads to an effective downmodulation of all clinically relevant bcr-abl gene variants. Am Soc Hematol 2004.

    Google Scholar 

  39. Wilda M, Fuchs U, Wössmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002;21:5716–5724.

    Article  PubMed  CAS  Google Scholar 

  40. Heidenreich O, Krauter J, Riehle H, et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 2003;101: 3157–3163.

    Article  PubMed  CAS  Google Scholar 

  41. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 2004;10:1189.

    Article  CAS  Google Scholar 

  42. Hsu FY, Anderson WF, Johnston PB. Targeted siRNA inhibition of NPM-ALK in anaplastic large cell lymphoma causes disease specific growth inhibition which augments chemotherapeutic agents. Am Soc Hematol 2005.

    Google Scholar 

  43. Kovar H, Ban J, Pospisilova S. Potentials for RNAi in sarcoma research and therapy: Ewing’s sarcoma as a model. Semin Cancer Biol 2003;13:281.

    Article  CAS  Google Scholar 

  44. Damm-Welk C, Fuchs U, Wossmann W, Borkhardt A. Targeting oncogenic fusion genes in leukemias and lymphomas by RNA interference. Semin Cancer Biol 2003;13:283–292.

    Article  PubMed  CAS  Google Scholar 

  45. Minakuchi Y, Takeshita F, Kosaka N, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 2004;32:e109.

    Article  PubMed  Google Scholar 

  46. Takeshita F, Minakuchi Y, Nagahara S, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. PNAS 2005;102:12177–12182.

    Article  PubMed  CAS  Google Scholar 

  47. Sumimoto H, Yamagata S, Shimizu A, et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther 2004;12:100.

    Google Scholar 

  48. Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE. Systemic siRNA-Mediated Gene Silencing: A New Approach to Targeted Therapy of Cancer. Ann Surg 2004;240:667–676.

    PubMed  Google Scholar 

  49. Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 2004;23:4681–4689.

    Article  PubMed  CAS  Google Scholar 

  50. Song E, Lee S-K, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:351.

    Article  CAS  Google Scholar 

  51. Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. Small interfering RNA Inhibits Hepatitis B virus replication in mice. Mol Ther 2003;8:776.

    Article  CAS  Google Scholar 

  52. Klein C, Bock CT, Wedemeyer H, et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology 2003;125:18.

    Article  CAS  Google Scholar 

  53. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003;21:644.

    Article  Google Scholar 

  54. Chiu Y-L, Rana TM. siRNA function in RNAi: A chemical modification analysis. RNA 2003;9:1034–1048.

    Article  PubMed  CAS  Google Scholar 

  55. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173–178.

    Article  PubMed  CAS  Google Scholar 

  56. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005;56:401–423.

    Article  PubMed  CAS  Google Scholar 

  57. Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 1977;74:4370–4374.

    Article  PubMed  CAS  Google Scholar 

  58. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978;75:280–284.

    Article  PubMed  CAS  Google Scholar 

  59. Simons RW, Kleckner N. Translational control of IS10 transposition. Cell 1983;34:683–691.

    Article  PubMed  CAS  Google Scholar 

  60. Izant JG, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 1984;36:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  61. Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 1984;81:1966–1970.

    Article  PubMed  CAS  Google Scholar 

  62. Webb A, Cunningham D, Cotter F, et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 1997;349:1137–1141.

    Article  PubMed  CAS  Google Scholar 

  63. Fisher G, Advani R, Wakelee H, et al. A Phase I trial of Oblimersen and Gemcitabine in refractory and advanced malignancies. Am Soc Clin Oncol 2005:3174.

    Google Scholar 

  64. Marshall J, Chen H, Yang D, et al. A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 2004;15:1274–1283.

    Article  PubMed  CAS  Google Scholar 

  65. Morris MJ, Cordon-Cardo C, Kelly WK, et al. Safety and biologic activity of intravenous BCL-2 antisense oligonucleotide (G3139) and taxane chemotherapy in patients with advanced cancer. Appl Immunohistochem Mol Morphol 2005;13:6–13.

    Article  PubMed  CAS  Google Scholar 

  66. Badros AZ, Goloubeva O, Rapoport AP, et al. Phase II Study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol 2005;23:4089–4099.

    Article  PubMed  CAS  Google Scholar 

  67. Pro B, Smith MR, Younes A, et al. Oblimersen sodium (Bcl-2 antisense) plus rituximab in patients with recurrent B-cell non-Hodgkin’s lymphoma: preliminary phase II results. Am Soc Clin Oncol 2004:6572.

    Google Scholar 

  68. Marcucci G, Stock W, Dai G, et al. Phase I study of oblimersen sodium, an antisense to bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005;23:3404–3411.

    Article  PubMed  CAS  Google Scholar 

  69. Rudin CM, Otterson GA, Mauer AM, et al. A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann Oncol 2002;13:539–545.

    Article  PubMed  CAS  Google Scholar 

  70. Rudin CM, Kozloff M, Hoffman PC, et al. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 2004;22:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  71. Rudin CM, Salgia R, Wang XF, Green MR, Vokes EE. CALGB 30103: A randomized phase II study of carboplatin and etoposide (CE) with or without G3139 in patients with extensive stage small cell lung cancer (ES-SCLC). Am Soc Clin Oncol 2005:7168.

    Google Scholar 

  72. Chi KN, Gleave ME, Klasa R, et al. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001;7:3920–3927.

    PubMed  CAS  Google Scholar 

  73. Tolcher AW, Kuhn J, Schwartz G, et al. A phase I pharmacokinetic and biological correlative study of oblimersen sodium (Genasense, G3139), an antisense oligonucleotide to the bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 2004;10:5048–5057.

    Article  PubMed  CAS  Google Scholar 

  74. Margolin KA, Lara P, Quinn D, et al. G3139 plus a-Interferon (IFN) in metastatic renal cancer (RCC): a phase II study of the California Cancer Consortium. Am Soc Clin Oncol 2005:4694.

    Google Scholar 

  75. Kaubisch A, Wu Y, Wadler S. Phase I/II study of genasense (G3139) in combination with cisplatin (cis) and fluorouracil (FU) in patients with advanced esophageal, gastro-esophageal junction and gastric cancer (P5385). Am Soc Clin Oncol 2005; 884s.

    Google Scholar 

  76. Jansen B, Wacheck V, Heere-Ress E, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000;356:1728–1733.

    Article  PubMed  CAS  Google Scholar 

  77. Mays TA, Mita AC, Takimoto C, et al. Bcl-2 biomodulation with oblimersen sodium in combination with FOLFOX4 chemotherapy: a phase I study in metastatic colon carcinoma. Am Soc Clin Oncol 2005:3158.

    Google Scholar 

  78. Gleave ME, Monia BP. Antisense therapy for cancer. Nat Rev Cancer 2005;5:468.

    Article  PubMed  CAS  Google Scholar 

  79. Rai KR, Moore JO, Boyd TE, et al. Phase 3 randomized trial of fludarabine/cyclophosphamide chemotherapy with or without oblimersen sodium (Bcl-2 antisense; genasense; G3139) for patients with relapsed or refractory chronic lymphocytic leukemia (CLL). ASH Annu Meet Abstr 2004;104:338.

    Google Scholar 

  80. Chanan-Khan AA, Niesvizky R, Hohl RJ, et al. Randomized multicenter phase 3 trial of high-dose dexamethasone (dex) with or without oblimersen sodium (G3139; Bcl-2 antisense; genasense) for patients with advanced multiple myeloma (MM). ASH Annu Meet Abstr 2004;104:1477.

    Google Scholar 

  81. Leech SH, Olie RA, Gautschi O, et al. Induction of apoptosis in lung-cancer cells following bcl-xL anti-sense treatment. Int J Cancer 2000;86:570–576.

    Article  PubMed  CAS  Google Scholar 

  82. Simões-Wüst AP, Olie RA, Gautschi O, et al. Bcl-xl antisense treatment induces apoptosis in breast carcinoma cells. Int J Cancer 2000;87:582–590.

    Article  PubMed  Google Scholar 

  83. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA. Bcl-xl in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 2000;60:6052–6060.

    PubMed  CAS  Google Scholar 

  84. Miyake H, Monia BP, Gleave ME. Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bcl-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. Int J Cancer 2004;86:855–862.

    Article  Google Scholar 

  85. Gautschi O, Tschopp S, Olie RA, et al. Activity of a novel bcl-2/bcl-xl-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 2001;93:463–471.

    Article  PubMed  CAS  Google Scholar 

  86. Shen L, Dean NM, Glazer RI. Induction of p53-dependent, insulin-like growth factor-binding protein-3-mediated apoptosis in glioblastoma multiforme cells by a protein kinase calpha antisense oligonucleotide. Mol Pharmacol 1999;55:396–402.

    PubMed  CAS  Google Scholar 

  87. Wang X-Y, Repasky E, Liu H-T. Antisense inhibition of protein kinase C[alpha] reverses the transformed phenotype in human lung carcinoma cells. Exp Cell Res 1999;250:253–263.

    Article  PubMed  CAS  Google Scholar 

  88. Nemunaitis J, Holmlund JT, Kraynak M, et al. Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 1999;17:3586–3595.

    PubMed  CAS  Google Scholar 

  89. Yuen AR, Halsey J, Fisher GA, et al. Phase I study of an antisense oligonucleotide to protein kinase C-{alpha} (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 1999;5:3357–3363.

    PubMed  CAS  Google Scholar 

  90. Tolcher AW, Reyno L, Venner PM, et al. A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2002;8:2530–2535.

    PubMed  CAS  Google Scholar 

  91. Ritch PS, Belt R, George S, et al. Phase I/II trial of ISIS 3521/LY900003, an antinsense inhibitor of PKC-alpha with cisplatin and gemcitabine in advanced non-small cell lung cancer (NSCLC). Am Soc Clin Oncol 2002.

    Google Scholar 

  92. Yuen A, Halsey J, Fisher G, et al. Phase I/II trial of ISIS 3521, an antisense inhibitor of PKC-alpha, with carboplatin and paclitaxel in non-small cell lung cancer. Am Soc Clin Oncol 2001.

    Google Scholar 

  93. Moore MR, Saleh M, Jones CM, et al. Phase II trial of ISIS 3521/LY900003, an antisense inhibitor of PKC-alpha, with docetaxel in non-small cell lung cancer (NSCLC). Am Soc Clin Oncol 2002.

    Google Scholar 

  94. Paz-Ares L, Douillard J, Koralewski P, et al. Randomized phase III trial of gemcitabine/cisplatin (GC) and protein kinase C a (PKCa) antisense oligonucleotide aprinocarsen in patients (pts) with advanced stage non-small cell lung cancer (NSCLC). Am Soc Clin Oncol 2005:7053.

    Google Scholar 

  95. Lynch TJ, Raju R, Lind M, et al. Randomized phase III trial of chemotherapy and antisense oligonucleotide LY900003 (ISIS 3521) in patients with advanced NSCLC: Initial report. Am Soc Clin Oncol 2003:623.

    Google Scholar 

  96. Chi KN, Eisenhauer E, Fazli L, et al. A phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of OGX-011, a 2’-methoxyethyl phosphorothioate antisense to clusterin, in patients with prostate cancer prior to radical prostatectomy. Am Soc Clin Oncol 2004:3033.

    Google Scholar 

  97. Chi KN, Eisenhauer E, Siu L, et al. A phase I study of a second generation antisense oligonucleotide to clusterin (OGX-011) in combination with docetaxel: NCIC CTG IND.154. Am Soc Clin Oncol 2005:3085.

    Google Scholar 

  98. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;396:580–584.

    Article  PubMed  CAS  Google Scholar 

  99. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997;3:917–921.

    Article  PubMed  CAS  Google Scholar 

  100. Lu CD, Altieri DC, Tanigawa N. Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res 1998;58:1808–1812.

    PubMed  CAS  Google Scholar 

  101. Tamm I, Wang Y, Sausville E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998;58: 5315–5320.

    PubMed  CAS  Google Scholar 

  102. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22:8581–8589.

    Article  PubMed  CAS  Google Scholar 

  103. Li F, Ackermann EJ, Bennett CF, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1999;1:461–466.

    Article  PubMed  CAS  Google Scholar 

  104. Chen J, Wu W, Tahir SK, et al. Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia 2000;2:235–241.

    Article  PubMed  CAS  Google Scholar 

  105. Ansell SM, Arendt BK, Grote DM, et al. Inhibition of survivin expression suppresses the growth of aggressive non-Hodgkin’s lymphoma. Leukemia 2004;18:616–623.

    Article  PubMed  CAS  Google Scholar 

  106. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300–304.

    Article  PubMed  CAS  Google Scholar 

  107. Silke J, Hawkins CJ, Ekert PG, et al. The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol 2002;157:115–124.

    Article  PubMed  CAS  Google Scholar 

  108. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 2000;70:113–122.

    Article  PubMed  CAS  Google Scholar 

  109. Tamm I, Kornblau SM, Segall H, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000;6:1796–1803.

    PubMed  CAS  Google Scholar 

  110. Hu Y, Cherton-Horvat G, Dragowska V, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 2003;9:2826–2836.

    PubMed  CAS  Google Scholar 

  111. Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 2000;60:5659–5666.

    PubMed  CAS  Google Scholar 

  112. de Fabritiis P, Petti MC, Montefusco E, et al. BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood 1998;91:3156–3162.

    PubMed  Google Scholar 

  113. Yu CL, Meyer DJ, Campbell GS, et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 1995;269:81–83.

    Article  PubMed  CAS  Google Scholar 

  114. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002;8:945–954.

    PubMed  CAS  Google Scholar 

  115. Mora LB, Buettner R, Seigne J, et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002;62:6659–6666.

    PubMed  CAS  Google Scholar 

  116. Epling-Burnette PK, Liu JH, Catlett-Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001;107:351–362.

    PubMed  CAS  Google Scholar 

  117. Freireich EJ, Kantarjian H, Garcia-Manero G, et al. Phase II Study of EL625, a p53 antisense oligonucleotide, and chemotherapy in refractory and relapsed acute myelogenous leukemia (AML). Am Soc Clin Oncol 2005:6617.

    Google Scholar 

  118. Hau P, Kunst M, Pichler J, et al. Targeted downregulation of TGF-beta2 as immunotherapy for high-grade glioma: a phase IIb study. Am Soc Clin Oncol 2005:1537.

    Google Scholar 

  119. Schlingensiepen K, Bischof A, Egger T, et al. Targeted down regulation of TGF-beta2 in pancreatic carcinoma: A phase I/II dose escalation study to evaluate the safety and tolerability of the antisense oligonucleotide AP 12009. Am Soc Clin Oncol 2005; 123s.

    Google Scholar 

  120. Steinberg JL, Mendelson DS, Block H, et al. Phase I study of LErafAON-ETU, an easy-to-use formulation of Liposome Entrapped c-raf Antisense Oligonucleotide, in advanced cancer patients. Am Soc Clin Oncol 2005; 244s.

    Google Scholar 

  121. Vidal L, Leslie M, Sludden J, et al. A phase I and pharmacodynamic study of a 7 day infusion schedule of the DNMT1 antisense compound MG98. Am Soc Clin Oncol 2005; 209s.

    Google Scholar 

  122. Janisch LA, Schilsky RL, Vogelzang NJ, et al. Phase I study of GTI-2040 given by continuous intravenous infusion (CVI) in patients with advanced cancer. Am Soc Clin Oncol 2001.

    Google Scholar 

  123. Leighl NB, Laurie SA, Knox JJ, et al. Phase I/II study of GTI-2040 plus docetaxel as 2nd-line treatment in non-small cell lung cancer (NSCLC) and other solid tumors. Am Soc Clin Oncol 2005.

    Google Scholar 

  124. Luger SM, O’Brien SG, Ratajczak J, et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 2002;99:1150–1158; 683s.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Vogl, D.T., Gewirtz, A.M. (2008). Nucleic Acid Therapies for Cancer Treatment. In: Kaufman, H.L., Wadler, S., Antman, K. (eds) Molecular Targeting in Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-337-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-337-0_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-577-4

  • Online ISBN: 978-1-59745-337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics