Skip to main content

Microtubule Dynamics

Mechanisms and Regulation by Microtubule-Associated Proteins and Drugs In Vitro and in Cells

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Microtubules are dynamic cellular polymers. Their dynamics are exquisitely regulated and are essential to many cellular activities including mitosis, cell division, signaling, adhesion, directed migration, polarization, vesicle and protein delivery to and retrieval from the plasma membrane, and remodeling of cell shape and organization. The cytoskeleton, which includes microtubules, actin filaments, and intermediate filaments (such as vimentin, lamin, and keratin) is not a stable structure, but is a continuously evolving machine. The machine remakes or reorganizes itself in response to outside signals regulating cell activities (1). In Subheading 1, the authors describe the dynamic behaviors of microtubules in vitro with purified microtubules, their mechanisms, and some of the many ways that dynamics are modulated by microtubule-targeted drugs and endogenous cellular regulators. In Subheading 2, the authors describe microtubule dynamics and their regulation in living cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Machesky L, Bornens M. Cell structure and dynamics. Curr Opin Cell Biol 2003; 15:2–5.

    PubMed  CAS  Google Scholar 

  2. Hyams JS, Lloyd CW, eds. Microtubules. New York, NY, Wiley-Liss, Inc., 1994.

    Google Scholar 

  3. Nogales E, Whittaker M, Milligan R, Downing K. High-resolution model of the microtubule. Cell 1999;96:79–88.

    PubMed  CAS  Google Scholar 

  4. McEwen B, Edelstein SJ. Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol 1977;139:123–143.

    Google Scholar 

  5. Pierson GB, Burton PR, Himes RH. Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol 1977;76:223–228.

    Google Scholar 

  6. Meurer-Grob P, Kasparian J, Wade RH. Microtubule structure at improved resolution. Biochemistry 2001;40(27):8000–8008.

    PubMed  CAS  Google Scholar 

  7. Margolis RL, Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 1978;13:1–8.

    PubMed  CAS  Google Scholar 

  8. Mitchison TJ, Kirschner M. Dynamic instability of microtubule growth. Nature 1984;312:237–242.

    PubMed  CAS  Google Scholar 

  9. Desai A, Mitchison T. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997;13: 83–117.

    PubMed  CAS  Google Scholar 

  10. Horio T, Hotani H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 1986;321:605–607.

    PubMed  CAS  Google Scholar 

  11. Walker RA, O’Brien ET, Pryer NK, et al. Dynamic instability of individual microtubules analyzed by video light microscopy: Rate constants and transition frequencies. J Cell Biol 1988;107:1437–1448.

    PubMed  CAS  Google Scholar 

  12. Panda D, Jordan MA, Chin K, Wilson L. Differential effects of vinblastine on polymerization and dynamics at opposite microtubule ends. J Biol Chem 1996;271:29,807–29,812.

    PubMed  CAS  Google Scholar 

  13. Hotani H, Horio T. Dynamics of microtubules visualized by darkfield microscopy: Treadmilling and dynamic instability. Cell Motil Cytoskeleton 1988; 10:229–236.

    PubMed  CAS  Google Scholar 

  14. Toso RJ, Jordan MA, Farrell KW, Matsumoto B, Wilson L. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 1993;32(5):1285–1293.

    PubMed  CAS  Google Scholar 

  15. Panda D, Daijo JE, Jordan MA, Wilson L. Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry 1995;34:9921–9929.

    PubMed  CAS  Google Scholar 

  16. Panda D, Goode BL, Feinstein SC, Wilson L. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Biochemistry 1995;34:11,117–11,127.

    PubMed  CAS  Google Scholar 

  17. Billger MA, Bhatacharjee G, Williams RC Jr. Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: Neither variability of growth and shortening rates nor rescue requires microtubule-associated proteins. Biochemistry 1996;35:13,656–13,663.

    PubMed  CAS  Google Scholar 

  18. Newton C, DeLuca J, Himes RH, Miller HP, Jordan MA, Wilson L. Intrinsically slow dynamic instability of HeLa cell microtubules in vitro. J Biol Chem 2002;277:42,456–42,462.

    PubMed  CAS  Google Scholar 

  19. O’Brien ET, Salmon ED, Walker RA, Erickson HP. Effects of magnesium on the dynamic instability of individual microtubules. Biochemistry 1990;29:6648–6656.

    PubMed  CAS  Google Scholar 

  20. Gildersleeve RF, Cross AR, Cullen KE, Fagan LP, Williams JRC. Microtubules grow and shorten at intrinsically variable rates. J Biol Chem 1992;267:7995–8006.

    PubMed  CAS  Google Scholar 

  21. Simon JR, Salmon ED. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J Cell Sci 1990;96: 571–582.

    PubMed  CAS  Google Scholar 

  22. Mandelkow E, Mandelkow E, Milligan, R. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol 1991;114:977–991.

    PubMed  CAS  Google Scholar 

  23. Panda D, Miller HP, Banerjee A, Luduena RF, Wilson L. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 1994;91:11,358–11,362.

    PubMed  CAS  Google Scholar 

  24. Luduena RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytology 1998; 178:207–275.

    CAS  Google Scholar 

  25. Wegner A. Head to tail polymerization of actin. J Mol Biol 1976;108:139–150.

    PubMed  CAS  Google Scholar 

  26. Margolis RL, Wilson L. Microtubule treadmills-possible molecular machinery. Nature (London) 1981;293:705–711.

    CAS  Google Scholar 

  27. Pryer NK, Walker RA, et al. Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. J Cell Sci 1992;103:965–976.

    PubMed  CAS  Google Scholar 

  28. Panda D, Miller HP, Wilson L. Rapid treadmilling of MAP-free brain microtubules in vitro and its suppression by tau. Proc Natl Acad Sci USA 1999;96:12,459–12,464.

    PubMed  CAS  Google Scholar 

  29. Margolis RL, Wilson L. Microtubule treadmilling: What goes around comes around. Bioessays 1998;20:830–836.

    PubMed  CAS  Google Scholar 

  30. Keating TJ, Peloquin JG, Rodionov VI, Momcilovic D, Borisy GG. Microtubule release from the centrosome. Proc Natl Acad Sci USA 1997;94:5078–5083.

    PubMed  CAS  Google Scholar 

  31. Rodionov VI, Borisy GG. Microtubule treadmilling in vivo. Science 1997;275:215–218.

    PubMed  CAS  Google Scholar 

  32. Chen W, Zhang, D. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nature Cell Biol 2004;6:227–231.

    PubMed  Google Scholar 

  33. Grego S, Cantillana V, Salmon ED. Microtubule treadmilling in vitro investigated by fluorescence speckle and confocal microscopy. Biophys J 2001;81:66–78.

    PubMed  CAS  Google Scholar 

  34. Shaw SL, Kamyar R, Ehrhardt DW. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 2003;300:1715–1718.

    PubMed  CAS  Google Scholar 

  35. Mitchison TJ. Poleward microtubule flux in the mitotic spindle; evidence from photoactivation of fluorescence. J Cell Biol 1989;109:637–652.

    PubMed  CAS  Google Scholar 

  36. Mitchison TJ, Salmon ED. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Cell Biol 1992;119:569–582.

    PubMed  CAS  Google Scholar 

  37. Carlier MF, Didry D, Simon C, Pantaloni, D. Mechanism of GTP hydrolysis in tubulin polymerization: characterization of the kinetic intermediate microtubule GDP-Pi using phosphate analogs. Biochemistry 1989;28:1783–1791.

    PubMed  CAS  Google Scholar 

  38. Carlier MF. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubule. Int Rev Cytol 1989;115:139–170.

    PubMed  CAS  Google Scholar 

  39. Bayley PM, Schilstra MJ, Martin SM. Microtubule dynamic instability: numerical simulation of microtubule transition properties using a lateral cap model. J Cell Sci 1990;X:33–48.

    Google Scholar 

  40. Melki R, Carlier MF, Pantaloni D. Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly. Biochemistry 1990;28:8921–8932.

    Google Scholar 

  41. Stewart RJ, Farrell KW, Wilson L. Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism. Biochemistry 1990;29:6489–6498.

    PubMed  CAS  Google Scholar 

  42. Walker RA, Pryer NK, Salmon ED. Dilution of individual microtubules observed in real time in vitro: evidence that the cap size is small and independent of elongation rate. J Cell Biol 1991;114:73–81.

    PubMed  CAS  Google Scholar 

  43. Erickson HP, O’Brien ET. Microtubule dynamic instability and GTP hydrolysis. Annu Rev Biophys Biomol Struct 1992;21:145–166.

    PubMed  CAS  Google Scholar 

  44. Drechsel DN, Kirschner MW. The minimum cap size required to stabilize microtubules. Curr Biol 1994;4:1053–1061.

    PubMed  CAS  Google Scholar 

  45. Caplow M, Shanks J. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol Biol Cell 1996;7:663–675.

    PubMed  CAS  Google Scholar 

  46. Vandecandelaere A, Brune M, Webb MR, Martin SR, Bayley PM. Phosphate release during microtubule assembly. What stabilizes growing microtubules? Biochemistry 1999;20:1918–1924.

    Google Scholar 

  47. Janosi IM, Chretien D, Flybjerg H. Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophys J 2002;83:1317–1330.

    PubMed  CAS  Google Scholar 

  48. Panda D, Miller H, Wilson L. Determination of the size and chemical nature of the stabilizing cap at microtubule ends using modulators of polymerization dynamics. Biochemistry 2002;41: 1609–1617.

    PubMed  CAS  Google Scholar 

  49. Hyman A, Chretien D, Arnal I, Wade R. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha, beta)-methylene-diphosphonate. J Cell Biol 1995;128:117–125.

    PubMed  CAS  Google Scholar 

  50. Muller-Reichert T, Chretien D, Hyman AA. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolysable analogue of GTP, guanylyl (a, b) methylenediphosphonate. Proc Natl Acad Sci USA 1998;95:3661–3666.

    PubMed  CAS  Google Scholar 

  51. Wang HW, Nogales E. Nucleotide-dependent bending flexibility of tubulin controls microtubule assembly. Nature 2005;435:911–915.

    PubMed  CAS  Google Scholar 

  52. Caplow M, Ruhlen RL, Shanks J. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero; all of the free energy for hydrolysis is stored in the microtubule lattice. J Cell Biol 1994; 127:779–788.

    PubMed  CAS  Google Scholar 

  53. Caplow M, Ruhlen R, Shanks J, Walker RA, Salmon ED. Stabilization of microtubules by tubulin-GDP-Pi subunits. Biochemistry 1989;28:8136–8141.

    PubMed  CAS  Google Scholar 

  54. Trinczek B, Marx A, Mandelkow EM, Murphy DB, Mandelkow E. Dynamics of microtubules from erythrocyte marginal bands. Mol Biol Cell 1993;4:323–335.

    PubMed  CAS  Google Scholar 

  55. Caplow M, Shanks J. Microtubule dynamic instability does not result from stabilization of microtubules by tubulin-GDP-Pi subunits. Biochemistry 1998;37:12,994–13,002.

    PubMed  CAS  Google Scholar 

  56. Caplow M, Fee L. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules. Biochemistry 2003;42:2122–2126.

    PubMed  CAS  Google Scholar 

  57. L. Wilson, H.P. Miller, and D. Panda, to be published.

    Google Scholar 

  58. Cassimeris L. Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr Opin Cell Biol 1999;11:134–141.

    PubMed  CAS  Google Scholar 

  59. Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA. Reconstitution of physiological microtubule dynamics using purified components. Science 2001; 294(5545):1340–1343.

    PubMed  CAS  Google Scholar 

  60. Wilson L, Jordan MA. Pharmacological probes of microtubule function. Microtubules. Hyams J, Lloyd C. New York: John Wiley and Sons, Inc.; 1994;59–84.

    Google Scholar 

  61. Wilson L, Jordan MA. Microtubule dynamics: taking aim at a moving target. Chem Biol 1995;2: 569–573.

    PubMed  CAS  Google Scholar 

  62. Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2002;2:1–17.

    PubMed  CAS  Google Scholar 

  63. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4: 253–265.

    PubMed  CAS  Google Scholar 

  64. Wilson L, Panda D, Jordan MA. Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Function 1999;24:329–335.

    CAS  Google Scholar 

  65. Jordan MA, Wilson L, Vallee R, ed. Academic press. The use of drugs to study the role of microtubule assembly dynamics in living cells. Molecular Motors and the Cytoskeleton, Meth Enzymol 1998;298:252–276.

    Google Scholar 

  66. Dustin P. Microtubules. Berlin, Springer-Verlag, 1984 2nd edition pp 1–482.

    Google Scholar 

  67. Lobert S, Correia J. Energetics of Vinca alkaloid interactions with tubulin. Meth Enzymol 2000; 323:77–103.

    PubMed  CAS  Google Scholar 

  68. Bai RB, Pettit GR, Hamel E. Dolastatin 10. a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 1990;39:1941–1949.

    PubMed  CAS  Google Scholar 

  69. Bai RB, Pettit GR, Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Biol Chem 1990;265: 17,141–17,149.

    PubMed  CAS  Google Scholar 

  70. Wilson L, Jordan MA, Morse A, Margolis RL. Interaction of vinblastine with steady-state microtubules in vitro. J Mol Biol 1982;159:129–149.

    Google Scholar 

  71. Correia JJ, Lobert S. Physiochemical aspects of tubulin-interacting antimitotic drugs. Curr Pharm Des 2001;7(13):1213–1228.

    PubMed  CAS  Google Scholar 

  72. Na GC, Timasheff SN. Thermodynamic linkage between tubulin self-association and the binding of vinblastine. Biochemistry 1980;19(7):1347–1354.

    PubMed  CAS  Google Scholar 

  73. Jordan MA, Margolis RL, Himes RH, Wilson L. Identification of a distinct class of vinblastine binding sites on microtubules. J Mol Biol 1986;187:61–73.

    PubMed  CAS  Google Scholar 

  74. Singer WD, Jordan MA, Wilson L, Himes RH. Binding of vinblastine to stabilized microtubules. Mol Pharmacol 1989;36(3):366–370.

    PubMed  CAS  Google Scholar 

  75. Hastie SB. Interactions of colchicine with tubulin. Pharmacol Ther 1991;512:377–401.

    Google Scholar 

  76. Ravelli RB, Gigant B, Curmi PA, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004;428:198–202.

    PubMed  CAS  Google Scholar 

  77. Farrell KW, Wilson L. The differential kinetic stabilization of opposite microtubule ends by tubulincolchicine complexes. Biochemistry 1984;23:3741–3748.

    PubMed  CAS  Google Scholar 

  78. Sternlicht H, Ringel I. Colchicine inhibition of microtubule assembly via copolymer formations. J Biol Chem 1979;254:10,540–10,550.

    PubMed  CAS  Google Scholar 

  79. Sternlicht H, Ringel I, Szasz J. Theory for modelling the copolymerization of tubulin and tubulincolchicine complex. Biophys J 1983;42:255–267.

    PubMed  CAS  Google Scholar 

  80. Skoufias D, Wilson L. Mechanism of inhibition of microtubule polymerization by colchicine: Inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 1992;31:738–746.

    PubMed  CAS  Google Scholar 

  81. Margolis RL, Rauch CT, Wilson L. Mechanism of colchicine dimer addition to microtubule ends: Implications for the microtubule polymerization mechanism. Biochemistry 1980;19:5550–5557.

    PubMed  CAS  Google Scholar 

  82. Wilson L, Farrell KW. Kinetics and steady-state dynamics of tubulin addition and loss at opposite microtubule ends: the mechanism of action of colchicine. Ann NY Acad Sci 1986;466:690–708.

    PubMed  CAS  Google Scholar 

  83. Nogales E, Wolf SG, Khan IA, Luduena RF, Downing KA. Structure of tubulin at 6.5A and location of the taxol-binding site. Nature 1995;375:424–427.

    PubMed  CAS  Google Scholar 

  84. Kar S, Fan J, Smith MJ, Goedert MJ, Amos LA. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J 2003;22:70–77.

    PubMed  CAS  Google Scholar 

  85. Schiff PB, Horwitz SB. Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 1981;20:3247–3252.

    PubMed  CAS  Google Scholar 

  86. Diaz JF, Andreu JM. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry 1993;32:2747–2755.

    PubMed  CAS  Google Scholar 

  87. Diaz JF, Barasoain I, Andreu JM. Fast kinetics of Taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins. J Biol Chem 2003;278:8407–8419.

    PubMed  CAS  Google Scholar 

  88. Nogales E. Structural insights into microtubule function. Annu Rev Biophys Biomol Struct 2001; 30:397–420.

    PubMed  CAS  Google Scholar 

  89. Wilson L, Miller HP, Farrell KW, Snyder KB, Thompson WC, Purich DL. Taxol stabilization of microtubules in vitro: dynamics of tubulin addition and loss at opposite microtubule ends. Biochemistry 1985;24:5254–5262.

    PubMed  CAS  Google Scholar 

  90. Jordan MA, Toso RJ, Thrower D, Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 1993;90:9552–9556.

    PubMed  CAS  Google Scholar 

  91. Derry WB, Wilson L, Jordan MA. Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 1995;34:2203–2211.

    PubMed  CAS  Google Scholar 

  92. Derry WB, Wilson L, Jordan MA. Low potency of taxol at microtubule minus ends: implication for its anti-mitotic and therapeutic mechanism. Cancer Res 1998;58:1177–1184.

    PubMed  CAS  Google Scholar 

  93. Waters JC, Mitchison TJ, Rieder CL, Salmon ED. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol Biol Cell 1996;7: 1547–1558.

    PubMed  CAS  Google Scholar 

  94. Panda D, Samuel S, Massie M, Feinsntein S, Wilson L. Differential regulation of microtubule dynamics by 3-repeat and 4-repeat tau: Implications for the onset of neurodegenerative disease. Proc Natl Acad Sci USA 2003; 100:9548–9553.

    PubMed  CAS  Google Scholar 

  95. Feinstein SC, Wilson L. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochimica et Biphysica Acta 2005;1739:268–279.

    CAS  Google Scholar 

  96. Curmi PA, Anderson SSL, Lachkar S, et al. The stathmin/tubulin interaction in vitro. J Biol Chem 1997;272:25,029–25,036.

    PubMed  CAS  Google Scholar 

  97. Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. Int Rev Cytol 2001;210:163–226.

    PubMed  CAS  Google Scholar 

  98. Ovechkina Y, Wordeman L. Unconventional motoring: An overview of the kin C and Kin I kinesins. Traffic 2003;4:367–375.

    PubMed  CAS  Google Scholar 

  99. Newton CN, Wagenbach M, Ovechkina Y, Wordeman L, Wilson L. MCAK, a kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro. FEBS Lett 2004;572:80–84.

    PubMed  CAS  Google Scholar 

  100. Hayden JJ, Bowser SS, Rieder C. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt cells. J Cell Biol 1990;111: 1039–1045.

    PubMed  CAS  Google Scholar 

  101. McIntosh J, Grishchuk EL, West RR. Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol 2002;18:193–219.

    PubMed  CAS  Google Scholar 

  102. Rodriguez O, Schaefer A, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 2003;5:599–609.

    PubMed  CAS  Google Scholar 

  103. Maddox P, Desai A, Oegama K, Mitchison TJ, Salmon ED. Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr Biol 2002; 12:R651–R653.

    Google Scholar 

  104. Nedelac F, Surrey T, Karsenti E. Self-organisation and forces in the microtubule cytoskeleton. Curr opin Cell Biol 2003;15:118–124.

    Google Scholar 

  105. Abal M, Piel M, Bouckson-Castaing V, Mogensen M, Sibarita JB, Bornens M. Microtubule release from the centrosome in migrating cells. J Cell Biol 2002;159(5):731–737.

    PubMed  CAS  Google Scholar 

  106. Job D, Valiron O, Oakley B. Microtubule nucleation. Curr Opin Cell Biol 2003;15:111–117.

    PubMed  CAS  Google Scholar 

  107. Saxton WM, Stemple DL, Leslie RJ, Salmon ED, Zavortink M, McIntosh JR. Tubulin dynamics in cultured mammalian cells. J Cell Biol 1984;99:2175–2186.

    PubMed  CAS  Google Scholar 

  108. Pepperkok R, Bre MH, Davoust J, Kreis TE. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J Cell Biol 1990; 111:3003–3012.

    PubMed  CAS  Google Scholar 

  109. Wadsworth P, McGrail M. Interphase microtubule dynamics are cell type-specific. J Cell Sci 1990; 95:23–32.

    PubMed  Google Scholar 

  110. Shelden E, Wadsworth P. Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 1993;120:935–945.

    PubMed  CAS  Google Scholar 

  111. Wadsworth P, Bottaro DP. Microtubule dynamic turnover is suppressed during polarization and stimulated in hepatocyte growth factor scattered Madin-Darby canine kidney epithelial cells. Cell Motil Cytoskeleton 1996;35:225–236.

    PubMed  CAS  Google Scholar 

  112. Dhamodharan RI, Jordan MA, Thrower D, Wilson L, Wadsworth P. Vinblastine suppresses dynamics of individual microtubules in living cells. Mol Biol Cell 1995;6:1215–1229.

    PubMed  CAS  Google Scholar 

  113. Dhamodharan RI, Wadsworth P. Modulation of microtubule dynamic instability in vivo by brain microtubule associated proteins. J Cell Sci 1995;108:1679–1689.

    PubMed  CAS  Google Scholar 

  114. Yvon AM, Wadsworth P, Jordan MA. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 1999;10:947–949.

    PubMed  CAS  Google Scholar 

  115. Honore S, Kamath K, Braquer D, Wilson L, Briand C, Jordan MA. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol Cancer Therapeutics 2003;2:1303–1311.

    CAS  Google Scholar 

  116. Kamath K, Jordan MA. Suppression of microtubule dynamics by epothilone B in living MCF7 cells. Cancer Res 2003;63:6026–6031.

    PubMed  CAS  Google Scholar 

  117. Bunker JM, Wilson L, Jordan MA, Feinstein SC. Modulation of microtubule dynamics by tau in living cells: Implications for development and neurodegeneration. Mol Biol Cell 2004; 15:2720–2728.

    PubMed  CAS  Google Scholar 

  118. Yvon AM, Gross DJ, Wadsworth P. Antagonistic forces generated by myosin II and cytoplasmic cynein regulate microtubule turnover, movement, and organization in interphase cells. Proc Natl Acac Sci USA 2001;98:8656–8661.

    CAS  Google Scholar 

  119. Tulu US, Rusan NM, Wadsworth P. Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells. Curr Biol 2003;13:1844–1899.

    Google Scholar 

  120. Waterman-Storer CM, Salmon ED. Fluorescent speckle microscopy of microtubules: how low can you go? FASEB J 1999;13(suppl 2):S225–S230.

    PubMed  CAS  Google Scholar 

  121. Danuser G, Waterman-Storer CM. Quantitative fluorescent speckle microscopy: where it came from and where it is going. J Microscopy 2003;211:191–207.

    CAS  Google Scholar 

  122. Zhou FQ, Waterman-Storer CM, Cohan CS. Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J Cell Biol 2002;157:839–849.

    PubMed  CAS  Google Scholar 

  123. Schuyler SC, Pellman D. Microtubule “plus-end tracking proteins”: the end is just the beginning. Cell 2001;105:421–424.

    PubMed  CAS  Google Scholar 

  124. Vaughan K. Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol 2004; 14:491–496.

    PubMed  CAS  Google Scholar 

  125. Gundersen G, Gomes E, Wen Y. Cortical control of microtubule stability and polarization. Curr Opin Cell Biol 2004; 16:106–112.

    PubMed  CAS  Google Scholar 

  126. Galjart N. CLIPs and CLASPs and cellular dynamics. Nature Reviews Molecular Cell Biology 2005;6:487–498.

    PubMed  CAS  Google Scholar 

  127. Manna T, Thrower D, Miller HP, Curmi P, Wilson L. Stathmin strongly increases the minus end catastrophe frequency and induces rapid treadmilling of bovine brain microtubules at steady state in vitro. J Biol Chem 2006;281:2071–2078.

    PubMed  CAS  Google Scholar 

  128. Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of microtubule destabilizing activity of Op18.stathmin downstream of Rac1. J Biol Chem 2004;279:6196–6203.

    PubMed  CAS  Google Scholar 

  129. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 2000;113:3013–3023.

    PubMed  CAS  Google Scholar 

  130. Karsenti E, Vernos I. The mitotic spindle: a self-made machine. Science 2001;294:543–547.

    PubMed  CAS  Google Scholar 

  131. Wilde A, Lizarraga SB, Zhang L, et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 2001;3:221–227.

    PubMed  CAS  Google Scholar 

  132. Dammermann A, Desai A, Oegama K. The minus end in sight. Curr Biol 2003;13:R614–R624.

    PubMed  CAS  Google Scholar 

  133. Small JV, Kaverina I. Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 2003; 15:40–47.

    PubMed  CAS  Google Scholar 

  134. Ookata K, Hisanaga S, Bulinski JC, et al. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 1995; 128:849–862.

    PubMed  CAS  Google Scholar 

  135. Chang W, Gruber D, Chari S, et al. Phosphorylation of MAP4 affects microtubule properties and cell cycle progression. J Cell Sci 2001;114 (pt 15):2879–2887.

    PubMed  CAS  Google Scholar 

  136. Rusan NM, Fagerstrom CJ, Yvon AMC, Wadsworth P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 2001;12:971–980.

    PubMed  CAS  Google Scholar 

  137. Wilson PJ, Forer A. Effects of nanomolar taxol on crane-fly spermatocyte spindles indicate that acetylation of kinetochore microtubules can be used as a marker of poleward tubulin flux. Cell Motil Cytoskeleton 1997;37:20–32.

    PubMed  CAS  Google Scholar 

  138. Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature 1995;373:630–632.

    PubMed  CAS  Google Scholar 

  139. Nicklas RB, Ward SC, Gorbsky GJ. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol 1995; 130:929–939.

    PubMed  CAS  Google Scholar 

  140. Gorbsky GJ. Cell cycle checkpoints: arresting progress in mitosis. BioEssays 1997;19:193–197.

    PubMed  CAS  Google Scholar 

  141. Rieder C, Schultz A, Cole R, Sluder G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 1994;127:1301–1310.

    PubMed  CAS  Google Scholar 

  142. Shelby RD, Hahn KM, Sullivan KF. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol 1996;135:545–557.

    PubMed  CAS  Google Scholar 

  143. Desai A, Maddox PS, Mitchison TJ, Salmon ED. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J Cell Biol 1998; 141:703–713.

    PubMed  CAS  Google Scholar 

  144. Walczak CE, Mitchison TJ, Desai A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 1996;84:37–47.

    PubMed  CAS  Google Scholar 

  145. Desai A, Verma S, Mitchison TJ, Walczak CE. Kin I kinesins are microtubule-destabilizing enzymes. Cell 1999;96(1):69–78.

    PubMed  CAS  Google Scholar 

  146. Maney T, Wagenbach M, Wordeman L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J Biol Chem 2001;276(37):34,753–34,758.

    PubMed  CAS  Google Scholar 

  147. Walczak CE. Ran hits the ground running. Nat Cell Biol 2001;3:E69–E70.

    PubMed  CAS  Google Scholar 

  148. Tirnauer JS, Canman JC, Salmon ED, Mitchison TJ. EB1 targets to kinetochores with attached polymerizing microtubules. Mol Biol Cell 2002;13:4308–4316.

    PubMed  CAS  Google Scholar 

  149. Maiato H, Fairley E, Reider CL, Swedlow JR, Sunkel CE, Earnshaw WC. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 2003; 113:891–904.

    PubMed  CAS  Google Scholar 

  150. Yu H. Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol 2002;14:706–714.

    PubMed  CAS  Google Scholar 

  151. Skoufias DA, Andreassen P, Lacroix F, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci USA 2001;10:4492–4497.

    Google Scholar 

  152. Jordan MA, Wilson L. Microtubule polymerization dynamics, mitotic block, and cell death by paclitaxel at low concentrations. Taxane Anticancer Agents. Georg GI, Chen TT, Ojima I, Vyas DM. Washington DC, American Chemical Society, 1995;138–153.

    Google Scholar 

  153. Jordan MA, Wendell KL, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996;56:816–825.

    PubMed  CAS  Google Scholar 

  154. Hamel E, Covell DG. Antimitotic peptides and depsipeptides. Curr Med chem Anticancer Agents 2002;2:19–53.

    PubMed  CAS  Google Scholar 

  155. Zhou J, Gupta K, Aggarwal S, et al. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Mol Pharmacol 2003;63(4):799–807.

    PubMed  CAS  Google Scholar 

  156. Hoffman JC, Vaughn KC. Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 1994; 179:16–25.

    CAS  Google Scholar 

  157. Lacey E, Gill JH. Biochemistry of benzimidazole resistance. Acta Trop 1994;56:245–262.

    PubMed  CAS  Google Scholar 

  158. Cann JR, Hinman ND. Interaction of chlorpromazine with brain microtubule subunit protein. Mol Pharmacol 1975;11:256–267.

    PubMed  CAS  Google Scholar 

  159. Boder GB, Paul DC, Williams DC. Chlorpromazine inhibits mitosis of mammalian cells. Eur J Cell Biol 1983;31:349–353.

    PubMed  CAS  Google Scholar 

  160. Lobert S, Ingram J, Correia J. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly. Cancer Res 1999;59:4816–4822.

    PubMed  CAS  Google Scholar 

  161. Jimenez-Barbero J, Amat-Guerri F, Snyder JP. The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization. Curr Med Chem Anticancer Agents 2002;2(1):91–122.

    PubMed  CAS  Google Scholar 

  162. Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991;51(8):2212–2222.

    PubMed  CAS  Google Scholar 

  163. Okouneva T, Hill BT, Wilson L, Jordan MA. The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Therapeutics 2003;2:427–436.

    CAS  Google Scholar 

  164. Kelling J, Sullivan K, Wilson L, Jordan MA. Suppression of centromere dynamics by taxol in living osteosarcoma cells. Cancer Res 2003;63.

    Google Scholar 

  165. Jordan MA, Kamath K, Manna T, et al. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther 2005;4:1086–1095.

    PubMed  CAS  Google Scholar 

  166. Goncalves A, Braguer D, Kamath K, et al. Resistance to taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci USA 2001;98:11,737–11,741.

    PubMed  CAS  Google Scholar 

  167. J. Kelling. Anti-Cancer Agents. Curr Med Chem 2:1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Jordan, M.A., Wilson, L. (2008). Microtubule Dynamics. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics