Skip to main content

Molecular Features of the Interaction of Colchicine and Related Structures with Tubulin

  • Chapter
The Role of Microtubules in Cell Biology, Neurobiology, and Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Colchicine is one of the oldest known antimicrotubule drugs. It exerts its biological effects by binding to a single site on the β-subunit of the tubulin heterodimer. The resulting colchicine-tubulin complex substiochiometrically inhibits tubulin assembly and suppresses microtubule dynamics. A large number of molecules with significant structural diversity interact with the colchicine site on tubulin; literally hundreds of potential colchicine site ligands have been synthesized and tested in the hopes of finding a better clinical agent. In spite of the wealth of data, an understanding of the structure-activity relationship for these colchicine site ligands remains elusive. Colchicine site drugs are believed to act as a common mechanism, which has been studied extensively in the case of colchicine but much less studied for other ligands. In this review, the molecular mechanisms by which colchicine and closely related structures interact with tubulin are explored. Thermodynamic, kinetic, and structure-activity analyses as well as more recent structural information about the ligand-receptor complex are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jordan A, Hadfield JA, Lawrence NJ, McGown AT. Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Med Res Rev 1998;18:259–296.

    Article  PubMed  CAS  Google Scholar 

  2. Checchi PM, Nettles JH, Zhou J, Snyder JP, Joshi HC. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol Sci 2003;24:361–365.

    Article  PubMed  CAS  Google Scholar 

  3. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nature Rev Cancer 2004;4: 253–265.

    Article  CAS  Google Scholar 

  4. Giannakakou P, Sackett D, Fojo T. Tubulin/microtubules: Still a promising target for new chemotherapeutic agents. J Natl Cancer Inst 2000;92:182–183.

    Article  PubMed  CAS  Google Scholar 

  5. Rowinsky EK, Donehower RC. Drug-Therapy — Paclitaxel (Taxol). N Engl J Med 1995;332:1004–1014.

    Article  PubMed  CAS  Google Scholar 

  6. Altaha R, Fojo T, Reed E, Abraham J. Epothilones: A novel class of non-taxane microtubule-stabilizing agents. Curr Pharm Des 2002;8:1707–1712.

    Article  PubMed  CAS  Google Scholar 

  7. Kruczynski A, Hill BT. Vinflunine, the latest Vinca alkaloid in clinical development — A review of its preclinical anticancer properties. Crit Rev Oncol Hematol 2001;40:159–173.

    Article  PubMed  CAS  Google Scholar 

  8. Cirla A, Mann J. Combretastatins: from natural products to drug discovery. Nat Prod Rep 2003;20: 558–564.

    Article  PubMed  CAS  Google Scholar 

  9. Chaplin DJ, Hill SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Rad Oncol Biol Phys 2002;54:1491–1496.

    CAS  Google Scholar 

  10. Marx MA. Small-molecule, tubulin-binding compounds as vascular targeting agents. Expert Opin Ther Patents 2002;12:769–776.

    Article  Google Scholar 

  11. Sackett DL. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 1993;59:163–228.

    Article  PubMed  CAS  Google Scholar 

  12. Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 2002;83:21–38.

    Article  PubMed  CAS  Google Scholar 

  13. Pettit GR, Toki B, Herald DL, et al. Antineoplastic agents. 379. Synthesis of phenstatin phosphate. J Med Chem 1998;41:1688–1695.

    Article  PubMed  CAS  Google Scholar 

  14. Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-methoxyestradiol, a promising anticancer agent. Pharmacotherapy 2003;23:165–172.

    Article  PubMed  CAS  Google Scholar 

  15. Xu K, Schwarz PM, Luduena RF. Interaction of nocodazole with tubulin isotypes. Drug Dev Res 2002;55:91–96.

    Article  CAS  Google Scholar 

  16. Wipf P, Reeves JT, Day BW. Chemistry and biology of curacin A. Curr Pharm Des 2004;10: 1417–1437.

    Article  PubMed  CAS  Google Scholar 

  17. Lawrence NJ, McGown AT. The chemistry and biology of antimitotic chalcones and related enone systems. Curr Pharm Des 2005;11:1679–1693.

    Article  PubMed  CAS  Google Scholar 

  18. Barbier P, Peyrot V, Sarrazin M, Rener GA, Briand C. Differential effects of ethyl 5-amino-2-methyl-l, 2-dihydro-3-phenylpyrido [3,4-b] pyrazin-7-yl carbamate analogs modified at position C-2 on tubulin polymerization, binding, and conformational changes. Biochemistry 1995;34:16,821–16,829.

    Article  PubMed  CAS  Google Scholar 

  19. Peyrot V, Leynadier D, Sarrazin M, et al. Mechanism of binding of the new antitumor drug MDL 27048 to the colchicine site on tubulin: equilibrium studies. Biochemistry 1992;31:11,125–11,132.

    Article  PubMed  CAS  Google Scholar 

  20. Li Q, Woods KW, Claiborne A, et al. Synthesis and biological evaluation of 2-indolyloxazolines as a new class of tubulin polymerization inhibitors. Discovery of A-289099 as an orally active antitumor agent. Bioorg Med Chem Lett 2002;12:465–469.

    Article  PubMed  CAS  Google Scholar 

  21. Tahir SK, Nukkala MA, Mozny NAZ, et al. Biological activity of A-289099: An orally active tubulin-binding indolyloxazoline derivative. Mol Cancer Ther 2:227–233.

    Google Scholar 

  22. Hastie SB. Interactions of colchicine with tubulin. Pharmacol Ther 1991;51:377–401.

    Article  PubMed  CAS  Google Scholar 

  23. Kelleher JK. Tubulin binding affinities of podophyllotoxin and colchicine analogs. Mol Pharmacol 1977;13:232–241.

    PubMed  CAS  Google Scholar 

  24. Bhattacharyya B, Wolff J. Promotion of fluorescence upon binding of colchicine to tubulin. Proc Natl Acad Sci USA 1974;71:2627–2631.

    Article  PubMed  CAS  Google Scholar 

  25. Banerjee A, Bhattacharyya B. Colcemid and colchicine binding to tubulin: similarity and dissimilarity. FEBS Lett 1979;99:333–336.

    Article  PubMed  CAS  Google Scholar 

  26. Ray K, Bhattacharyya B, Biswas BB. Role of B-ring of colchicine in its binding to tubulin. J Biol Chem 1981;256:6241–6244.

    PubMed  CAS  Google Scholar 

  27. Cortese F, Bhattacharyya B, Wolff J. Podophyllotoxin as a probe for the colchicine binding site of tubulin. J. Biol. Chem. 1977;252:1134–1140.

    PubMed  CAS  Google Scholar 

  28. Guha S, Bhattacharyya B. The colchicine-tubulin interaction: A review. Curr Sci 1997;73:351–358.

    CAS  Google Scholar 

  29. Hamel E. Antimitotic natural products and their interactions with tubulin. Med Res Rev 1996;16: 207–231.

    Article  PubMed  CAS  Google Scholar 

  30. Hamel E. Interactions of tubulin with small ligands. In: Microtubule Proteins, Avila J, ed. CRC Press, Inc., Boca Raton, FL, 1990; pp 89–191.

    Google Scholar 

  31. Correia JJ. Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther 1991;52: 127–147.

    Article  PubMed  CAS  Google Scholar 

  32. Correia JJ, Lobert S. Physiochemical aspects of tubulin-interacting antimitotic drugs. Curr Pharm Des 7:1213–1228.

    Google Scholar 

  33. Timasheff SN, Andreu JM, Na GC. Physical and spectroscopic methods for the evaluation of the interactions of antimitotic agents with tubulin. Pharmacol Ther 1991;52:191–210.

    Article  PubMed  CAS  Google Scholar 

  34. Lee KH. Novel antitumor agents from higher plants. Med Res Rev 1999;19:569–596.

    Article  PubMed  CAS  Google Scholar 

  35. Canel C, Moraes RM, Dayan FE, Ferreira D. Podophyllotoxin. Phytochemistry 2000;54:115–120.

    Article  PubMed  CAS  Google Scholar 

  36. Bacher G, Beckers T, Emig P, Klenner T, Kutscher B, Nickel B. New small-molecule tubulin inhibitors. Pure Appl Chem 2001;73:1459–1464.

    Article  CAS  Google Scholar 

  37. Hamel E. Interactions of antimitotic peptides and depsipeptides with tubulin. Biopolymers 2002;66: 142–160.

    Article  PubMed  CAS  Google Scholar 

  38. Li Q, Sham HL. Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opin Ther Patents 2002;12:1663–1702.

    Article  CAS  Google Scholar 

  39. Lee KH. Current developments in the discovery and design of new drug candidates from plant natural product leads. J Nat Prod 2004;67:273–283.

    Article  PubMed  CAS  Google Scholar 

  40. Borisy GG, Taylor EW. The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J Cell Biol 1967;34:525–533.

    Article  PubMed  CAS  Google Scholar 

  41. Weisenberg RC, Borisy GG, Taylor EW. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 1968;7:4466–4479.

    Article  PubMed  CAS  Google Scholar 

  42. Le Hello C. The pharmacology and therapeutic aspects of colchicine. In: The Alkaloids, Cordeil GA, ed. Academic Press, New York, vol 53, 2000; pp 287–352.

    Google Scholar 

  43. Skoufias DA, Wilson L. Mechanism of inhibition of microtubule polymerization by colchicine — Inhibitory potencies of unliganded colchicine and tubulin colchicine complexes. Biochemistry 1992; 31:738–746.

    Article  PubMed  CAS  Google Scholar 

  44. Sackett DL, Varma JK. Molecular mechanism of colchicine action — Induced local unfolding of β-tubulin. Biochemistry 1993;32:13,560–13,565.

    Article  PubMed  CAS  Google Scholar 

  45. Wilson L, Jordan MA. Drug Interactions with Microtubules. In: Microtubules, Hyams JS, Lloyd CW, eds. Wiley-Liss, New York, 1994; pp 59–83.

    Google Scholar 

  46. Wilson L, Panda D, Jordan MA. Modulation of microtubule dynamics by drugs: A paradigm for the actions of cellular regulators. Cell Struct Funct 1999;24:329–335.

    Article  PubMed  CAS  Google Scholar 

  47. Vandecandelaere A, Martin SR, Engelborghs Y. Response of microtubules to the addition of colchicine and tubulin-colchicine: Evaluation of models for the interaction of drugs with microtubules. Biochem J 1997;323:189–196.

    PubMed  CAS  Google Scholar 

  48. Panda D, Daijo JE, Jordan MA, Wilson L. Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry 1995;34:9921–9929.

    Article  PubMed  CAS  Google Scholar 

  49. Hamel E. Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. Cell Biochem Biophys 2003;38:1–21.

    Article  PubMed  CAS  Google Scholar 

  50. Sackett DL. Vinca site agents induce structural-changes in tubulin different from and antagonistic to changes induced by colchicine site agents. Biochemistry 1995;34:7010–7019.

    Article  PubMed  CAS  Google Scholar 

  51. David-Pfeuty T, Simon C, Pantaloni D. Effect of antimitotic drugs on tubulin GTPase activity and self-assembly. J Biol Chem 1979;254:11,696–11,702.

    PubMed  CAS  Google Scholar 

  52. Lin CM, Hamel E. Effects of inhibitors of tubulin polymerization on GTP hydrolysis. J Biol Chem 1981;256:9242–9245.

    PubMed  CAS  Google Scholar 

  53. Andreu JM, Timasheff SN. Tubulin bound to colchicine forms polymers different from microtubules. Proc Natl Acad Sci USA 1982;79:6753–6756.

    Article  PubMed  CAS  Google Scholar 

  54. Andreu JM, Wagenknecht T, Timasheff SN. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly. Biochemistry 1983;22:1556–1566.

    Article  PubMed  CAS  Google Scholar 

  55. Saltarelli D, Pantaloni D. Polymerization of the tubulin-colchicine complex and guanosine 5′-triphosphate hydrolysis. Biochemistry 1982;21:2996–3006.

    Article  PubMed  CAS  Google Scholar 

  56. Schonbrunn E, Phlippen W, Trinczek B, et al. Crystallization of a macromolecular ring assembly of tubulin liganded with the anti-mitotic drug podophyllotoxin. J Struct Biol 1999;128:211–215.

    Article  PubMed  CAS  Google Scholar 

  57. Garland DL. Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational changes. Biochemistry 1978;17:4266–4272.

    Article  PubMed  CAS  Google Scholar 

  58. Diaz JF, Andreu JM. Kinetics of dissociation of the tubulin-colchicine complex: complete reaction scheme and comparison to thermodynamic measurements. J Biol Chem 1991;266:2890–2896.

    Google Scholar 

  59. Engelborghs Y. General features of the recognition by tubulin of colchicine and related compounds. Eur Biophys J 1998;27:437–445.

    Article  PubMed  CAS  Google Scholar 

  60. Pyles EA, Hastie SB. Effect of the B-ring and the C-7 substituent on the kinetics of colchicinoid tubulin associations. Biochemistry 1993;32:2329–2336.

    Article  PubMed  CAS  Google Scholar 

  61. Banerjee A, Luduena RF. Distinct colchicine binding-kinetics of bovine brain tubulin lacking the type-III isotype of β-tubulin. J Biol Chem 1991;266:1689–1691.

    PubMed  CAS  Google Scholar 

  62. Banerjee A, Luduena RF. Kinetics of colchicine binding to purified β-tubulin isotypes from bovine brain. J Biol Chem 1992;267:13,335–13,339.

    PubMed  CAS  Google Scholar 

  63. Banerjee A, Engelborghs Y, D’Hoore A, Fitzgerald TJ. Interactions of a bicyclic analog of colchicine with β-tubulin isoforms αβII, αβIII, αβIV. Eur J Biochem 1997:246:420–424.

    Article  PubMed  CAS  Google Scholar 

  64. Menendez M, Laynez J, Medrano FJ, Andreu JM. A thermodynamic study of the interaction of tubulin with colchicine site ligands. J Biol Chem 1989;264:16,367–16,371.

    PubMed  CAS  Google Scholar 

  65. Banerjee A, Luduena RF. Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain. J Biol Chem 1992;267:13,335–13,339.

    PubMed  CAS  Google Scholar 

  66. Luduena RF. Multiple forms of tubulin: Different gene products and covalent modifications. In: International Review of Cytology — a Survey of Cell Biology, vol 178, 1998; pp 207–275.

    CAS  Google Scholar 

  67. Mukhopadhyay K, Parrack PK, Bhattacharyya B. The carboxy terminus of the α-subunit of tubulin regulates its interaction with colchicine. Biochemistry 1990;29:6845–6850.

    Article  PubMed  CAS  Google Scholar 

  68. Pal D, Mahapatra P, Manna T, et al. Conformational properties of alpha-tubulin tail peptide: Implications for tail-body interaction. Biochemistry 2001;40:15,512–15,519.

    Article  PubMed  CAS  Google Scholar 

  69. Andreu JM, Gorbinoff MJ, Medrano FJ, Rossi M, Timasheff SN. Mechanism of colchicine binding to tubulin: tolerance of substituents in ring C′ of biphenyl analogues. Biochemistry 1991;30: 3777–3786.

    Article  PubMed  CAS  Google Scholar 

  70. Medrano FJ, Andreu JM, Gorbunoff MJ, Timasheff SN. Roles of the ring C oxygens in the binding of colchicine to tubulin. Biochemistry 1991;30:3770–3777.

    Article  PubMed  CAS  Google Scholar 

  71. Perez-Ramirez B, Gorbunoff MJ, Timasheff SN. Linkages in tubulin-colchicine functions: The role of the ring C (C′) oxygens and ring B in the controls. Biochemistry 1998;37:1646–1661.

    Article  PubMed  CAS  Google Scholar 

  72. Andreu JM, Perez-Ramirez B, Gorbunoff MJ, Ayala D, Timasheff SN. Role of the colchicine ring A and its methoxy groups in the binding to tubulin and microtubule inhibition. Biochemistry 1998;37: 8356–8368.

    Article  PubMed  CAS  Google Scholar 

  73. Shi Q, Chen K, Morris-Natschke SL, Lee KH. Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr Pharm Des 1998;4:219–248.

    PubMed  CAS  Google Scholar 

  74. Brossi A, Yeh HJC, Chrzanowska M, et al. Colchicine and its analogs — recent findings. Med Res Rev 1988;8:77–94.

    Article  PubMed  CAS  Google Scholar 

  75. Boye O, Brossi A. Tropolonic Colchicum alkaloids and all congeners. In: The Alkaloids, Brossi A, ed. Academic Press, New York, vol 41, 1992; pp 125–176.

    Google Scholar 

  76. Capraro HG, Brossi A. Tropolonic Colchicum alkaloids. In: The Alkaloids, Brossi A, ed. Academic Press, New York, vol XXIII, 1984; pp 1–70.

    Google Scholar 

  77. Lee KH. Anticancer drug design based on plant-derived natural products. J Biomed Sci 1999;6:236–250.

    PubMed  CAS  Google Scholar 

  78. Cramer RD, Patterson DE, Bunce JD. Comparative Molecular-Field Analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988;110:5959–5967.

    Article  CAS  Google Scholar 

  79. Brown ML, Rieger JM, Macdonald TL. Comparative molecular field analysis of colchicine inhibition and tubulin polymerization for combretastatins binding to the colchicine binding site on β-tubulin. Bioorg Med Chem 2000;8:1433–1441.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang SX, Feng J, Kuo SC, et al. Antitumor agents. 199. Three-dimensional quantitative structure-activity relationship study of the colchicine binding site ligands using comparative molecular field analysis. J Med Chem 2000;43:167–176.

    Article  PubMed  CAS  Google Scholar 

  81. Polanski J. The non-grid technique for modeling 3D QSAR using self-organizing neural network (SOM) and PLS analysis: Application to steroids and colchicinoids. SAR QSAR Environ Res 2000;11:245–261.

    Article  PubMed  CAS  Google Scholar 

  82. Polanski J. Self-organizing neural network for modeling 3D QSAR of colchicinoids. Acta Biochim Pol 2000;47:37–45.

    PubMed  CAS  Google Scholar 

  83. Ducki S, Mackenzie G, Lawrence NJ, Snyder JP. Quantitative structure-activity relationship (5D-QSAR) study of combretastatin-like analogues as inhibitors of tubulin assembly. J Med Chem 2005;48:457–465.

    Article  PubMed  CAS  Google Scholar 

  84. Berg U, Deinum, J., Lincoln, P., and Kvassman, J. (1991) Stereochemistry of colchicinoids. Enantiomeric stability and binding to tubulin of desacetamidocolchicine and desacetamidoiso-colchicine. Bioorg. Chem. 19, 53–65.

    Article  CAS  Google Scholar 

  85. Brossi A, Boye O, Muzaffar A, et al. aS, 7S-absolute configuration of natural (-)-colchicine and allocongeners. FEBS Lett 1990;262:5–7.

    Article  PubMed  CAS  Google Scholar 

  86. Roesner M, Capraro HG, Jacobson AE, et al. Biological effects of modified colchicines. Improved preparation of 2-demethylcolchicine, 3-demethylcolchicine, and (+)-colchicine and reassignment of the position of the double bond in dehydro-7-deacetamidocolchicines. J Med Chem 1981;24:257–261.

    Article  CAS  Google Scholar 

  87. Berg U, Bladh H. The absolute configuration of colchicine by correct application of the CIP rules. Helv Chim Acta 1999;82:323–325.

    Article  CAS  Google Scholar 

  88. Sun L, Hamel E, Lin CM, Hastie SB, Pyluck A, Lee KH. Antitumor Agents.141. Synthesis and biological evaluation of novel thiocolchicine analogs — N-acyl-(substituted benzyl)deacetylthio-colchicines, and N-aroyl-(substituted benzyl)deacetylthiocolchicines, and (substituted benzyl) deacetylthiocolchicines as potent cytotoxic and antimitotic compounds. J Med Chem 1993;36: 1474–1479.

    Article  PubMed  CAS  Google Scholar 

  89. Sun L, McPhail AT, Hamel E, et al. Antitumor Agents. 139. synthesis and biological evaluation of thiocolchicine analogs 5,6-dihydro-6(S)-(acyloxy) and 5,6-dihydro-6(S)-(aroyloxy)methyl-1,2,3-trimethoxy-9-(methylthio)-8H-cyclohepta[a]naphthalen-8-ones as novel cytotoxic and antimitotic agents. J Med Chem 1993;36:544–551.

    Article  PubMed  CAS  Google Scholar 

  90. Shi Q, Verdier-Pinard P, Brossi A, Hamel E, Lee KH. Antitumor agents — CLXXV. Anti-tubulin action of (+)-thiocolchicine prepared by partial synthesis. Bioorg Med Chem 1997;5:2277–2282.

    Article  PubMed  CAS  Google Scholar 

  91. Shi Q, VerdierPinard P, Brossi A, Hamel E, McPhail AT, Lee KH. Antitumor agents. 172. Synthesis and biological evaluation of novel deacetamidothiocolchicin-7-ols and ester analogs as antitubulin agents. J Med Chem 1997;40:961–966.

    Article  PubMed  CAS  Google Scholar 

  92. Shi Q, Chen K, Chen X, et al. Antitumor agents. 183. Syntheses, conformational analyses, and antitubulin activity of allothiocolchicinoids. J Org Chem 1998;63:4018–4025.

    Article  CAS  Google Scholar 

  93. Yeh HJC, Chrzanowska M, Brossi A. The importance of the phenyl-tropolone ‘aS’ configuration in colchicine’s binding to tubulin. FEBS Lett 1988;229:82–86.

    Article  PubMed  CAS  Google Scholar 

  94. Lin CM. Singh SB, Chu PS, et al. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin — a structure-activity study. Mol Pharmacol 1988;34:200–208.

    PubMed  CAS  Google Scholar 

  95. Lincoln P, Nordh J, Deinum J, Angstrom J, Norden B. Conformation of thiocolchicine and 2 B-ringmodified analogs bound to tubulin studied with optical spectroscopy. Biochemistry 1991;30: 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  96. Berg U, Bladh H, Svensson C, Wallin M. The first colchicine analogue with an eight membered B-ring. Structure, optical resolution and inhibition of microtubule assembly. Bioorg Med Chem Lett 1997;7:2771–2776.

    Article  CAS  Google Scholar 

  97. Edwards DJ, Pritchard RG, Wallace TW. Fine-tuning of biaryl dihedral angles: structural characterization of five homologous three-atom bridged biphenyls by X-ray crystallography. Acta Cryst B 2005;61:335–345.

    Article  CAS  Google Scholar 

  98. Banwell MG, Peters SC, Greenwood RJ, Mackay MF, Hamel E, Lin CM. Semisyntheses, X-ray crystal-structures and tubulin-binding properties of 7-oxodeacetamidocolchicine and 7-oxodeacetami-doisocolchicine. Aust J Chem 1992;45:1577–1588.

    Article  CAS  Google Scholar 

  99. Buttner F, Bergemann S, Guenard D, Gust R, Scitz G, Thoret S. Two novel series of allocolchicinoids with modified seven membered B-rings: design, synthesis, inhibition of tubulin assembly and cytotoxicity. Bioorg Med Chem 2005;13:3497–3511.

    Article  PubMed  CAS  Google Scholar 

  100. Hastie SB, Williams RC, Puett D, Macdonald TL. The binding of isocolchicine to tubulin — mechanisms of ligand association with tubulin. J Biol Chem 264:6682–6688.

    Google Scholar 

  101. Kerekes P, Sharma PN, Brossi A, Chignell CF, Quinn FR. Synthesis and biological effects of novel thiocolchicines. 3. Evaluation of N-acyldeacetylthiocolchicines, N-(alkoxycarbonyl)deacetylthio-colchicines, and O-ethyldemethylthiocolchicines. New synthesis of thiodemecolcine and antileukemic effects of 2-demethyl-and 3-demethylthiocolchicine. J Med Chem 1985;28:1204–1208.

    Article  PubMed  CAS  Google Scholar 

  102. Staretz ME, Hastie SB. Synthesis and tubulin binding of novel C-10 analogs of colchicine. J Med Chem 1993;36:758–764.

    Article  PubMed  CAS  Google Scholar 

  103. Andres CJ, Bernardo JE, Yan Q, Hastie SB, Macdonald TL. Combretatropones — Hybrids of combretastatin and colchicine — synthesis and biochemical evaluation. Bioorg Med Chem Lett 1993;3: 565–570.

    Article  CAS  Google Scholar 

  104. Hahn KM, Humphreys WG, Helms AM, Hastie SB, Macdonald TL. Structural requirements for the binding of colchicine analogs to tubulin-the role of the C-10 substituent. Bioorg Med Chem Lett 1991;1:471–476.

    Article  CAS  Google Scholar 

  105. Janik ME, Bane SL. Synthesis and antimicrotubule activity of combretatropone derivatives. Bioorg Med Chem 2002;10:1895–1903.

    Article  PubMed  CAS  Google Scholar 

  106. Deveau AM, Macdonald TL. Practical synthesis of biaryl colchicinoids containing 3′,4′-catechol ether-based A-rings via Suzuki cross-coupling with ligandless palladium in water. Tetrahedron Lett 2004;45:803–807.

    Article  CAS  Google Scholar 

  107. Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J Med Chem 1991;34:2579–2588.

    Article  PubMed  CAS  Google Scholar 

  108. Cushman M, Nagarathnam D, Gopal D, He HM, Lin CM, Hamel E. Synthesis and evaluation of analogs of (Z)-l-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents. J Med Chem 1992;35:2293–2306.

    Article  PubMed  CAS  Google Scholar 

  109. Banwell MG, Cameron JM, Corbett M, et al. Synthesis and tubulin-binding properties of some AC-ring and ABC-ring analogs of allocolchicine. Aust J Chem 1992;45:1967–1982.

    Article  CAS  Google Scholar 

  110. Boye O, Brossi A, Yeh HJC, Hamel E, Wegrzynski B, Toome V. Natural-products — antitubulin effect of congeners of N-acetylcolchinyl methyl-ether — synthesis of optically-active 5-acetamido-deaminocolchinyl methyl-ether and of demethoxy analogs of deaminocolchinyl methyl-ether. Can J Chem 1992;70:1237–1249.

    Article  CAS  Google Scholar 

  111. Gaukroger K, Hadfield JA, Lawrence NJ, Nolan S, McGown AT. Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit? Org Biomol Chem 2003;1:3033–3037.

    Article  PubMed  CAS  Google Scholar 

  112. Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature 1998;391:199–203.

    Article  PubMed  CAS  Google Scholar 

  113. Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 2000;16:89–111.

    Article  PubMed  CAS  Google Scholar 

  114. Downing KH, Nogales E. New insights into microtubule structure and function from the atomic model of tubulin. Eur Biophys J 1998;27:431–436.

    Article  PubMed  CAS  Google Scholar 

  115. Ravelli RBG, Gigant B, Curmi PA, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004;428:198–202.

    Article  PubMed  CAS  Google Scholar 

  116. Williams RF, Mumford CL, Williams GA, et al. A photoaffinity derivative of colchicine: 6-(4′-azido-2′-nitrophenylamino)hexanoyldeacetylcolchicine. Photolabeling and location of the colchicine-binding site on the α-subunit of tubulin. J Biol Chem 1985;260:13,794–13,802.

    PubMed  CAS  Google Scholar 

  117. Floyd LJ, Barnes LD, Williams RF. Photoaffinity labeling of tubulin with (2-nitro-4-azidophenyl) deacetylcolchicine: direct evidence for two colchicine binding sites. Biochemistry 1989;28:8515–8525.

    Article  PubMed  CAS  Google Scholar 

  118. Bai RL, Covell DG, Pei XF, et al. Mapping the binding site of colchicinoids on β-tubulin — 2-chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J Biol Chem 2000;275:40,443–40,452.

    Article  PubMed  CAS  Google Scholar 

  119. Luduena RF, Roach MC. Tubulin sulfhydryl-groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol Ther 1991;49:133–152.

    Article  PubMed  Google Scholar 

  120. Hari M, Wang YQ, Veeraraghavan S, Cabrai F. Mutations in α-and β-tubulin that stabilize microtubules and confer resistance to Colcemid and vinblastine. Mol Cancer Ther 2003;2:597–605.

    PubMed  CAS  Google Scholar 

  121. Wang YQ, Veeraraghavan S, Cabrai F. Intra-allelic suppression of a mutation that stabilizes microtubules and confers resistance to colcemid. Biochemistry 2004;43:8965–8973.

    Article  PubMed  CAS  Google Scholar 

  122. Bhattacharyya B, Wolff J. Immobilization-dependent fluorescence of colchicine. J Biol Chem 1984; 259:11,836–11,843.

    PubMed  CAS  Google Scholar 

  123. Nguyen TL, McGrath C, Hermone AR, et al. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. I Med Chem 2005;48:6107–6116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Bane, S.L. (2008). Molecular Features of the Interaction of Colchicine and Related Structures with Tubulin. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics