Skip to main content

PI3K/Akt/mTOR Pathway: A Growth and Proliferation Pathway

  • Chapter
Renal Cell Carcinoma

Abstract

The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway regulates numerous cellular processes such as growth, proliferation, cell cycle progression, motility, adhesion, and angio-genesis, and appears to be constitutively active in a majority of renal cell carcinoma (RCC). The integrity of the pathway is clearly vital to the survival and growth of RCC as pharmacologic inhibition of PI3K or Akt induces apoptosis in RCC tumor cells and tumor regression in vivo. These observations suggest that the PI3K/Akt/ mTOR pathway may be an attractive target for drug development in the treatment of RCC. The recently demonstrated clinical efficacy of inhibitors of mTOR supports this hypothesis and demonstrates the relevance of this pathway in RCC. As Akt activates numerous kinases, transcription factors and other proteins associated with cell growth and survival in addition to mTOR, it is possible even greater clinical responses may be achieved with agents that disrupt the PI3K/Akt/mTOR pathway upstream of mTOR. Concurrent with the development of inhibitors of PI3K or Akt for clinical application are efforts to identify predictive biomarkers of response to agents targeting elements of the PI3K/Akt/mTOR pathway so as to develop more individualized patient selection strategies. In this chapter, we will review the molecular biology of the PI3K/Akt/mTOR pathway, its relevance to RCC, and its potential as a therapeutic target in RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4:257–62.

    Article  PubMed  CAS  Google Scholar 

  2. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15(23): 6541–51.

    PubMed  CAS  Google Scholar 

  3. Toker A, Newton AC. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 2000; 275(12):8271–4.

    Article  PubMed  CAS  Google Scholar 

  4. Persad S, Attwell S, Gray V, et al. Regulation of protein kinase B/Akt-serine 473 phosphoryla-tion by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 2001; 276(29): 27462–9.

    Article  PubMed  CAS  Google Scholar 

  5. Balendran A, Casamayor A, Deak M, et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 1999; 9(8): 393–404.

    Article  PubMed  CAS  Google Scholar 

  6. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/ PKB by the rictor-mTOR complex. Science 2005; 307(5712): 1098–101.

    Article  PubMed  CAS  Google Scholar 

  7. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of Akt kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 2005; 94: 29–86.

    Article  PubMed  CAS  Google Scholar 

  8. Lin F, Zhang PL, Yang XJ, et al. Morphoproteomic and molecular concomitants of an over-expressed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci 2006; 36(3): 283–93.

    PubMed  CAS  Google Scholar 

  9. Yuan ZQ, Sun M, Feldman RI, et al. Frequent activation of AKT2 and induction of apop-tosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000; 19(19): 2324–30.

    Article  PubMed  CAS  Google Scholar 

  10. Tanno S, Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res 2001; 61(2): 589–93.

    PubMed  CAS  Google Scholar 

  11. Liu Ax, Testa JR, Hamilton TC, Jove R, Nicosia SV, Cheng JQ. AKT2, a member of the protein kinase B family, is activated by growth factors, v-Ha-ras, and v-src through phos-phatidylinositol 3-kinase in human ovarian epithelial cancer cells. Cancer Res 1998; 58(14): 2973–7.

    PubMed  CAS  Google Scholar 

  12. Schlegel J, Piontek G, Mennel HD. Activation of the anti-apoptotic Akt/protein kinase B pathway in human malignant gliomas in vivo. Anticancer Res 2002; 22(5): 2837–40.

    PubMed  CAS  Google Scholar 

  13. Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigeniCity by antisense RNA. Proc Natl Acad Sci USA 1996; 93(8): 3636–41.

    Article  PubMed  CAS  Google Scholar 

  14. Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21(1): 99–102.

    Article  PubMed  CAS  Google Scholar 

  15. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305(5687): 1163–7.

    Article  PubMed  CAS  Google Scholar 

  16. Samuels Y, Wang Z, Bardelli A. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304(5670): 554.

    Article  PubMed  CAS  Google Scholar 

  17. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphosphatidylinositol 3,4,5-triphosphate. J Biol Chem 1998; 273: 13375–8.

    Article  PubMed  CAS  Google Scholar 

  18. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308): 1943–7.

    Article  PubMed  CAS  Google Scholar 

  19. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000; 100(4):387–90.

    Article  PubMed  CAS  Google Scholar 

  20. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3 kinase/Akt pathway. Proc Natl Acad Sci 1999; 96:4240–5.

    Article  PubMed  CAS  Google Scholar 

  21. Shi Y, Gera J, Hu L, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002; 62(17): 5027–34.

    PubMed  CAS  Google Scholar 

  22. DeGraffenreid LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB, Hidalgo M. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/ Akt pathway. Ann Oncol 2004; 15(10): 1510–6.

    Article  Google Scholar 

  23. Brenner W, Farber G, Herget T, Lehr HA, Hengstler JG, Thuroff JW. Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer 2002; 99(1): 53–7.

    Article  PubMed  CAS  Google Scholar 

  24. Velickovic M, Delahunt B, McIver B, Grebe SK. Intragenic PTEN/MMAC1 loss of het-erozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis. Mod Pathol 2002; 15(5): 479–85.

    Article  PubMed  Google Scholar 

  25. Kim HL, Seligson D, Liu X, Janzen N, Bui MH, Yu H, Shi T, Belledegrun AS, Horvath S, Figlin RA. Using tumor markers to predict survival of patients with metastatic renal cell carcinoma. J Urol 2005; 173(5):1496–1501.

    Article  PubMed  CAS  Google Scholar 

  26. Hara S, Oya M, Mizuno R, et al. Akt activation in renal cell carcinoma: contribution of a decreased PTEN expression and the induction of apoptosis by an Akt inhibitor. Ann Oncol 2005; 16(6): 928–33.

    Article  PubMed  CAS  Google Scholar 

  27. Nicholson KM, Anderson NG. The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 2002; 14: 381–95.

    Article  PubMed  CAS  Google Scholar 

  28. Horiguchi A, Oya M, Uchida A, Marumo K, Murai M. Elevated Akt activation and its impact on clinicopathological features of renal cell carcinoma. J Urol 2003; 169(2): 710–3.

    Article  PubMed  CAS  Google Scholar 

  29. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001; 61: 3986–97.

    PubMed  CAS  Google Scholar 

  30. Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002; 1:707–17.

    PubMed  CAS  Google Scholar 

  31. del Peso L, Gonzales G-M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphoryla-tion of BAD through the protein kinase Akt. Science 1997; 278(5338): 687–9.

    Article  PubMed  CAS  Google Scholar 

  32. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282(5392): 1318–21.

    Article  PubMed  CAS  Google Scholar 

  33. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 2001; 21(3): 893–901.

    Article  PubMed  CAS  Google Scholar 

  34. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98(20): 11598–603.

    Article  PubMed  CAS  Google Scholar 

  35. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96(6): 857–68.

    Article  PubMed  CAS  Google Scholar 

  36. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401(6748): 86–90.

    Article  PubMed  CAS  Google Scholar 

  37. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273(49): 32377–9.

    Article  PubMed  CAS  Google Scholar 

  38. Ferkey DM, Kimelman D. GSK-3: new thoughts on an old enzyme. Dev Biol 2000; 225(2): 471–9.

    Article  PubMed  CAS  Google Scholar 

  39. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12(22): 3499–511.

    Article  PubMed  CAS  Google Scholar 

  40. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol 2002; 4:648–57.

    Article  PubMed  CAS  Google Scholar 

  41. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15: 702–13.

    Article  PubMed  CAS  Google Scholar 

  42. Wullschleger S, Loewith R, Hall MN. TOR-signaling in growth and metabolism. Cell 2006; 124: 471–84.

    Article  PubMed  CAS  Google Scholar 

  43. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926–45.

    Article  PubMed  CAS  Google Scholar 

  44. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–90.

    Article  PubMed  CAS  Google Scholar 

  45. Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–9.

    Article  PubMed  CAS  Google Scholar 

  46. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

    Google Scholar 

  47. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathway in cells. Proc Natl Acad Sci USA 2005; 102: 8204–9.

    Article  PubMed  CAS  Google Scholar 

  48. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional activation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179–93.

    Article  PubMed  CAS  Google Scholar 

  49. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate tuberous sclerosis suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci 2004; 101: 13489–94.

    Article  PubMed  CAS  Google Scholar 

  50. Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002; 22(20): 7004–14.

    Article  PubMed  CAS  Google Scholar 

  51. Turner KJ, Moore JW, Jones A, et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 2002; 62(10): 2957–61.

    PubMed  CAS  Google Scholar 

  52. Iliopoulos O, Kibel A, Gray S, Kaelin WG Jr. Tumour suppression by the human von Hippel— Lindau gene product. Nat Med 1995; 1(8): 822–6.

    Article  PubMed  CAS  Google Scholar 

  53. de Paulsen N, Brychzy A, Fournier, et al. Role of transforming growth factor-alpha in von Hippel—Lindau (VHL) (−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 2000; 98(4): 1387–92.

    Article  Google Scholar 

  54. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1 mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 3995–4004.

    Google Scholar 

  55. Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 2006; 12(1):122–7.

    Article  PubMed  CAS  Google Scholar 

  56. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200–5.

    Article  PubMed  CAS  Google Scholar 

  57. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004; 14: 1650–6.

    Article  PubMed  CAS  Google Scholar 

  58. Chiang CG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 2005; 280: 25485–90.

    Article  PubMed  CAS  Google Scholar 

  59. Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000; 19: 6680–6.

    Article  PubMed  CAS  Google Scholar 

  60. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004; 22(5): 909–18.

    Article  PubMed  CAS  Google Scholar 

  61. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 2002; 20(1): 289–96.

    Article  PubMed  CAS  Google Scholar 

  62. Smith JW, Ko YJ, Dutcher J, et al. Update of a phase 1 study of intravenous CCI-779 given in combination with interferon-α to patients with advanced renal cell carcinoma. ASCO Proceedings 2004; abstract 4513.

    Google Scholar 

  63. Hudes G, Carducci M, Tomczak P, et al. A phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferon-alpha (IFN) or the combination of TEMSR + IFN in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma (adv RCC). J Clin Oncol 2006 ASCO Annual Meeting Proceedings; 24 (18S): LBA4.

    Google Scholar 

  64. Amato RJ, Misellati A, Khan M, Chiang S. A phase II trial of RAD001 in patients (Pts) with metastatic renal cell carcinoma (MRCC). J Clin Oncol 2006 ASCO Annual Meeting Proceedings; 24 (18S): 4530.

    Google Scholar 

  65. Atkins M, Regan M, McDermott D, et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res 2005; 11(10): 3714–21.

    Article  PubMed  CAS  Google Scholar 

  66. Cho D, Signoretti S, Regan M, et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Oncol, 2007; 5(6): 379–385.

    Article  CAS  Google Scholar 

  67. Dutcher J, Szczylik C, Tannir N, et al. Correlation of survival with tumor histology, age, and prognostic-risk group for previously untreated patients with advanced renal cell carcinoma (adv RCC) receiving temsirolimus (TEMSR) or interferon alpha (IFN). J Clin Oncol 2007 ASCO Annual Meeting Proceedings Part 1. Vol 25, No. 185:2007 (oldrad 5033).

    Google Scholar 

  68. Sipula IJ, Brown NF, Perdomo G. Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation. Metabolism 2006; 55(12): 1637–44.

    Article  PubMed  CAS  Google Scholar 

  69. Sankhala KK, Chawla SP, Iagaru A, et al. Early response evaluation of therapy with AP23573 (an mTOR inhibitor) in sarcoma using [18F]2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) scan. J Clin Oncol, 2005 ASCO Annual Meeting Proceedings; 23(16S): 9028.

    Google Scholar 

  70. Sourbier C, Linder V, Lang H, Agouni A, Schordan E, Danilan S, Rothhut S, Jacqmin D, Helwig JJ, Massfelder T. The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res 2006; 66(10): 5130–42.

    Article  PubMed  CAS  Google Scholar 

  71. Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, Byzova TV. Akt1 regulates pathological angiogenesis, vascular maturation, and permeability in vivo. Nat Med 2005; 11(11): 1188–96.

    Article  PubMed  CAS  Google Scholar 

  72. Granville C, Memmont RM, Gills JJ, Dennis PA. Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006; 12(3): 679–89.

    Article  PubMed  CAS  Google Scholar 

  73. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2003; 2(11): 1093–103.

    PubMed  CAS  Google Scholar 

  74. Crul M, Rosing H, de Klerk GJ, et al. Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 2002; 38(12):1615–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cho, D., Mier, J.W., Atkins, M.B. (2009). PI3K/Akt/mTOR Pathway: A Growth and Proliferation Pathway. In: Bukowski, R.M., Figlin, R.A., Motzer, R.J. (eds) Renal Cell Carcinoma. Humana Press. https://doi.org/10.1007/978-1-59745-332-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-332-5_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-737-2

  • Online ISBN: 978-1-59745-332-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics