Skip to main content

The DNA Damage Response, DNA Repair, and AML

  • Chapter
Acute Myelogenous Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1219 Accesses

Abstract

Acute myeloid leukemia (AML)—especially when the condition arises out of a pre-existing melodysplastic syndrome or follows prior therapy with alkylating agents or ionizing radiation—is frequently associated with complex bone marrow karyotypes, including multiple numeric chromosomal abnormalities, diminutive marker chromosomes of uncertain derivation, and interstitial gains and losses of genetic material. In addition, a variety of inheritied syndromes with DNA repair defects convey a high risk of myelodysplasia and leukemia. Together, these pieces of evidence suggest that a fundamental defect in the DNA damage recognition and response pathways is an important component of leukemogenesis. Here, the basic DNA damage recognition and repair pathways are reviewed and data on known DNA repair abnormalities in acute leukemia and myelodysplastic syndrome are summarized. In addition, inherited syndromes with a DNA repair defect that predisposes to leukemia are outlined, including Fanconi anemia, Bloom syndrome, ataxia-telangiectasia and ataxia-telangiectasia-like disorder, Nijmegen breakage syndrome, Seckel syndrome, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanco JG, Edick MJ, Hancock ML, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002;12(8):605–611.

    Article  CAS  PubMed  Google Scholar 

  2. Collado M, Barragan E, Bolufer P, et al. Lack of association of CYP3A4-V polymorphism with the risk of treatment-related leukemia. Leuk Res 2005;29(5):595–597.

    Article  CAS  PubMed  Google Scholar 

  3. Naoe T, Takeyama K, Yokozawa T, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res 2000;6(10):4091–4095.

    CAS  PubMed  Google Scholar 

  4. Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci USA 1998;95(22):13176–13181.

    Article  CAS  PubMed  Google Scholar 

  5. Weischenfeldt J, Lykke-Andersen J, Porse B. Messenger RNA surveillance: neutralizing natural nonsense. Curr Biol 2005;15(14):R559–R562.

    Article  CAS  PubMed  Google Scholar 

  6. Conti E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 2005;17(3):316–325.

    Article  CAS  PubMed  Google Scholar 

  7. Mansfield SG, Chao H, Walsh CE. RNA repair using spliceosome-mediated RNA trans-splicing. Trends Mol Med 2004;10(6):263–268.

    Article  CAS  PubMed  Google Scholar 

  8. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005;6(5):386–398.

    Article  CAS  PubMed  Google Scholar 

  9. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411(6835):366–374.

    Article  CAS  PubMed  Google Scholar 

  10. Lindahl T, Wood RD. Quality control by DNA repair. Science 1999;286(5446):1897–1905.

    Article  CAS  PubMed  Google Scholar 

  11. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  12. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat Res 2005;577(1–2):275–283.

    CAS  PubMed  Google Scholar 

  13. Bielas JH, Loeb LA. Mutator phenotype in cancer: timing and perspectives. Environ Mol Mutagen 2005;45(2–3):206–213.

    Article  CAS  PubMed  Google Scholar 

  14. Kalogeraki VS, Tornaletti S, Hanawalt PC. Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 2003;278(21):19,558–19,564.

    Article  CAS  PubMed  Google Scholar 

  15. Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol 2005;23(2):276–292.

    Article  PubMed  Google Scholar 

  16. Das-Gupta EP, Seedhouse CH, Russell NH. DNA repair mechanisms and acute myeloblastic leukemia. Hematol Oncol 2000;18(3):99–110.

    Article  CAS  PubMed  Google Scholar 

  17. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001;411(6835):342–348.

    Article  CAS  PubMed  Google Scholar 

  18. Ford JM, Hanawalt PC. Role of DNA excision repair gene defects in the etiology of cancer. Curr Top Microbiol Immunol 1997;221:47–70.

    CAS  PubMed  Google Scholar 

  19. O’Driscoll M, Jeggo P. Immunological disorders and DNA repair. Mutat Res 2002;509(1–2):109–126.

    PubMed  Google Scholar 

  20. Storb U, Peters A, Kim N, et al. Molecular aspects of somatic hypermutation of immunoglobulin genes. Cold Spring Harb Symp Quant Biol 1999;64:227–234.

    Article  CAS  PubMed  Google Scholar 

  21. Lehmann AR. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev 2001;15(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  22. Hoogervorst EM, van Steeg H, de Vries A. Nucleotide excision repair-and p53-deficient mouse models in cancer research. Mutat Res 2005;574(1–2):3–21.

    CAS  PubMed  Google Scholar 

  23. Ishikawa T, Zhang SS, Qin X, et al. DNA repair and cancer: lessons from mutant mouse models. Cancer Sci 2004;95(2):112–117.

    Article  CAS  PubMed  Google Scholar 

  24. Wilson DM, 3rd, Thompson LH. Life without DNA repair. Proc Natl Acad Sci USA 1997;94(24):12,754–12,757.

    Article  CAS  PubMed  Google Scholar 

  25. Loeb LA. Cancer cells exhibit a mutator phenotype. Adv Cancer Res 1998;72:25–56.

    Article  CAS  PubMed  Google Scholar 

  26. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis 2000;21(3):379–385.

    Article  CAS  PubMed  Google Scholar 

  27. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991;51(12):3075–3079.

    CAS  PubMed  Google Scholar 

  28. Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 2003;21(6):1174–1179.

    Article  CAS  PubMed  Google Scholar 

  29. Sampson JR, Jones S, Dolwani S, Cheadle JP. Mut YH (MYH) and colorectal cancer. Biochem Soc Trans 2005;33(pt 4):679–683.

    CAS  PubMed  Google Scholar 

  30. Rowley PT. Inherited susceptibility to colorectal cancer. Annu Rev Med 2005;56:539–554.

    Article  CAS  PubMed  Google Scholar 

  31. Kramer A, Neben K, Ho AD. Centrosome aberrations in hematological malignancies. Cell Biol Int 2005;29(5):375–383.

    Article  PubMed  CAS  Google Scholar 

  32. Ohyashiki JH, Ohyashiki K, Fujimura T, et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res 1994;54(13):3557–3560.

    CAS  PubMed  Google Scholar 

  33. Steensma DP, List AF. Genetic testing in the myelodysplastic syndromes: molecular insights into hematologic diversity. Mayo Clin Proc 2005;80(5):681–698.

    Article  CAS  PubMed  Google Scholar 

  34. Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer 2005;43(3):227–238.

    Article  CAS  PubMed  Google Scholar 

  35. Yamaizumi M, Sugano T. U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 1994;9(10):2775–2784.

    CAS  PubMed  Google Scholar 

  36. Friedberg EC, Wagner R, Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 2002;296(5573):1627–1630.

    Article  CAS  PubMed  Google Scholar 

  37. Kunkel TA, Pavlov YI, Bebenek K. Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst) 2003;2(2):135–149.

    Article  CAS  Google Scholar 

  38. Kunkel TA. Considering the cancer consequences of altered DNA polymerase function. Cancer Cell 2003;3(2):105–110.

    Article  CAS  PubMed  Google Scholar 

  39. Shcherbakova PV, Bebenek K, Kunkel TA. Functions of eukaryotic DNA polymerases. Sci Aging Knowledge Environ 2003;2003(8):RE3.

    Article  PubMed  Google Scholar 

  40. Goodman MF, Tippin B. Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev 2000;10(2):162–168.

    Article  CAS  PubMed  Google Scholar 

  41. Masutani C, Kusumoto R, Yamada A, et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 1999;399(6737):700–704.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson RE, Kondratick CM, Prakash S, Prakash L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 1999;285(5425):263–265.

    Article  CAS  PubMed  Google Scholar 

  43. Vidakovic M, Poznanovic G, Bode J. DNA break repair: refined rules of an already complicated game. Biochem Cell Biol 2005;83(3):365–373.

    Article  CAS  PubMed  Google Scholar 

  44. Kaina B, Christmann M. DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 2002;40(8):354–367.

    CAS  PubMed  Google Scholar 

  45. Gerson SL, Trey JE. Modulation of nitrosourea resistance in myeloid leukemias. Blood 1988;71(5):1487–1494.

    CAS  PubMed  Google Scholar 

  46. Kohonen-Corish MR, Daniel JJ, Chan C, et al. Low microsatellite instability is associated with poor prognosis in stage C colon cancer. J Clin Oncol 2005;23(10):2318–2324.

    Article  CAS  PubMed  Google Scholar 

  47. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  48. Ford JM. DNA damage response pathways and cancer. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG, eds. Clinical Oncology (3rd edition). Philadelphia: Churchill Livingstone; 2004:191–205.

    Google Scholar 

  49. Seeberg E, Eide L, Bjoras M. The base excision repair pathway. Trends Biochem Sci 1995;20(10):391–397.

    Article  CAS  PubMed  Google Scholar 

  50. Batty DP, Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene 2000;241(2):193–204.

    Article  CAS  PubMed  Google Scholar 

  51. de Laat WL, Jaspers NG, Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev 1999;13(7):768–785.

    Article  PubMed  Google Scholar 

  52. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 1999;9(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  53. Kunkel TA, Erie DA. DNA Mismatch Repair. Annu Rev Biochem 2004.

    Google Scholar 

  54. Klanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001;27(3):247–254.

    Article  CAS  Google Scholar 

  55. Weterings E, van Gent DC. The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst) 2004;3(11):1425–1435.

    Article  CAS  Google Scholar 

  56. Helleday T. Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 2003;532(1–2):103–115.

    CAS  PubMed  Google Scholar 

  57. Dudas A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res 2004;566(2):131–167.

    Article  CAS  PubMed  Google Scholar 

  58. Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998;17(18):5497–5508.

    Article  CAS  PubMed  Google Scholar 

  59. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23(5):687–696.

    Article  CAS  PubMed  Google Scholar 

  60. Bradbury JM, Jackson SP. The complex matter of DNA double-strand break detection. Biochem Soc Trans 2003;31(pt 1):40–44.

    CAS  PubMed  Google Scholar 

  61. Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003;4(5):361–372.

    Article  CAS  PubMed  Google Scholar 

  62. van Hoffen A, Balajee AS, van Zeeland AA, Mullenders LH. Nucleotide excision repair and its interplay with transcription. Toxicology 2003;193(1–2):79–90.

    PubMed  Google Scholar 

  63. Yang LY, Jiang H, Rangel KM. RNA polymerase II stalled on a DNA template during transcription elongation is ubiquitinated and the ubiquitination facilitates displacement of the elongation complex. Int J Oncol 2003;22(3):683–689.

    CAS  PubMed  Google Scholar 

  64. van den Boom V, Jaspers NG, Vermeulen W. When machines get stuck—obstructed RNA polymerase II: displacement, degradation or suicide. Bioessays 2002;24(9):780–784.

    Article  PubMed  CAS  Google Scholar 

  65. Lisby M, Rothstein R. DNA damage checkpoint and repair centers. Curr Opin Cell Biol 2004;16(3): 328–334.

    Article  CAS  PubMed  Google Scholar 

  66. Shiloh Y. ATM: sounding the double-strand break alarm. Cold Spring Harb Symp Quant Biol 2000;65:527–533.

    Article  CAS  PubMed  Google Scholar 

  67. Shiloh Y. ATM and related protein kinases safeguarding genome integrity. Nat Rev Cancer 2003;3(3):155–168.

    Article  CAS  PubMed  Google Scholar 

  68. Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001;8(11):1052–1065.

    Article  CAS  PubMed  Google Scholar 

  69. Jhanwar-Uniyal M. BRCA1 in cancer, cell cycle and genomic stability. Front Biosci 2003;8:s1107–1117.

    Article  Google Scholar 

  70. Janus F, Albrechtsen N, Dornreiter I, Wiesmuller L, Grosse F, Deppert W. The dual role model for p53 in maintaining genomic integrity. Cell Mol Life Sci 1999;55(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  71. Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 2000;60(24):6788–6793.

    CAS  PubMed  Google Scholar 

  72. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432(7015):316–323.

    Article  CAS  PubMed  Google Scholar 

  73. Sorensen CS, Hansen LT, Dziegielewski J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 2005;7(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  74. Connelly JC, Leach DR. Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem Sci 2002;27(8):410–418.

    Article  CAS  PubMed  Google Scholar 

  75. Falck J, coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005;434(7033):605–611.

    Article  CAS  PubMed  Google Scholar 

  76. Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli, V, Dogliotti E. The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie 2003;85(11):1053–1071.

    Article  CAS  PubMed  Google Scholar 

  77. Cadet J, Berger M, Douki T, Ravanat JL. Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 1997;131:1–87.

    CAS  PubMed  Google Scholar 

  78. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–715.

    Article  CAS  PubMed  Google Scholar 

  79. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408(6809):239–247.

    Article  CAS  PubMed  Google Scholar 

  80. Dizdaroglu M. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 2005; 591(1–2):45–59.

    CAS  PubMed  Google Scholar 

  81. Whitehouse CJ, Taylor RM, Thistlethwaite A, et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 2001;104(1):107–117.

    Article  CAS  PubMed  Google Scholar 

  82. Liu Y, Beard WA, Shock DD, Prasad R, Hou EW, Wilson SH. DNA polymerase beta and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair. J Biol Chem 2005; 280(5):3665–3674.

    Article  CAS  PubMed  Google Scholar 

  83. Seo YR, Fishel ML, Amundson S, Kelley MR, Smith ML. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 2002;21(5):731–737.

    Article  CAS  PubMed  Google Scholar 

  84. Smith ML, Seo YR. p53 regulation of DNA excision repair pathways. Mutagenesis 2002;17(2):149–156.

    Article  CAS  PubMed  Google Scholar 

  85. Seo YR, Jung HJ. The potential roles of p53 tumor suppressor in nucleotide excision repair (NER) and base excision repair (BER). Exp Mol Med 2004;36(6):505–509.

    CAS  PubMed  Google Scholar 

  86. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1, is essentialfor early embryonic development in mice. Proc Natl Acad Sci USA 1996;93(17):8919–8923.

    Article  CAS  PubMed  Google Scholar 

  87. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994;265(5168):103–106.

    Article  CAS  PubMed  Google Scholar 

  88. Al-Tassan N, Chmiel NH, Maynard J, et al. Inherited variants of MYH associated with somatic G:C>−>T:A mutations in colorectal tumors. Nat Genet 2002;30(2):227–232.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Miao X, Liang G, et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res 2005;65(3):722–726.

    Article  CAS  PubMed  Google Scholar 

  90. Hutsell SQ, Sancar A. Nucleotide excision repair, oxidative damage, DNA sequence polymorphisms, and cancer treatment. Clin Cancer Res 2005;11(4):1355–1357.

    Article  CAS  PubMed  Google Scholar 

  91. Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 2001;15(5):507–521.

    Article  CAS  PubMed  Google Scholar 

  92. Janicijevic A, Sugasawa K, Shimizu Y, et al. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst) 2003;2(3):325–336.

    Article  CAS  Google Scholar 

  93. Buschta-Hedayat N, Buterin T, Hess MT, Missura M, Naegeli H. Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA. Proc Natl Acad Sci USA 1999;96(11):6090–6095.

    Article  CAS  PubMed  Google Scholar 

  94. Liu J, Akoulitchev S, Weber A, et al. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 2001;104(3):353–363.

    Article  CAS  PubMed  Google Scholar 

  95. Houtsmuller AB, Rademakers S, Nigg AL, Hoogstraten D, Hoeijmakers JH, Vermeulen W. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 1999;284(5416):958–961.

    Article  CAS  PubMed  Google Scholar 

  96. Ford JM. Regulation of DNA damage recognition and nucleotide excision repair: Another role for p53. Mutat Res 2005;577(1–2):195–202.

    CAS  PubMed  Google Scholar 

  97. Mellon I. Transcription-coupled repair: A complex affair. Mutat Res 2005;577(1–2):155–161.

    CAS  PubMed  Google Scholar 

  98. Tornaletti S, Hanawalt PC. Effect of DNA lesions on transcription elongation. Biochimie 1999;81(1–2):139–146.

    Article  CAS  PubMed  Google Scholar 

  99. Le Page F, Kwoh EE, Avrutskaya A, et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 2000;101(2):159–171.

    Article  PubMed  Google Scholar 

  100. Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003;85(11):1101–1111.

    Article  CAS  PubMed  Google Scholar 

  101. Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 2001;44(6):891–920; quiz 1–4.

    Article  CAS  PubMed  Google Scholar 

  102. Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R. Mouse models for colorectal cancer. Oncogene 1999;18(38):5325–5333.

    Article  CAS  PubMed  Google Scholar 

  103. Harfe BD, Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet 2000;34: 359–399.

    Article  CAS  PubMed  Google Scholar 

  104. Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 2000;407(6805):711–717.

    Article  CAS  PubMed  Google Scholar 

  105. Jiricny J, Nystrom-Lahti M. Mismatch repair defects in cancer. Curr Opin Genet Dev 2000;10(2):157–161.

    Article  CAS  PubMed  Google Scholar 

  106. Jiricny J. Eukaryotic mismatch repair: an update. Mutat Res 1998;409(3):107–121.

    CAS  PubMed  Google Scholar 

  107. Jiricny J. Replication errors: cha(lle)nging the genome. EMBO J 1998;17(22):6427–6436.

    Article  CAS  PubMed  Google Scholar 

  108. Olipitz W, Tilz GP, Beham-Schmid C, Eibinger C, Kerzina P, Sill H. Microsatellite analysis in acute myeloid leukaemia evolving from myelodysplastic syndrome. Br J Haematol 2001;112(1):248–249.

    Article  CAS  PubMed  Google Scholar 

  109. Ribeiro EM, Rodriguez JM, Coser VM, et al. Microsatellite instability and cytogenetic survey in myeloid leukemias. Braz J Med Biol Res 2002;35(2):153–159.

    CAS  PubMed  Google Scholar 

  110. Rimsza LM, Kopecky KJ, Ruschulte J, et al. Microsatellite instability is not a defining genetic feature of acute myeloid leukemogenesis in adults: results of a retrospective study of 132 patients and review of the literature. Leukemia 2000;14(6):1044–1051.

    Article  CAS  PubMed  Google Scholar 

  111. Sill H, Goldman JM, Cross NC. Rarity of microsatellite alterations in acute myeloid leukaemia. Br J Cancer 1996;74(2):255–257.

    CAS  PubMed  Google Scholar 

  112. Tasak T, Lee S, Spira S, et al. Infrequent microsatellite instability during the evolution of myelodysplastic syndrome to acute myelocytic leukemia. Leuk Res 1996;20(2):113–117.

    Article  CAS  PubMed  Google Scholar 

  113. Nomdedeu JF, Perea G, Estivill C, et al. Microsatellite instability is not an uncommon finding in adult de novo acute myeloid leukemia. Ann Hematol 2005;84(6):368–375.

    Article  CAS  PubMed  Google Scholar 

  114. Das-Gupta EP, Seedhouse CH, Russell NH. Microsatellite instability occurs in defined subsets of patients with acute myeloblastic leukaemia. Br J Haematol 2001;114(2):307–312.

    Article  CAS  PubMed  Google Scholar 

  115. Sheikhha MH, Tobal K, Liu Yin JA. High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 2002;117(2):359–365.

    Article  CAS  PubMed  Google Scholar 

  116. Casorelli I, Offman J, Mele L, et al. Drug treatment in the development of mismatch repair defective acute leukemia and myelodysplastic syndrome. DNA Repair (Amst) 2003;2(5):547–559.

    Article  CAS  Google Scholar 

  117. Offman J, Opelz G, Doehler B, et al. Defective DNA mismatch repair in acute myeloid leukemia/myelodys-plastic syndrome after organ transplantation. Blood 2004;104(3):822–828.

    Article  CAS  PubMed  Google Scholar 

  118. Ben-Yehuda D, Krichevsky S, Caspi O, et al. Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 1996;88(11):4296–4303.

    CAS  PubMed  Google Scholar 

  119. Zhu YM, Das-Gupta EP, Russell NH. Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 1999;94(2):733–740.

    CAS  PubMed  Google Scholar 

  120. Scott S, Kimura T, Ichinohasama R, et al. Microsatellite mutations of transforming growth factor-beta receptor type II and caspase-5 occur in human precursor T-cell lymphoblastic lymphomas/leukemias in vivo but are not associated with hMSH2 or hMLH1 promoter methylation. Leuk Res 2003;27(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  121. Matsushita M, Takeuchi S, Yang Y, et al. Methylation of the MLH1 gene in hematological malignancies. Oncol Rep 2005;14(1):191–194.

    CAS  PubMed  Google Scholar 

  122. Meijerink JP, Mensink EJ, Wang K, et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 1998;91(8):2991–2997.

    CAS  PubMed  Google Scholar 

  123. Komatsu N, Takeuchi S, Ikezoe T, et al. Mutations of the E2F4 gene in hematological malignancies having microsatellite instability. Blood 2000;95(4):1509–1510.

    CAS  PubMed  Google Scholar 

  124. Karran P, Offman J, Bignami M. Human mismatch repair, drug-induced DNA damage, and secondary cancer. Biochimie 2003;85(11):1149–1160.

    Article  CAS  PubMed  Google Scholar 

  125. Swann PF, Waters TR, Moulton DC, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 1996;273(5278):1109–1111.

    Article  CAS  PubMed  Google Scholar 

  126. Aebi S, Fink D, Gordon R, et al. Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin Cancer Res 1997;3(10):1763–1767.

    CAS  PubMed  Google Scholar 

  127. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000;10(15):886–895.

    Article  CAS  PubMed  Google Scholar 

  128. Petrini JH. The Mre11 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 2000;12(3):293–296.

    Article  CAS  PubMed  Google Scholar 

  129. Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett 2005;219(2):125–135.

    Article  CAS  PubMed  Google Scholar 

  130. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 2000;275(31):23,899–23,8903.

    Article  CAS  PubMed  Google Scholar 

  131. Ting NS, Lee WH. The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst) 2004;3(8–9):935–944.

    Article  CAS  Google Scholar 

  132. Davies AA, Masson JY, McIlwraith MJ, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 2001;7(2):273–282.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang J, Willers H, Feng Z, et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004;24(2):708–718.

    Article  CAS  PubMed  Google Scholar 

  134. Unal E, Arbel-Eden A, Sattler U, et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 2004;16(6):991–1002.

    Article  PubMed  Google Scholar 

  135. Tischkowitz M, Dokal I. Fandoni anaemia and leukaemia—clinical and molecular aspects. Br J Haematol 2004;126(2):176–191.

    Article  CAS  PubMed  Google Scholar 

  136. van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2001;2(3):196–206.

    Article  PubMed  Google Scholar 

  137. Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 2003;426(6968):870–874.

    Article  CAS  PubMed  Google Scholar 

  138. Johnson FB, Lombard DB, Neff NF, et al. Association of the Bloom syndrome protein with topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res 2000;60(5):1162–1167.

    CAS  PubMed  Google Scholar 

  139. Bohr VA, Sander M, Kraemer KH. Rare diseases provide rare insights into DNA repair pathways, TFIIH, aging and cancer center. DNA Repair (Amst) 2005;4(2):293–302.

    Article  CAS  Google Scholar 

  140. van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 2000;1:409–459.

    Article  PubMed  Google Scholar 

  141. Gennery AR, Cant AJ, Jeggo PA. Immunodeficiency associated with DNA repair defects. Clin Exp Immunol 2000;121(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  142. Weemaes CM, Smeets DF, van der Burgt CJ. Nijmegen Breakage syndrome: a progress report. Int J Radiat Biol 1994;66(6 Suppl):S185–188.

    Article  Google Scholar 

  143. Olivier M, Goldgar DE, Sodha N, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 2003;63(20):6643–6650.

    CAS  PubMed  Google Scholar 

  144. Stankovic T, Kidd AM, Sutcliffe A, et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 1998;62(2):334–345.

    Article  CAS  PubMed  Google Scholar 

  145. Gruber SB, Ellis NA, Scott KK, et al. BLM heterozygosity and the risk of colorectal cancer. Science 2002;297(5589):2013.

    Article  CAS  PubMed  Google Scholar 

  146. Howell RT. Sister chromatid exchange evaluation as an aid to the diagnosis and exclusion of Fanconi’s anaemia by induced chromosome damage analysis. J Med Genet 1991;28(7):468–471.

    Article  CAS  PubMed  Google Scholar 

  147. Sieff CA, Nisbet-Brown E, Nathan DG. Congenital bone marrow failure syndromes. Br J Haematol 2000;111(1):30–42.

    Article  CAS  PubMed  Google Scholar 

  148. Kutler DI, Singh B, Satagopan J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003;101(4):1249–1256.

    Article  CAS  PubMed  Google Scholar 

  149. Schroeder TM, Tilgen D, Kruger J, Vogel F. Formal genetics of Fanconi’s anemia. Hum Genet 1976;32(3):257–288.

    Article  CAS  PubMed  Google Scholar 

  150. Swift M. Fanconi’s anaemia in the genetics of neoplasia. Nature 1971;230(5293):370–373.

    Article  CAS  PubMed  Google Scholar 

  151. Fanconi G. Familiaere infantile perniziosaartige Anaemie (pernizioeses Blutbild und Konstitution). Jahrbuch Kinderheil 1927;117:257–280.

    Google Scholar 

  152. Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer 2003;97(2):425–440.

    Article  PubMed  Google Scholar 

  153. Verlander PC, Kaporis A, Liu Q, Zhang Q, Seligsohn U, Auerbach AD. Carrier frequency of the IVS4 + 4 A→T mutation of the Fanconi anemia gene FAC in the Ashkenazi Jewish population. Blood 1995;86(11):4034–4038.

    CAS  PubMed  Google Scholar 

  154. Rosendorff J, Bernstein R, Macdougall L, Jenkins T. Fanconi anemia: another disease of unusually high prevalence in the Afrikaans population of South Africa. Am J Med Genet 1987;27(4):793–797.

    Article  CAS  PubMed  Google Scholar 

  155. Morgan NV, Essop F, Demuth I, et al. A common Fanconi anemia mutation in black populations of sub-Saharan Africa. Blood 2005;105(9):3542–3544.

    Article  CAS  PubMed  Google Scholar 

  156. Callen E, Casado JA, Tischkowitz MD, et al. A common founder mutation in FANCA underlies the world’s highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood 2005;105(5):1946–1949.

    Article  CAS  PubMed  Google Scholar 

  157. Rosenberg PS, Huang Y, Alter BP. Individualized risks of first adverse events in patients with Fanconi anemia. Blood 2004;104(2):350–355.

    Article  CAS  PubMed  Google Scholar 

  158. Giampietro PF, Verlander PC, Davis JG, Auerbach AD. Diagnosis of Fanconi anemia in patients without congenital malformations: an international Fanconi Anemia Registry Study. Am J Med Genet 1997;68(1):58–61.

    Article  CAS  PubMed  Google Scholar 

  159. Cassinat B, Guardiola P, Chevret S, et al. Constitutive elevation of serum alpha-fetoprotein in Fanconi anemia. Blood 2000;96(3):859–863.

    CAS  PubMed  Google Scholar 

  160. Rosenberg PS, Greene MH, Alter BP. cancer incidence in persons with Fanconi anemia. Blood 2003;101(3):822–826.

    Article  CAS  PubMed  Google Scholar 

  161. Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 1994;84(5):1650–1655.

    CAS  PubMed  Google Scholar 

  162. Tonnies H, Huber S, Kuhl JS, Gerlach A, Ebell W, Neitzel H. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood 2003;101(10):3872–3874.

    Article  CAS  PubMed  Google Scholar 

  163. Kutler DI, Auerbach AD, Satagopan J, et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch Otolaryngol Head Neck Surg 2003;129(1):106–112.

    PubMed  Google Scholar 

  164. Lowy DR, Gillison ML. A new link between Fanconi anemia and human papillomavirus-associated malignancies. J Natl Cancer Inst 2003;95(22):1648–1650.

    CAS  PubMed  Google Scholar 

  165. Auerbach AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol 1993;21(6):731–733.

    CAS  PubMed  Google Scholar 

  166. Dokal I, Chase A, Morgan NV, et al. Positive diepoxybutane test in only one of two brothers found to be compound heterozygotes for Fanconi’s anaemia complementation group C mutations. Br J Haematol 1996;93(4):813–816.

    Article  CAS  PubMed  Google Scholar 

  167. Seyschab H, Friedl R, Sun Y, et al. Comparative evaluation of diepoxybutane sensitivity and cell cycle blockage in the diagnosis of Fanconi anemia. Blood 1995;85(8):2233–2237.

    CAS  PubMed  Google Scholar 

  168. Meetei AR, Levitus M, Xue Y, et al. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet 2004;36(11):1219–1224.

    Article  CAS  PubMed  Google Scholar 

  169. Levitus M, Rooimans MA, Steltenpool J, et al. Heterogeneity in Fanconi anemia: evidence for 2 new genetic subtypes. Blood 2004;103(7):2498–2503.

    Article  CAS  PubMed  Google Scholar 

  170. Joenje H, Levitus M, Waisfisz Q, et al. Complementation analysis in Fanconi anemia: assignment of the reference FA-H patient to group A. Am J Hum Genet 2000;67(3):759–762.

    Article  CAS  PubMed  Google Scholar 

  171. Positional cloning of the Fanconi anaemia group A gene. The Fanconi anaemia/breast cancer consortium. Nat Genet 1996;14(3):324–328.

    Google Scholar 

  172. Lo Ten Foe JR, Rooimans MA, Bosnoyan-Collins L, et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet 1996;14(3):320–323.

    Article  CAS  PubMed  Google Scholar 

  173. Fei P, Yin J, Wang W. New advances in the DNA damage response network of Fanconi anemia and BRCA proteins. FAAP95 replaces BRCA2 as the true FANCB protein. Cell Cycle 2005;4(1):80–86.

    CAS  PubMed  Google Scholar 

  174. Hussain S, Wilson JB, Medhurst AL, et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 2004;13(12):1241–1248.

    Article  CAS  PubMed  Google Scholar 

  175. Nakanishi K, Yang YG, Pierce AJ, et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 2005;102(4):110–1115.

    Article  CAS  Google Scholar 

  176. Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004;23(5):1178–1187.

    Article  CAS  PubMed  Google Scholar 

  177. Matsuura S, Kobayashi J, Tauchi H, Komatsu K. Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex. Adv Biophys 2004;38:65–80.

    Article  CAS  Google Scholar 

  178. Leteurtre F, Li X, Guardiola P, et al. Accelerated telomere shortening and telomerase activation in Fanconi’s anaemia. Br J Haematol 1999;105(4):883–893.

    Article  CAS  PubMed  Google Scholar 

  179. Bloom D. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. AMA Am J Dis Child 1954;88(6):754–758.

    CAS  PubMed  Google Scholar 

  180. German J, Archibald R, Bloom D. Chromosomal Breakage in a Rare and Probably Genetically Determined Syndrome of Man. Science 1965;148:506–507.

    Article  CAS  PubMed  Google Scholar 

  181. Ellis NA, Ciocci S, Proytcheva M, Lennon D, Groden J, German J. The Ashkenazic Jewish Bloom syndrome mutation blmAsh is present in non-Jewish Americans of Spanish ancestry. Am J Hum Genet 1998;63(6):1685–1693.

    Article  CAS  PubMed  Google Scholar 

  182. German J, Bloom D, Passarge E. Bloom’s syndrome XI. Progress report for 1983. Clin Genet 1984;25(2):166–174.

    CAS  PubMed  Google Scholar 

  183. Peleg L, Pesso R, Goldman B, et al. Bloom syndrome and Fanconi’s anemia: rate and ethnic origin of mutation carriers in Israel. Isr Med Assoc J 2002;4(2):95–97.

    PubMed  Google Scholar 

  184. German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 1997;93(1):100–106.

    Article  CAS  PubMed  Google Scholar 

  185. Ellis NA, German J. Molecular genetics of Bloom’s syndrome. Hum Mol Genet 1996;5 Spec No:1457–1463.

    CAS  PubMed  Google Scholar 

  186. Hickson ID. RecQ helicases: caretakers of the genome. Nat Rev Cancer 2003;3(3):169–178.

    Article  CAS  PubMed  Google Scholar 

  187. Wu L, Davies SL, North PS, et al. The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem 2000;275(3):9636–9644.

    Article  CAS  PubMed  Google Scholar 

  188. Wu L, Lung Chan K, Ralf C, et al. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. EMBO J 2005;24(14):2679–2687.

    Article  CAS  PubMed  Google Scholar 

  189. Mankouri HW, Hickson ID. Understanding the roles of RecQ helicases in the maintenance of genome integrity and suppression of tumorigenesis. Biochem Soc Trans 2004;32(Pt 6):957–958.

    CAS  PubMed  Google Scholar 

  190. Bartal C, Yerushalmi R, Zilberman D, Yermiyahu T. A patient with Werner’s syndrome and erythroleukemia: just coincidence? Leuk Lymphoma 1996;21(5–6):509–513.

    Article  CAS  PubMed  Google Scholar 

  191. Tao LC, Stecker E, Gardner HA. Werner’s syndrome and acute myeloid leukemia. Can Med Assoc J 1971;105(9):951 passim.

    Google Scholar 

  192. Porter WM, Hardman CM, Abdalla SH, Powles AV. Haematological disease in siblings with Rothmund-Thomson syndrome. Clin Exp Dermatol 1999;24(6):452–454.

    Article  CAS  PubMed  Google Scholar 

  193. Kaneko H, Kondo N. Clinical features of Bloom syndrome and function of the causative gene, BLM helicase. Expert Rev Mol Diagn 2004;4(3):393–401.

    Article  CAS  PubMed  Google Scholar 

  194. German J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 1993;72(6):393–406.

    CAS  Google Scholar 

  195. Sahn EE, Hussey RH, 3rd, Christmann LM. A case of Bloom syndrome with conjunctival telangiectasia. Pediatr Dermatol 1997;14(2):120–124.

    Article  CAS  PubMed  Google Scholar 

  196. Kondo N, Asano J, Kimura S, Asano T, Orii T. Insulin-dependent diabetes developed in a young man with Bloom’s syndrome. Clin Genet 1991;40(3):251–252.

    Article  CAS  PubMed  Google Scholar 

  197. Van Kerckhove CW, Ceuppens JL, Vanderschueren-Lodeweyckx M, Eggermont E, Vertessen S, Stevens EA. Bloom’s syndrome. Clinical features and immunologic abnormalities of four patients. Am J Dis Child 1988;142(10):1089–1093.

    PubMed  Google Scholar 

  198. Taniguchi N, Mukai M, Nagaoki T, et al. Impaired B-cell differentiation and T-cell regulatory function in four patients with Bloom’s syndrome. Clin Immunol Immunopathol 1982;22(2):247–258.

    Article  CAS  PubMed  Google Scholar 

  199. Martin RH, Rademaker A, German J. Chromosomal breakage in human spermatozoa, a heterozygous effect of the Bloom syndrome mutation. Am J Hum Genet 1994;55(6):1242–1246.

    CAS  PubMed  Google Scholar 

  200. Goss KH, Risinger MA, Kordich JJ, et al. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 2002;297(5589):2051–2053.

    Article  PubMed  CAS  Google Scholar 

  201. Fodde R, Smits R. Cancer biology. A matter of dosage. Science 2002;298(5594):761–763.

    Article  CAS  PubMed  Google Scholar 

  202. Shulman LP, Li LR, Tharapel AT, Simpson JL, Elias S. Sister chromatid exchange (SCE) frequencies differ between directly prepared cytotrophoblasts and cultured mesenchymal core cells. Hum Genet 1991;87(6):734–736.

    Article  CAS  PubMed  Google Scholar 

  203. Howell RT, Davies T. Diagnosis of Bloom’s syndrome by sister chromatid exchange evaluation in chorionic villus cultures. Prenat Diagn 1994;14(11):1071–1073.

    Article  CAS  PubMed  Google Scholar 

  204. Weemaes CM, Hustinx TW, Scheres JM, van Munster PJ, Bakkeren JA, Taalman RD. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand 1981;70(4):557–564.

    Article  CAS  PubMed  Google Scholar 

  205. Seeman P, Gebertova K, Paderova K, Sperling K, Seemanova E. Nijmegen breakage syndrome in 13% of age-matched Czech children with primary microcephaly. Pediatr Neurol 2004;30(3):195–200.

    Article  PubMed  Google Scholar 

  206. Nijmegen breakage syndrome. The International Nijmegen Breakage Syndrome Study Group. Arch Dis Child 2000;82(5):400–406.

    Google Scholar 

  207. Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93(3):467–476.

    Article  CAS  PubMed  Google Scholar 

  208. Varon R, Schoch C, Reis A, Hiddemann WC, Sperling K, Schnittger S. Mutation analysis of the Nijmegen breakage syndrome gene (NBS1) in nineteen patients with acute myeloid leukemia with complex karyotypes. Leuk Lymphoma 2003;44(11):1931–1934.

    Article  CAS  PubMed  Google Scholar 

  209. Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K. NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 2004;3(8–9):855–861.

    Article  CAS  Google Scholar 

  210. Bekiesinska-Figatowska M, Chrzanowska KH, Jurkiewicz E, et al. Magnetic resonance imaging of brain abnormalities in patients with the Nijmegen breakage syndrome. Acta Neurobiol Exp (Wars) 2004;64(4):503–509.

    Google Scholar 

  211. van der Burgt I, Chrzanowska KH, Smeets D, Weemaes C. Nijmegen breakage syndrome. J Med Genet 1996;33(2):153–156.

    Article  PubMed  Google Scholar 

  212. Van de Kaa CA, Weemaes CM, Wesseling P, Schaafsma HE, Haraldsson A, De Weger RA. Postmortem findings in the Nijmegen breakage syndrome. Pediatr Pathol 1994;14(5):787–796.

    Article  PubMed  Google Scholar 

  213. Resnick IB, Kondratenko I, Togoev O, et al. Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J Pediatr 2002;140(3):355–361.

    Article  PubMed  Google Scholar 

  214. Tanzanella C, Antoccia A, Spadoni E, et al. Chromosome instability and nibrin protein variants in NBS heterozygotes. Eur J Hum Genet 2003;11(4):297–303.

    Article  PubMed  Google Scholar 

  215. Steffen J, Varon R, Mosor M, et al. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer 2004;111(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  216. Seemanova E. An increased risk for malignant neoplasms in heterozygotes for a syndrome of microcephaly, normal intelligence, growth retardation, remarkable facies, immunodeficiency and chromosomal instability. Mutat Res 1990;238(3):321–324.

    CAS  PubMed  Google Scholar 

  217. Taylor GM, O’Brien HP, Greaves MF, Ravetto PF, Eden OB. Correspondence re: R. Varon et al., Mutations in the Nijmegen breakage syndrome gene (NBS1) in childhood acute lymphoblastic leukemia. Cancer Res., 61: 3570–3572, 2001. Cancer Res 2003;63(19):6563–6564; author reply 5.

    CAS  PubMed  Google Scholar 

  218. Chrzanowska KH, Kleijer WJ, Krajewska-Walasek M, et al. Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am J Med Genet 1995;57(3):462–471.

    Article  CAS  PubMed  Google Scholar 

  219. Taalman RD, Hustinx TW, Weemaes CM, et al. Further delineation of the Nijmegen breakage syndrome. Am J Med Genet 1989;32(3):425–431.

    Article  CAS  PubMed  Google Scholar 

  220. Seemanova E, Sperling K, Neitzel H, et al. Nijmegen Breakage Syndrome (NBS) with neurological abnormalities and without chromosomal instability. J Med Genet 2005;43(3):218–224.

    Article  PubMed  CAS  Google Scholar 

  221. Resnick IB, Kondratenko I, Pashanov E, et al. 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am J Med Genet A 2003;120(2):174–179.

    Article  Google Scholar 

  222. New HV, Cale CM, Tischkowitz M, et al. Nijmegen breakage syndrome diagnosed as Fanconi anaemia. Pediatr Blood Cancer 2005;44(5):494–499.

    Article  PubMed  Google Scholar 

  223. Pasic S. Aplastic anemia in Nijmegen breakage syndrome. J Pediatr 2002;141(5):742.

    PubMed  Google Scholar 

  224. Bundey S. Clinical and genetic features of ataxia-telangiectasia. Int J Radiat Biol 1994;66(6 Suppl):S23–29.

    Article  Google Scholar 

  225. Khanna KK. Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 2000;92(10):795–802.

    Article  CAS  PubMed  Google Scholar 

  226. Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr 2004;144(4):505–511.

    Article  PubMed  Google Scholar 

  227. Centerwall WR, Miller MM. Ataxia, telangiectasia, and sinopulmonary infections; a syndrome of slowly progressive deterioration in childhood. AMA J Dis Child 1958;95(4):385–396.

    CAS  PubMed  Google Scholar 

  228. Boder E, Sedgwick RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 1958;21(4):526–554.

    CAS  PubMed  Google Scholar 

  229. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 1986;39(5):573–583.

    CAS  PubMed  Google Scholar 

  230. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 1987;316(21):1289–1294.

    Article  CAS  PubMed  Google Scholar 

  231. Morrell D, Chase CL, Kupper LL, Swift M. Diabetes mellitus in ataxia-telangiectasia, Fanconi anemia, xeroderma pigmentosum, common variable immune deficiency, and severe combined immune deficiency families. Diabetes 1986;35(2):143–147.

    Article  CAS  PubMed  Google Scholar 

  232. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268(5218):1749–1753.

    Article  CAS  PubMed  Google Scholar 

  233. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421(6922):499–506.

    Article  CAS  PubMed  Google Scholar 

  234. Khanna KK, Keating KE, Kozlov S, et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 1998;20(4):398–400.

    Article  CAS  PubMed  Google Scholar 

  235. Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2000;2(12):893–898.

    Article  CAS  PubMed  Google Scholar 

  236. Crawford TO. Ataxia telangiectasia. Semin Pediatr Neurol 1998;5(4):287–294.

    Article  CAS  PubMed  Google Scholar 

  237. Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol 1999;46(3):287–295.

    Article  CAS  PubMed  Google Scholar 

  238. Cabana MD, Crawford TO, Winkelstein JA, Christensen JR, Lederman HM. Consequences of the delayed diagnosis of ataxia-telangiectasia. Pediatrics 1998;102(1 pt 1):98–100.

    Article  CAS  PubMed  Google Scholar 

  239. Waldmann TA, McIntire KR. Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia. Lancet 1972;2(7787):1112–1115.

    Article  CAS  PubMed  Google Scholar 

  240. Taylor AM, Oxford JM, Metcalfe JA. Spontaneous cytogenetic abnormalities in lymphocytes from thirteen patients with ataxia telangiectasia. Int J Cancer 1981;27(3):311–319.

    Article  CAS  PubMed  Google Scholar 

  241. Aurias A, Dutrillaux B, Buriot D, Lejeune J. High frequencies of inversions and translocations of chromosomes 7 and 14 in ataxia telangiectasia. Mutat Res 1980;69(2):369–374.

    CAS  PubMed  Google Scholar 

  242. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol 1999;93(3):190–197.

    Article  CAS  PubMed  Google Scholar 

  243. Fiorilli M, Businco L, Pandolfi F, Paganelli R, Russo G, Aiuti F. Heterogeneity of immunological abnormalities in ataxia-telangiectasia. J Clin Immunol 1983;3(2):135–141.

    Article  CAS  PubMed  Google Scholar 

  244. Rivat-Peran L, Buriot D, Salier JP, Rivat C, Dumitresco SM, Griscelli C. Immunoglobulins in ataxia-telangiectasia: evidence for IgG4 and IgA2 subclass deficiencies. Clin Immunol Immunopathol 1981;20(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  245. Giovannetti A, Mazzetta F, Caprini E, et al. Skewed T-cell receptor repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia telangiectasia. Blood 2002;100(12):4082–4089.

    Article  CAS  PubMed  Google Scholar 

  246. Viniou N, Terpos E, Rombos J, et al. Acute myeloid leukemia in a patient with ataxia-telangiectasia: a case report and review of the literature. Leukemia 2001;15(10):1668–1670.

    Article  CAS  PubMed  Google Scholar 

  247. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87(2):423–438.

    CAS  PubMed  Google Scholar 

  248. Morgan JL, Holcomb TM, Morrissey RW. Radiation reaction in ataxia telangiectasia. Am J Dis Child 1968;116(5):557–558.

    CAS  PubMed  Google Scholar 

  249. Sandoval C, Swift M. Commentary: appropriate cancer chemotherapy for ataxia-telangiectasia patients. Med Pediatr Oncol 2000;34(1):65–66.

    Article  CAS  PubMed  Google Scholar 

  250. Sandoval C, Swift M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol 1998;31(6):491–497.

    Article  CAS  PubMed  Google Scholar 

  251. Cesaretti JA, Stock RG, Lehrer S, et al. ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer. Int J Radiat Oncol Biol Phys 2005;61(1):196–202.

    PubMed  Google Scholar 

  252. Chessa L, Petrinelli P, Antonelli A, et al. Heterogeneity in ataxia-telangiectasia: classical phenotype associated with intermediate cellular radiosensitivity. Am J Med Genet 1992;42(5):741–746.

    Article  CAS  PubMed  Google Scholar 

  253. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991;325(26):1831–1836.

    Article  CAS  PubMed  Google Scholar 

  254. Su Y, Swift M. Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann Intern Med 2000;133(10):770–778.

    CAS  PubMed  Google Scholar 

  255. Geoffroy-Perez B, Janin N, Ossian K, et al. Cancer risk in heterozygotes for ataxia-telangiectasia. Int J Cancer 2001;93(2):288–293.

    Article  CAS  PubMed  Google Scholar 

  256. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Inst 2001;93(2):121–127.

    Article  CAS  Google Scholar 

  257. Bernstein JL, Bernstein L, Thompson WD, et al. ATM variants 7271T>G and IVS10-6T>G among women with unilateral and bilateral breast cancer. Br J Cancer 2003;89(8):1513–1516.

    Article  CAS  PubMed  Google Scholar 

  258. Hernandez D, McConville CM, Stacey M, et al. A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22–23. J Med Genet 1993;30(2):135–140.

    Article  CAS  PubMed  Google Scholar 

  259. Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999;99(6):577–587.

    Article  CAS  PubMed  Google Scholar 

  260. Klein C, Wenning GK, Quinn NP, Marsden CD. Ataxia without telangiectasia masquerading as benign hereditary chorea. Mov Disord 1996;11(2):217–220.

    Article  CAS  PubMed  Google Scholar 

  261. O’Driscoll M, Cerosaletti KM, Girard PM, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 2001;8(6):1175–1185.

    Article  PubMed  Google Scholar 

  262. O’Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004;3(8–9):1227–1235.

    Article  CAS  Google Scholar 

  263. O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 2003;33(4):497–501.

    Article  PubMed  CAS  Google Scholar 

  264. Casper AM, Nghiem P, Arlt MF, Glover TW. ATR regulates fragile site stability. Cell 2002;111(6):779–789.

    Article  CAS  PubMed  Google Scholar 

  265. Hayani A, Suarez CR, Molnar Z, LeBeau M, Godwin J. Acute myeloid leukaemia in a patient with Seckel syndrome. J Med Genet 1994;31(2):148–149.

    Article  CAS  PubMed  Google Scholar 

  266. Jacquemont S, Boceno M, Rival JM, Mechinaud F, David A. High risk of malignancy in mosaic variegated aneuploidy syndrome. Am J Med Genet 2002;109(1):17–21.

    Article  PubMed  Google Scholar 

  267. Hanks S, Rahman N. Aneuploidy-cancer predisposition syndromes: a new link between the mitotic spindle checkpoint and cancer. Cell Cycle 2005;4(2):225–227.

    CAS  PubMed  Google Scholar 

  268. Hanks S, Coleman K, Reid S, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB 1B. Nat Genet 2004;36(11):1159–1161.

    Article  CAS  PubMed  Google Scholar 

  269. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood 1995;86(9):3542–3552.

    CAS  PubMed  Google Scholar 

  270. Maser RS, DePinho RA. Keeping telomerase in its place. Nat Med 2002;8(9):934–936.

    Article  CAS  PubMed  Google Scholar 

  271. Wong KK, Chang S, Weiler SR, et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 2000;26(1):85–88.

    Article  CAS  PubMed  Google Scholar 

  272. DePinho RA. The age of cancer. Nature 2000;408(6809):248–254.

    Article  CAS  PubMed  Google Scholar 

  273. O’Hagan RC, Chang S, Maser RS, et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2002;2(2):149–155.

    Article  PubMed  Google Scholar 

  274. Hsu HL, Gilley D, Galande SA, et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 2000;14(22):2807–2812.

    Article  CAS  PubMed  Google Scholar 

  275. Engelhardt M, Wasch R, Guo Y. Telomeres and telomerase in normal and leukemic hematopoietic cells. Leuk Res 2004;28(10):1001–1004.

    Article  CAS  PubMed  Google Scholar 

  276. Ohyashiki K, Shay JW, Ohyashiki JH. Lack of mutations of the human telomerase RNA gene (hTERC) in myelodysplastic syndrome. Haematologica 2005;90(5):691.

    PubMed  Google Scholar 

  277. Sashida G, Ohyashiki JH, Nakajima A, et al. Telomere dynamics in myelodysplastic syndrome determined by telomere measurement of marrow metaphases. Clin Cancer Res 2003;9(4):1489–1496.

    CAS  PubMed  Google Scholar 

  278. Ohyashiki K, Iwama H, Yahata N, et al. Telomere dynamics in myelodysplastic syndromes and acute leukemic transformation. Leuk Lymphoma 2001;42(3):291–299.

    Article  CAS  PubMed  Google Scholar 

  279. Ohyashiki JH, Iwama H, Yahata N, et al. Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin Cancer Res 1999;5(5):1155–1160.

    CAS  PubMed  Google Scholar 

  280. Hartmann U, Brummendorf TH, Balabanov S, Thiede C, Illme T, Schaich M. Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Haematologica 2005;90(3):307–316.

    CAS  PubMed  Google Scholar 

  281. Roth A, Vercauteren S, Sutherland HJ, Lansdorp PM. Telomerase is limiting the growth of acute myeloid leukemia cells. Leukemia 2003;17(12):2410–2417.

    Article  CAS  PubMed  Google Scholar 

  282. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. New York: Garland Science, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Steensma, D.P. (2007). The DNA Damage Response, DNA Repair, and AML. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics