Skip to main content

Myelodysplasia-Related AML

  • Chapter
Book cover Acute Myelogenous Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1166 Accesses

Abstract

The myelodysplastic syndromes (MDSs) comprise a heterogeneous group of clonal stem cell disorders characterized by ineffective hematopoiesis (1). Because progression to acute myeloid leukemia (AML) occurs in one-third of cases, myelodysplasia-related AML (MDS-AML) provides an elegant model for the multistep process of leukemogenesis. This chapter will outline our current understanding of the cellular changes that occur during progression of MDS to AML and discuss the potential molecular lesions underlying these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mufti GJ, Galton DA. Myelodysplastic syndromes: natural history and features of prognostic importance. Clin Haematol 1986;15:953–971.

    CAS  PubMed  Google Scholar 

  2. Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Claasification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press, 2001.

    Google Scholar 

  3. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–2302.

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen-Bjergaard J, Rowley JD. The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation. Blood 1994;83:2780–2786.

    CAS  PubMed  Google Scholar 

  5. Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia. Hematology (Am Soc Hematol Educ Program) 2004:80–97.

    Google Scholar 

  6. Wu PS, Hay AE, Thomas GE, Bowen DT. Latency of onset of de novo myelodysplastic syndromes. Haematologica 2004;89:1392–1394.

    PubMed  Google Scholar 

  7. Yoshida Y. Hypothesis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodysplastic syndrome. Leukemia 1993;7:144–146.

    CAS  PubMed  Google Scholar 

  8. Parker JE, Fishlock KL, Mijovic A, Pagliuca A, Mufti GJ. ‘Low risk’ myelodysplastic syndrome (MDS) is associated with excessive apoptosis and an increased ratio of pro-versus anti-apoptotic Bcl-2 related proteins. Br J Haematol 1998;103:1075–1082.

    Article  CAS  PubMed  Google Scholar 

  9. Parker JE, Fishlock KL, Czepulkowski B, Pagliuca A, Mufti GJ. The role of apoptosis, proliferation and the Bcl-2 related proteins in the myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) secondary to MDS. Blood 2000;96:3932–3938.

    CAS  PubMed  Google Scholar 

  10. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:12.

    Article  Google Scholar 

  11. Nagata S, Golstein P. The Fas death factor. Science 1995;267:1449–1456.

    Article  CAS  PubMed  Google Scholar 

  12. Banner DW, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431–435.

    Article  CAS  PubMed  Google Scholar 

  13. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–682.

    Article  CAS  PubMed  Google Scholar 

  14. Chicheportiche Y, Bourdon PR, Xu H, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997;272:32,401–32,410.

    Article  CAS  PubMed  Google Scholar 

  15. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.

    Article  CAS  PubMed  Google Scholar 

  16. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;14:5579–5588.

    CAS  PubMed  Google Scholar 

  17. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996;184:1155–1160.

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157.

    Article  CAS  PubMed  Google Scholar 

  19. Li P, Nijhawan D, Budihardjo I, et al. Cytochome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Article  CAS  PubMed  Google Scholar 

  20. Zou H, Henzel WJ, Liu XS, Lutschg A, Wang XD. Apaf-1, a human protein homologous to C-elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.

    Article  CAS  PubMed  Google Scholar 

  21. Ryan JJ, Danish R, Gottlieb CA, Clarke MF. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 1993;13:711–719.

    CAS  PubMed  Google Scholar 

  22. Jost CA, Marin MC, Kaelin WG. p73 is a human p53-related protein that can induce apoptosis. Nature 1997;389:191–194.

    Article  CAS  PubMed  Google Scholar 

  23. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997;90:809–819.

    Article  CAS  PubMed  Google Scholar 

  24. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–446.

    Article  CAS  PubMed  Google Scholar 

  25. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001;410:549–554.

    Article  CAS  PubMed  Google Scholar 

  26. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997;277:815–818.

    Article  CAS  PubMed  Google Scholar 

  27. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396:699–703.

    Article  CAS  PubMed  Google Scholar 

  28. Condorelli G, Vigliotta G, Cafieri A, et al. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 1999;18:4409–4415.

    Article  CAS  PubMed  Google Scholar 

  29. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–195.

    Article  CAS  PubMed  Google Scholar 

  30. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996;88:386–401.

    CAS  PubMed  Google Scholar 

  31. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996;379:349–353.

    Article  CAS  PubMed  Google Scholar 

  32. Wrzesien-Kus A, Smolewski P, Sobczak-Pluta A, Wierzbowska A, Robak T. The inhibitor of apoptosis protein family and its antagonists in acute leukemias. Apoptosis 2004;9:705–715.

    Article  CAS  PubMed  Google Scholar 

  33. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    Article  CAS  PubMed  Google Scholar 

  34. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol 2002;192:131–137.

    Article  CAS  PubMed  Google Scholar 

  35. Zetterberg A. Cell growth and cell cycle progression in mammalian cells. In: Thomas NSB, ed. Apoptosis and Cell Cycle Control in Cancer, vol. 2. Oxford: BIOS Scientific Publishers, 1996:17–36.

    Google Scholar 

  36. Pardee AB. A restriction point control of normal animal cell proliferation. Proc Natl Acad Sci USA 1974; 71:1286–1290.

    Article  CAS  PubMed  Google Scholar 

  37. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995;11:211–219.

    CAS  PubMed  Google Scholar 

  38. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993;7:331–342.

    Article  CAS  PubMed  Google Scholar 

  39. Helin K, Harlow E, Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 1993;13:6501–6508.

    CAS  PubMed  Google Scholar 

  40. Levine AJ. p53, the cellular gatekeeper for growth and cell division. Cell 1997;88:323–331.

    Article  CAS  PubMed  Google Scholar 

  41. Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE. Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc Natl Acad Sci USA 1992;89:9210–9214.

    Article  CAS  PubMed  Google Scholar 

  42. Raza A, Gezer S, Mundle S, et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995;86:268–276.

    CAS  PubMed  Google Scholar 

  43. Aizawa S, Nakano M, Iwase O, et al. Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro. Leuk Res 1999;23:239–246.

    Article  CAS  PubMed  Google Scholar 

  44. Aizawa S, Hiramoto M, Hoshi H, Toyama K, Shima D, Handa H. Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro. Exp Hematol 2000;28:148–155.

    Article  CAS  PubMed  Google Scholar 

  45. Delforge M, Raets V, Van Duppen V, Vandenberghe P, Boogaerts M. CD34+ marrow progenitors from MDS patients with high levels of intramedullary apoptosis have reduced expression of alpha4betal and alpha5betal integrins. Leukemia 2005;19:1957–1963.

    Google Scholar 

  46. Stasi R, Brunetti M, Bussa S, et al. Serum levels of tumour necrosis factor-predict response to recombinant human erythropoietin in patients with myelodysplastic syndrome. Clin Lab Haematol 1997;19:197–201.

    Article  CAS  PubMed  Google Scholar 

  47. Gersuk GM, Beckham C, Loken MR, et al. A role for tumour necrosis factor-α, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 1998;103:176–188.

    Article  CAS  PubMed  Google Scholar 

  48. Bouscary D, De Vos J, Guesnu M, et al. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997;11:839–845.

    Article  CAS  PubMed  Google Scholar 

  49. Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ. Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood 2001;98:3058–3065.

    Article  CAS  PubMed  Google Scholar 

  50. Plasilova M, Zivny J, Jelinek J, et al. TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 2002;16:67–73.

    Article  CAS  PubMed  Google Scholar 

  51. Claessens YE, Park S, Dubart-Kupperschmitt A, et al. Rescue of early stage myelodysplastic syndrome-deriving erythroid precursors by the ectopic expression of a dominant negative form of FADD. Blood 2005 Jan 27; [Epub ahead of print]

    Google Scholar 

  52. Mundle SD, Mativi BY, Bagai K, et al. Spontaneous down-regulation of Fas-associated phosphatase-1 may contribute to excessive apoptosis in myelodysplastic marrows. Int J Haematol 1999;70:83–90.

    CAS  Google Scholar 

  53. Benesch M, Platzbecker U, Ward J, Deeg HJ, Leisenring W. Expression of FLIP(Long) and FLIP(Short) in bone marrow mononuclear and CD34+ cells in patients with myelodysplastic syndrome: correlation with apoptosis. Leukemia 2003;17:2460–2466.

    Article  CAS  PubMed  Google Scholar 

  54. Sultana TA, Harada H, Ito K, Tanaka H, Kyo T, Kimura A. Expression and functional analysis of granulocyte colony-stimulating factor receptors on CD34++ cells in patients with myelodysplastic syndrome (MDS) and MDS-acute myeloid leukaemia. Br J Haematol 2003;121:63–75.

    Article  CAS  PubMed  Google Scholar 

  55. Bowen D, Yancik S, Bennett L, Culligan D, Resser K. Serum stem cell factor concentration in patients with myelodysplastic syndromes. Br J Haematol 1993;85:63–66.

    Article  CAS  PubMed  Google Scholar 

  56. Visani G, Zauli G, Tosi P, et al. Impairment of GM-CSF production in myelodysplastic syndromes. Br J Haematol 1993;84:227–231.

    Article  CAS  PubMed  Google Scholar 

  57. Gidali J, Feher I, Hollan SR. Blast colony forming cell-binding capacity of bone marrow stroma from myelodysplastic patients. Stem Cells 1996;14:577–583.

    Article  CAS  PubMed  Google Scholar 

  58. Greenberg PL, Mackichan ML, Negrin R, Renick M, Ginzton N. Production of granulocyte colony stimulating factor (G-CSF) by normal and myelodysplastic syndrome (MDS) peripheral blood (PB) cells. Blood 1990;76:146a.

    Google Scholar 

  59. Backx B, Broeders L, Hoefsloot LH, Wognum B, Löwenberg B. Erythropoiesis in myelodysplastic syndrome: expression of receptors for erythropoietin and kit ligand. Leukemia 1996;10:466–472.

    CAS  PubMed  Google Scholar 

  60. Hoefsloot LH, van Amelsvoort MP, Broeders LC, et al. Erythropoietin-induced activation of STAT5 is impaired in the myelodysplastic syndrome. Blood 1997;89:1690–1700.

    CAS  PubMed  Google Scholar 

  61. Kalina U, Hofmann WK, Koschmieder S, et al. Alteration of c-mpl-mediated signal transduction in CD34(+) cells from patients with myelodysplastic syndromes. Exp Hematol 2000;28:1158–1163.

    Article  CAS  PubMed  Google Scholar 

  62. Molldrem JJ, Jiang YZ, Stetler-Stevenson M, Mavroudis D, Hensel N, Barrett AJ. Hematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vβ profiles. Br J Haematol 1998;102: 1314–1322.

    Article  CAS  PubMed  Google Scholar 

  63. Sloand EM, Mainwaring L, Fuhrer M, et al. Preferential suppression of trisomy 8 versus normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood 2005 Apr 12; [Epub ahead of print]

    Google Scholar 

  64. Tehranchi R, Fadeel B, Forsblom AM, et al. Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 2003;101:1080–1086.

    Article  CAS  PubMed  Google Scholar 

  65. Bessho F, Ohnishi H, Tabuchi K, Kobayashi M, Hayashi Y. Significance of electron-dense deposits in the mitochondrial matrix of erythroid precursors in aplastic anaemia and myelodysplastic syndrome. Br J Haematol 1999;105:149–154.

    Article  CAS  PubMed  Google Scholar 

  66. van de Loosdrecht AA, Brada SJ, Blom NR, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. an ultrastructural analysis. Leuk Res 2001;25:385–393.

    Article  PubMed  Google Scholar 

  67. Gattermann N, Retzlaff S, Wang YL, et al. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 1997;90:4961–4972.

    CAS  PubMed  Google Scholar 

  68. Reddy PL, Shetty VT, Dutt D, et al. Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes. Br J Haematol 2002;116:564–575.

    Article  CAS  PubMed  Google Scholar 

  69. D’Andrea AD, Grompe M. Molecular biology of Fanconi anemia: implications for diagnosis and therapy. Blood 1997;90:1725–1736.

    PubMed  Google Scholar 

  70. Levine EG, Bloomfield CD. Secondary myelodysplastic syndromes and leukaemias. Clin Haematol 1986; 15:1037–1080.

    CAS  PubMed  Google Scholar 

  71. West RR, Stafford DA, White DA, Bowen DT, Padua RA. Cytogenetic abnormalities in the myelodysplastic syndromes and occupational or environmental exposure Blood 2000;95:2093–2097.

    CAS  PubMed  Google Scholar 

  72. Chen H, Sandler DP, Taylor JA, et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 1996;347:295–296.

    Article  CAS  PubMed  Google Scholar 

  73. Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci USA 1998;95:13,176–13,181.

    Article  CAS  PubMed  Google Scholar 

  74. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002;100:3553–3560.

    Article  CAS  PubMed  Google Scholar 

  75. Simmons PJ, Aylett GW, Niutta S, To LB, Juttner CA, Ashman LK. c-kit is expressed by primitive human hematopoietic cells that give rise to colony-forming cells in stroma-dependent or cytokine-supplemented culture. Exp Hematol 1994;22:157–165.

    CAS  PubMed  Google Scholar 

  76. Ema H, Takano H, Sudo K, Nakauchi H. In vitro self-renewal division of hematopoietic stem cells. J Exp Med 2000;192:1281–1288.

    Article  CAS  PubMed  Google Scholar 

  77. Siitonen T, Savolainen ER, Koistinen P. Expression of the c-kit proto-oncogene in myeloproliferative disorders and myelodysplastic syndromes. Leukemia 1994;8:631–637.

    CAS  PubMed  Google Scholar 

  78. Zheng R, Klang K, Gorin NC, Small D. Lack of KIT or FMS internal tandem duplications but co-expression with ligands in AML. Leuk Res 2004;28:121–126.

    Article  CAS  PubMed  Google Scholar 

  79. Le Beau MM, Westbrook CA, Diaz MO, et al. Evidence for the involvement of GM-CSF and FMS in the deletion (5q) in myeloid disorders. Science 1986;231:984–987.

    Article  PubMed  Google Scholar 

  80. Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 1985;41:665–676.

    CAS  Google Scholar 

  81. Padua RA, Guinn BA, Al-Sabah AI, et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 1998;12:887–892.

    Article  CAS  PubMed  Google Scholar 

  82. Ridge SA, Worwood M, Oscier D, Jacobs A, Padua RA. FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc Natl Acad Sci USA 1990;87:1377–1380.

    Article  CAS  PubMed  Google Scholar 

  83. Rosnet O, Buhring HJ, Marchetto S, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996;10:238–248.

    CAS  PubMed  Google Scholar 

  84. Hannum C, Culpepper J, Campbell D, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994;368:643–648.

    Article  CAS  PubMed  Google Scholar 

  85. Lisovsky M, Braun SE, Ge Y, et al. Flt3-ligand production by human bone marrow stromal cells. Leukemia 1996;10:1012–1018.

    CAS  PubMed  Google Scholar 

  86. Lyman SD, Brasel K, Rousseau AM, Williams DE. The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells 1994;12:99–107.

    PubMed  Google Scholar 

  87. Brasel K, McKenna HJ, Morrissey PJ, et al. Hematologic effects of flt3 ligand in vivo in mice. Blood 1996;88:2004–2012.

    CAS  PubMed  Google Scholar 

  88. McKenna HJ, de Vries P, Brasel K, Lyman SD, Williams DE. Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells. Blood 1995;86:3413–3420.

    CAS  PubMed  Google Scholar 

  89. McKenna HJ, Stocking KL, Miller RE, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000;95:3489–3497.

    CAS  PubMed  Google Scholar 

  90. Birg F, Courcoul M, Rosnet O, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 1992;80:2584–2593.

    CAS  PubMed  Google Scholar 

  91. Yokota S, Kiyoi H, Nakao M, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997;11:1605–1609.

    Article  CAS  PubMed  Google Scholar 

  92. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002;100:59–66.

    Article  CAS  PubMed  Google Scholar 

  93. Shih LY, Huang CF, Wang PN, et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004;18:466–475.

    Article  CAS  PubMed  Google Scholar 

  94. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97:2434–2439.

    Article  CAS  PubMed  Google Scholar 

  95. Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev 1998;8:49–54.

    Article  CAS  PubMed  Google Scholar 

  96. Quilliam LA, Huff SY, Rabun KM, et al. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc Nat Acad Sci USA 1994;91:8512–8516.

    Article  CAS  PubMed  Google Scholar 

  97. Wittinghofer A, Sceffzek K, Ahmadian MR. The interaction of ras with GTPase-activating proteins. FEBS Lett 1997;410:63–67.

    Article  CAS  PubMed  Google Scholar 

  98. Marshall CJ. How does p21ras transform cells? Trends Genet 1991;7:91–95.

    CAS  PubMed  Google Scholar 

  99. Parker J, Mufti GJ. Ras and myelodysplasia: lessons from the last decade. Semin Hematol 1996;33:206–224.

    CAS  PubMed  Google Scholar 

  100. Bos JL, Verlaan-de Vries M, van der Eb AJ, et al. Mutations in N-ras predominate in acute myeloid leukemia. Blood 1987;69:1237–1241.

    CAS  PubMed  Google Scholar 

  101. Farr CJ, Saiki RK, Erlich HA, McCormick F, Marshall CJ. Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 1988; 85:1629–1633.

    Article  CAS  PubMed  Google Scholar 

  102. Carter G, Hughes DC, Clark RE, et al. RAS mutations in patients following cytotoxic therapy for lymphoma. Oncogene 1990;5:411–416.

    CAS  PubMed  Google Scholar 

  103. Paquette RL, Landaw EM, Pierre RV, et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood 1993;82:590–599.

    CAS  PubMed  Google Scholar 

  104. Ludwig L, Janssen JW, Schulz AS, Bartram CR. Mutations within the FLR exon of NF1 are rare in myelodysplastic syndromes and acute myelocytic leukemias. Leukemia 1993;7:1058–1060.

    CAS  PubMed  Google Scholar 

  105. Quesnel B, Preudhomme C, Vanrumbeke M, Vachee A, Lai JL, Fenaux P. Absence of rearrangement of the neurofibromatosis 1 (NF1) gene in myelodysplastic syndromes and acute myeloid leukemia. Leukemia 1994;8:878–880.

    CAS  PubMed  Google Scholar 

  106. Lu D, Nounou R, Beran M, et al. The prognostic significance of bone marrow levels of neurofibromatosis-1 protein and ras oncogene mutations in patients with acute myeloid leukemia and myelodysplastic syndrome. Cancer 2003;97:441–449.

    Article  CAS  PubMed  Google Scholar 

  107. Dechert U, Duncan AM, Bastien L, Duff C, Adam M, Jirik FR. Protein-tyrosine phosphatase SH-PTP2 (PTPN11) is localized to 12q24.1-24.3. Hum Genet 1995;96:609–615.

    Article  CAS  PubMed  Google Scholar 

  108. Johannes JM, Garcia ER, De Vaan GA, Weening RS. Noonan’s syndrome in association with acute leukemia. Pediatr Hematol Oncol 1995;12:571–575.

    Article  CAS  PubMed  Google Scholar 

  109. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003;34:148–150.

    Article  CAS  PubMed  Google Scholar 

  110. Schubbert S, Lieuw K, Rowe SL, et al. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 2005; [Epub ahead of print]

    Google Scholar 

  111. Gold MR, Duronio V, Saxena SP, Schrader JW, Aebersold R. Multiple cytokines activate phosphatidylinositol 3-kinase in hemopoietic cells. Association of the enzyme with various tyrosine-phosphorylated proteins. J Biol Chem 1994;269:5403–5412.

    CAS  PubMed  Google Scholar 

  112. Corvera S, Czech MP. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 1998;8:442–446.

    Article  CAS  PubMed  Google Scholar 

  113. Beslu N, LaRose J, Casteran N, et al. Phosphatidylinositol-3′ kinase is not required for mitogenesis or internalization of the Flt3/Flk2 receptor tyrosine kinase. J Biol Chem 1996;271:20,075–20,081.

    Article  CAS  PubMed  Google Scholar 

  114. Dosil M, Wang S, Lemischka IR. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol 1993;13: 6572–6585.

    CAS  PubMed  Google Scholar 

  115. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.

    Article  CAS  PubMed  Google Scholar 

  116. Beraud C, Henzel WJ, Baeuerle PA. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc Natl Acad Sci USA 1999;96:429–434.

    Article  CAS  PubMed  Google Scholar 

  117. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–241.

    Article  CAS  PubMed  Google Scholar 

  118. Min YH, Cheong JW, Kim JY, et al. Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res 2004;64:5225–5231.

    Article  CAS  PubMed  Google Scholar 

  119. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003;102:972–980.

    Article  CAS  PubMed  Google Scholar 

  120. Zhao S, Konopleva M, Cabreira-Hansen M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004;18:267–275.

    Article  CAS  PubMed  Google Scholar 

  121. Grandage VL, Gale RE, Linch DC, Khwaja A. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005;19:586–594.

    CAS  PubMed  Google Scholar 

  122. Sujobert P, Bardet V, Cornillet-Lefebvre P, et al. Essential role for the p110 delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005; [Epub ahead of print]

    Google Scholar 

  123. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186.

    CAS  PubMed  Google Scholar 

  124. Ellis LM, Fidler IJ. Angiogenesis and metastasis. Eur J Cancer 1996;32A:2451–2460.

    Article  CAS  PubMed  Google Scholar 

  125. Bellamy WT, Richter L, Frutiger Y, Grogan TM. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999;59:728–733.

    CAS  PubMed  Google Scholar 

  126. Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999;81: 1398–1401.

    Article  CAS  PubMed  Google Scholar 

  127. Aguayo A, Kantarjian H, Manshouri T, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000;96:2240–2245.

    CAS  PubMed  Google Scholar 

  128. Korkolopoulou P, Apostolidou E, Pavlopoulos PM, et al. Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 2001;15:1369–1376.

    Article  CAS  PubMed  Google Scholar 

  129. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–257.

    Article  CAS  PubMed  Google Scholar 

  130. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988;133:95–109.

    CAS  PubMed  Google Scholar 

  131. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160:985–1000.

    PubMed  Google Scholar 

  132. Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998;94:715–725.

    Article  CAS  PubMed  Google Scholar 

  133. Verstovsek S, Kantarjian H, Aguayo A, et al. Significance of angiogenin plasma concentrations in patients with acute myeloid leukaemia and advanced myelodysplastic syndrome. Br J Haematol 2001;114: 290–295.

    Article  CAS  PubMed  Google Scholar 

  134. Verstovsek S, Kantarjian H, Estey E, et al. Plasma hepatocyte growth factor is a prognostic factor in patients with acute myeloid leukemia but not in patients with myelodysplastic syndrome. Leukemia 2001;15:1165–1170.

    Article  CAS  PubMed  Google Scholar 

  135. Hu Q, Dey AL, Yang Y, et al. Soluble vascular endothelial growth factor receptor 1, and not receptor 2, is an independent prognostic factor in acute myeloid leukemia and myelodysplastic syndromes. Cancer 2004; 100:1884–1891.

    Article  CAS  PubMed  Google Scholar 

  136. Dias S, Hattori K, Heissig B, et al. Inhibition of both pracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001;98:10,857–10,862.

    Article  CAS  PubMed  Google Scholar 

  137. Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–958.

    Article  CAS  PubMed  Google Scholar 

  138. Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2:1096–1103.

    Article  CAS  PubMed  Google Scholar 

  139. Dias S, Shmelkov SV, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002;99:2532–2540.

    Article  CAS  PubMed  Google Scholar 

  140. de Thonel A, Bettaieb A, Jean C, Laurent G, Quillet-Mary A. Role of protein kinase C zeta isoform in Fas resistance of immature myeloid KG1a leukemic cells. Blood. 2001;98:3770–3777.

    Article  PubMed  Google Scholar 

  141. Jia L, Srinivasula SM, Liu FT, et al. Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood 2001;98:414–421.

    Article  CAS  PubMed  Google Scholar 

  142. Rajapaksa R, Ginzton N, Rott LS, Greenberg PL. Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells. Blood 1996;88:4275–4287.

    CAS  PubMed  Google Scholar 

  143. Delia D, Aiello A, Soligo D, et al. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood 1992;79:1291–1298.

    CAS  PubMed  Google Scholar 

  144. Davis RE, Greenberg PL. Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression. Leuk Res 1998;22:767–777.

    Article  CAS  PubMed  Google Scholar 

  145. Invernizzi R, Pecci A, Bellotti L, Ascari E. Expression of p53, bcl-2 and ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes. Leuk Lymphoma 2001;42:481–489.

    Article  CAS  PubMed  Google Scholar 

  146. Kurotaki H, Tsushima Y, Nagai K, Yagihashi S. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia. Acta Haematol 2000;102:115–123.

    Article  CAS  PubMed  Google Scholar 

  147. Boudard D, Vasselon C, Bertheas MF, et al. Expression and prognostic significance of Bcl-2 family proteins in myelodysplastic syndromes. Am J Hematol 2002;70:115–125.

    Article  PubMed  Google Scholar 

  148. Del Poeta G, Venditti A, Del Principe MI, et al. Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 2003;101:2125–2131.

    Article  PubMed  CAS  Google Scholar 

  149. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    Article  CAS  PubMed  Google Scholar 

  150. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    Article  CAS  PubMed  Google Scholar 

  151. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;396:580–584.

    Article  CAS  PubMed  Google Scholar 

  152. Altieri DC, Marchisio PC, Marchisio C. Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. Lab Invest 1999;79:1327–1333.

    CAS  PubMed  Google Scholar 

  153. Ambrosini G, Adida C, Altieri DC. A novel antiapoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997;3:917–921.

    Article  CAS  PubMed  Google Scholar 

  154. Carter BZ, Milella M, Altieri DC, Andreeff M. Cytokine-regulated expression of survivin in myeloid leukemia. Blood 2001;97:2784–2790.

    Article  CAS  PubMed  Google Scholar 

  155. Carter BZ, Kornblau SM, Tsao T, et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 2003;102:4179–4186.

    Article  CAS  PubMed  Google Scholar 

  156. Carter BZ, Wang RY, Schober WD, Milella M, Chism D, Andreeff M. Targeting Survivin expression induces cell proliferation defect and subsequent cell death involving mitochondrial pathway in myeloid leukemic cells. Cell Cycle 2003;2:488–493.

    CAS  PubMed  Google Scholar 

  157. Badran A, Yoshida A, Wano Y, et al. Expression of the anti-apoptotic gene survivin in myelodysplastic syndrome. Int J Oncol 2003;22:59–64.

    CAS  PubMed  Google Scholar 

  158. Invernizzi R, Travaglino E, Lunghi M, et al. Survivin expression in acute leukemias and myelodysplastic syndromes. Leuk Lymphoma 2004;45:2229–2237.

    Article  CAS  PubMed  Google Scholar 

  159. Jiang W, Zhang YJ, Kahn SM, et al. Altered expression of the cyclin D1 and retinoblastoma genes in human esophageal cancer. Proc Nat Acad Sci USA 1993;90:9026–9030.

    Article  CAS  PubMed  Google Scholar 

  160. Paggi MG, Baldi A, Bonetto F, Giordano A. Retinoblastoma protein family in cell cycle and cancer: a review. J Cell Biochem 1996;62:418–430.

    Article  CAS  PubMed  Google Scholar 

  161. Preudhomme C, Vachee A, Lepelley P, et al. Inactivation of the retinoblastoma gene appears to be very uncommon in myelodysplastic syndromes. Br J Haematol 1994;87:61–67.

    Article  CAS  PubMed  Google Scholar 

  162. Tang JL, Yeh SH, Chen PJ, Lin MT, Tien HF, Chen YC. Inactivation of the retinoblastoma gene in acute myelogenous leukaemia. Br J Haematol 1992;82:502–507.

    Article  CAS  PubMed  Google Scholar 

  163. Kornblau SM, Xu HJ, Zhang W, et al. Levels of retinoblastoma protein expression in newly diagnosed acute myelogenous leukemia. Blood 1994;84:256–261.

    CAS  PubMed  Google Scholar 

  164. Zhu YM, Bradbury D, Russell N. Decreased retinoblastoma protein expression in acute myeloblastic leukaemia is associated with the autonomous proliferation of clonogenic blasts. Br J Haematol 1994;86:533–539.

    Article  CAS  PubMed  Google Scholar 

  165. Kornblau SM, Qiu YH. Altered expression of retinoblastoma (RB) protein in acute myelogenous leukemia does not result from methylation of the Rb promotor. Leuk Lymphoma 1999;35(3–4):283–288.

    Article  CAS  PubMed  Google Scholar 

  166. Gallia GL, Johnson EM, Khalili K. Puralpha: a multifunctional single-stranded DNA-and RNA-binding protein. Nucleic Acids Res 2000;28:3197–3205.

    Article  CAS  PubMed  Google Scholar 

  167. Lezon-Geyda K, Najfeld V, Johnson EM. Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodys-plastic syndrome and progression to acute myelogenous leukemia. Leukemia 2001;15:954–962.

    Article  CAS  PubMed  Google Scholar 

  168. Amanullah A, Hoffman B, Liebermann DA. Deregulated E2F-1 blocks terminal differentiation and loss of leukemogenicity of M1 myeloblastic leukemia cells without abrogating induction of p15(INK4B) and p16. Blood 2000;96:475–482.

    CAS  PubMed  Google Scholar 

  169. Saito M, Helin K, Valentine MB, et al. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line. Genomics 1995;25:130–138.

    Article  CAS  PubMed  Google Scholar 

  170. Mundle SD, Mativi BY, Cartlidge JD, et al. Signal antonymy unique to myelodysplastic marrows correlates with altered expression of E2F1. Br J Haematol 2000;109:376–381.

    Article  CAS  PubMed  Google Scholar 

  171. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366:704–707.

    Article  CAS  PubMed  Google Scholar 

  172. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100:2957–2964.

    Article  CAS  PubMed  Google Scholar 

  173. Quesnel B, Guillerm G, Vereecque R, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998;91:2985–2990.

    CAS  PubMed  Google Scholar 

  174. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute myeloid leukemia. Blood 2001;97:2823–2829.

    Article  CAS  PubMed  Google Scholar 

  175. Uchida T, Kinoshita T, Nagai H, et al. Hypermethylation of the p15INK4B gene in myelodysplastic syndromes Blood 1997;90:1403–1409.

    CAS  PubMed  Google Scholar 

  176. Tien HF, Tang JH, Tsay W, et al. Methylation of the p15(INK4B) gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 2001;112:148–154.

    Article  CAS  PubMed  Google Scholar 

  177. Preisler HD, Li B, Chen H, et al. P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia 2001; 15:1589–1595.

    Article  CAS  PubMed  Google Scholar 

  178. Sugimoto K, Hirano N, Toyoshima H, et al. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood 1993;81:3022–3026.

    CAS  PubMed  Google Scholar 

  179. Soenen V, Preudhomme C, Roumier C, Daudignon A, Lai JL, Fenaux P. 17p Deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood 1998;91:1008–1015.

    CAS  PubMed  Google Scholar 

  180. Lai JL, Preudhomme C, Zandecki M, et al. Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia 1995;9:370–381.

    CAS  PubMed  Google Scholar 

  181. Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K. TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood 1995;85: 2189–2193.

    CAS  PubMed  Google Scholar 

  182. Kitagawa M, Yoshida S, Kuwata T, Tanizawa T, Kamiyama R. p53 expression in myeloid cells of myelodys-plastic syndromes. Association with evolution of overt leukemia. Am J Pathol 1994;145:338–344.

    CAS  PubMed  Google Scholar 

  183. Wattel E, Preudhomme C, Hecquet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994;84:3148–3157.

    CAS  PubMed  Google Scholar 

  184. Kita-Sasai Y, Horiike S, Misawa S, et al. International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br J Haematol 2001;115:309–312.

    Article  CAS  PubMed  Google Scholar 

  185. Castro PD, Liang JC, Nagarajan L. Deletions of chromosome 5 q13.3 and 17p loci cooperate in myeloid neoplasms. Blood 2000;95:2138–2143.

    CAS  PubMed  Google Scholar 

  186. Hupp TR, Meek DW, Midgley CA, Lane DP. Regulation of the specific DNA binding function of p53. Cell 1992;71:875–886.

    Article  CAS  PubMed  Google Scholar 

  187. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992;69:1237–1245.

    Article  CAS  PubMed  Google Scholar 

  188. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992;358:80–83.

    Article  CAS  PubMed  Google Scholar 

  189. Preudhomme C, Quesnel B, Vachee A, et al. Absence of amplification of MDM2 gene, a regulator of p53 function, in myelodysplastic syndromes. Leukemia 1993;7:1291–1293.

    CAS  PubMed  Google Scholar 

  190. Quesnel B, Preudhomme C, Oscier D, et al. Over-expression of the MDM2 gene is found in some cases of haematological malignancies. Br J Haematol 1994;88:415–418.

    Article  CAS  PubMed  Google Scholar 

  191. Faderl S, Kantarjian HM, Estey E, et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000;89:1976–1982.

    Article  CAS  PubMed  Google Scholar 

  192. Stirewalt DL, Clurman B, Appelbaum FR, Willman CL, Radich JP. p73 mutations and expression in adult de novo acute myelogenous leukemia Leukemia 1999;13:985–990.

    Article  CAS  PubMed  Google Scholar 

  193. Schmelz K, Wagner M, Dorken B, Tamm I. 5-Aza-2′-deoxycytidine induces p21(WAF) expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer. 2005;114(5): 683–695.

    Article  CAS  PubMed  Google Scholar 

  194. Lo Vasco VR, Calabrese G, Manzoli L, et al. Inositide-specific phospholipase c betal gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004;18:1122–1126.

    Article  CAS  PubMed  Google Scholar 

  195. Hahne M, Rimoldi D, Schroter M, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996;274:1363–1366.

    Article  CAS  PubMed  Google Scholar 

  196. Gupta P, Niehans GA, LeRoy SC, et al. Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival. Leukemia 1999;13:44–53.

    Article  CAS  PubMed  Google Scholar 

  197. Amin HM, Jilani I, Estey EH, et al. Increased apoptosis in bone marrow B lymphocytes but not T lymphocytes in myelodysplastic syndrome. Blood 2003;102:1866–1888.

    Article  CAS  PubMed  Google Scholar 

  198. Buggins AG, Milojkovic D, Arno MJ, et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol 2001;167:6021–6030.

    CAS  PubMed  Google Scholar 

  199. Milojkovic D, Devereux S, Westwood NB, Mufti GJ, Thomas NS, Buggins AG. Anti-apoptotic microenvironment of acute myeloid leukemia. J Immunol. 2004;173:6745–6752.

    CAS  PubMed  Google Scholar 

  200. Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002;2:502–513.

    Article  CAS  PubMed  Google Scholar 

  201. Osato M, Asou N, Abdalla E, et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP1B gene associated with myeloblastic leukemias. Blood 1999;93:1817–1824.

    CAS  PubMed  Google Scholar 

  202. Preudhomme C, Warot-Loze D, Roumier C, et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP1B gene in Mo acute myeloid leukemia and in myeloid malignancies with aquired trisomy 21. Blood 2000;96:2862–2869.

    CAS  PubMed  Google Scholar 

  203. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101:673–680.

    Article  CAS  PubMed  Google Scholar 

  204. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodys-plasia. Blood 2004;103:2316–2324.

    Article  CAS  PubMed  Google Scholar 

  205. Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 2004; 23:4284–4296.

    Article  CAS  PubMed  Google Scholar 

  206. Nakao M, Horiike S, Fukushima-Nakase Y, et al. Novel loss-of-function mutations of the haematopoiesisrelated transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Br J Haematol 2004;125:709–719.

    Article  CAS  PubMed  Google Scholar 

  207. Song W-J, Sullivan GM, Legare RD, et al. Haploin-sufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nat Genet 1999;23:166–175.

    Article  CAS  PubMed  Google Scholar 

  208. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001;20:5695–5707.

    Article  CAS  PubMed  Google Scholar 

  209. Schnittger S, Kinkelin U, Schoch C, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia, 2000;14:796–804

    Article  CAS  PubMed  Google Scholar 

  210. Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002;10:1107–1117.

    Article  CAS  PubMed  Google Scholar 

  211. Nakamura T, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002;10:1119–1128.

    Article  CAS  PubMed  Google Scholar 

  212. Ferrando AA, Armstrong SA, Neuberg DS, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003;102:262–268.

    Article  CAS  PubMed  Google Scholar 

  213. Rozovskaia T, Ravid-Amir O, Tillib S, et al. Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proc Natl Acad Sci USA 2003;100:7853–7858.

    Article  CAS  PubMed  Google Scholar 

  214. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–47.

    Article  CAS  PubMed  Google Scholar 

  215. Zeisig BB, Milne T, García-Cuéllar M-P, et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004;24:617–662.

    Article  CAS  PubMed  Google Scholar 

  216. Ono R, Nakajima H, Ozaki K, et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005;115:919–929.

    CAS  PubMed  Google Scholar 

  217. Yoneda-Kato N, Look AT, Kirstein MN, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996;12:265–275.

    CAS  PubMed  Google Scholar 

  218. Kwong YL. Translocation (3;5)(q21;q34) in erythroleukemia: a molecular and in situ hybridization study. Cancer Genet Cytogenet 1998;103:15–19.

    Article  CAS  PubMed  Google Scholar 

  219. Matsumoto N, Yoneda-Kato N, Iguchi T, et al. Elevated MLF1 expression correlates with malignant progression from myelodysplastic syndrome. Leukemia 2000;14:1757–1765.

    Article  CAS  PubMed  Google Scholar 

  220. Matsumoto N, Yoneda-Kato N, Yamamoto Y, Kishimoto Y, Fukuhara S. Myelodysplasia/myeloid leukemia factor 1, MLF1, as a new marker of prognosis, and leukemia progression from myelodysplastic syndrome. Blood 1997;90:201.

    Google Scholar 

  221. Winteringham LN, Kobelke S, Williams JH, Ingley E, Klinken SP. Myeloid leukemia factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation. Oncogene 2004;23:5105–5109.

    Article  CAS  PubMed  Google Scholar 

  222. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002;4:529–533.

    Article  CAS  PubMed  Google Scholar 

  223. Gandini D, De Angeli C, Aguiari G. Preferential expression of the transcription coactivator HTIF1 alpha gene in acute myeloid leukemia and MDS-related AML. Leukemia 2002;16:886–893.

    Article  CAS  PubMed  Google Scholar 

  224. Menke AL, Van der Eb AJ, Jochemsen AG. The Wilms’ tumor 1 gene: oncogene or tumor suppressor gene. Int Rev Cytol 1998;181:151–212.

    Article  CAS  PubMed  Google Scholar 

  225. Gashler AL, Bonthron DT, Madden SL, Rauscher FJ III, Collins T, Sukhatme VP. Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1. Proc Natl Acad Sci USA 1992;89:10,984–10,988.

    Article  CAS  PubMed  Google Scholar 

  226. Harrington MA, Konicek B, Song A, Xia XL, Fredericks WJ, Rauscher FJ III. Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J Biol Chem 1993;268:21,271–21,275.

    CAS  PubMed  Google Scholar 

  227. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ III. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 1992;257:674–678.

    Article  CAS  PubMed  Google Scholar 

  228. Guan LS, Rauchman M, Wang ZY. Induction of Rb-associated protein (RbAp46) by Wilms’ tumor suppressor WT1 mediates growth inhibition. J Biol Chem. 1998;273:27,047–27,050.

    Article  CAS  PubMed  Google Scholar 

  229. Mayo MW, Wang CY, Drouin SS. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 1999;18:3990–4003.

    Article  CAS  PubMed  Google Scholar 

  230. Call KM, Glaser T, Ito CY, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990;60:509–520.

    Article  CAS  PubMed  Google Scholar 

  231. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990;343:774–778.

    Article  CAS  PubMed  Google Scholar 

  232. Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat 1997;9:209–225.

    Article  CAS  PubMed  Google Scholar 

  233. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 1992;6:405–409.

    CAS  PubMed  Google Scholar 

  234. Miyagi T, Ahuja H, Kubota T, Kubonishi I, Koeffler HP, Miyoshi I. Expression of the candidate Wilm’s tumor gene, WT1, in human leukemia cells. Leukemia 1993;7:970–977.

    CAS  PubMed  Google Scholar 

  235. Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994;84:3071–3079.

    CAS  PubMed  Google Scholar 

  236. Yamagami T, Sugiyama H, Inoue K, et al. Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood 1996;87:2878–2884.

    CAS  PubMed  Google Scholar 

  237. Inoue K, Tamaki H, Ogawa H, et al. Wilms’ tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells. Blood 1998;91:2969–2976.

    CAS  PubMed  Google Scholar 

  238. Patmasiriwat P, Fraizer G, Kantarjian H, Saunders GF. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia 1999;13:891–900.

    Article  CAS  PubMed  Google Scholar 

  239. Tamaki H, Ogawa H, Ohyashiki K, et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999;13:393–399.

    Article  CAS  PubMed  Google Scholar 

  240. Cilloni D, Gottardi E, Messa F, et al. Piedmont Study Group on Myelodysplastic Syndromes. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol 2003;21:1988–1995.

    Article  CAS  PubMed  Google Scholar 

  241. Elisseeva OA, Oka Y, Tsuboi A, et al. Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood 2002;99:3272–3279.

    Article  CAS  PubMed  Google Scholar 

  242. Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG. CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998;18:4301–4314.

    CAS  PubMed  Google Scholar 

  243. Gombart AF, Hofmann WK, Kawano S, et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002;99:1332–1340.

    Article  CAS  PubMed  Google Scholar 

  244. McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control. Annu Rev Genet 2000;34: 331–358.

    Article  CAS  PubMed  Google Scholar 

  245. Boultwood J, Fidler C, Kusec R, et al. Telomere length in myelodysplastic syndromes. Am J Hematol 1997; 56:266–271.

    Article  CAS  PubMed  Google Scholar 

  246. Ohyashiki JH, Iwama H, Yahata N, et al. Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin Cancer Res 1999;5:1155–1160.

    CAS  PubMed  Google Scholar 

  247. Sieglova Z, Zilovcova S, Cermak J, et al. Dynamics of telomere erosion and its association with genome instability in myelodysplastic syndromes (MDS) and acute myelogenous leukemia arising from MDS: a marker of disease prognosis? Leuk Res 2004;28:1013–1021.

    Article  CAS  PubMed  Google Scholar 

  248. Rigolin GM, Porta MD, Bugli AM, et al. Flow cytometric detection of accelerated telomere shortening in myelodysplastic syndromes: correlations with aetiological and clinical-biological findings. Eur J Heamatol 2004;73:351–358.

    Article  Google Scholar 

  249. Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 1989;59:521–529.

    Article  CAS  PubMed  Google Scholar 

  250. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science 1995;269:1236–1241.

    Article  CAS  PubMed  Google Scholar 

  251. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997;33:787–791.

    Article  CAS  PubMed  Google Scholar 

  252. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995;85:2315–2320.

    CAS  PubMed  Google Scholar 

  253. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 (suppl):245–254.

    Article  CAS  PubMed  Google Scholar 

  254. Bird A. DNA methylation pattern and epigenetic memory. Genes Dev 2002;16:6–21.

    Article  CAS  PubMed  Google Scholar 

  255. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415–428.

    Article  CAS  PubMed  Google Scholar 

  256. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001;293:1068–1070.

    Article  CAS  PubMed  Google Scholar 

  257. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074–1080.

    Article  CAS  PubMed  Google Scholar 

  258. Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 2004;23:29–39.

    Article  CAS  PubMed  Google Scholar 

  259. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998;19:219–220.

    Article  CAS  PubMed  Google Scholar 

  260. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 2001;20:2536–2544.

    Article  CAS  PubMed  Google Scholar 

  261. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.

    Article  CAS  PubMed  Google Scholar 

  262. Laird PW, Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 1996;30:441–464.

    Article  CAS  PubMed  Google Scholar 

  263. Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies. Oncogene 2003;22:6489–6496.

    Article  CAS  PubMed  Google Scholar 

  264. Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 2003;109:80–88.

    Article  CAS  PubMed  Google Scholar 

  265. Von Leube. Rapid verlaufende schwere Anämie mit gleichzeitiger leukämischer Veränderung des Blutbildes. Berlin Klin Wochenschr 1900;37:85–97.

    Google Scholar 

  266. Longmore G, Guinan EC, Weinstein HJ, Gelber RD, Rappeport JM, Antin JH. Bone marrow transplantation for myelodysplasia and secondary acute nonlymphoblastic leukemia. J Clin Oncol 1990;8:1707–1714.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Parker, J.E. (2007). Myelodysplasia-Related AML. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics