Skip to main content

Modulating Gene Expression as a Therapeutic Approach in the Treatment of AML

  • Chapter
Acute Myelogenous Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1158 Accesses

Abstract

Chemotherapy plays an indispensable role in the management of leukemia. However, resistance development and lack of selectivity are major drawbacks. Unfortunate side effects of chemotherapy create a continuous demand for developing other novel strategies for treatment. Epigenetic modulation of gene expression is one of the emerging and promising strategies that has demonstrated successful clinical outcome in acute myeloid leukemis (AML). However, the exact molecular mechanism of action of epigenetic modifiers remains unclear. Ongoing clinical trials are attempting to identify the possible candidate genes that upon re-expression can induce remission and cure in patients. Interestingly, epigenetic modifiers exhibit other pharmacological effects not related to gene expression modulation, including generation of reactive oxygen species and DNA damage induction. It appears that epigenetic therapy is having a promising impact in myelodysplatic syndrome (MDS) and leukemia, but exactly how these epigenetic modifiers achieve clinical responses remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraga MF, Ballestar E, Paz MF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005;102(30):10,604–10,609.

    CAS  PubMed  Google Scholar 

  2. Swales AK, Spears N. Genomic imprinting and reproduction. Reproduction 2005;130(4):389–399.

    CAS  PubMed  Google Scholar 

  3. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3(6): 415–428.

    CAS  PubMed  Google Scholar 

  4. Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nat Genet 1995;10(1):20–27.

    CAS  PubMed  Google Scholar 

  5. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002;99(6):3740–3745.

    CAS  PubMed  Google Scholar 

  6. Chen L, MacMillan AM, Chang W, Ezaz-Nikpay K, Lane WS, Verdine GL. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 1991;30(46):11,018–11,025.

    CAS  PubMed  Google Scholar 

  7. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349(21):2042–2054.

    CAS  PubMed  Google Scholar 

  8. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T and Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001;1(3):194–202.

    CAS  PubMed  Google Scholar 

  9. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000;25(3): 338–342.

    CAS  PubMed  Google Scholar 

  10. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004;119(7):941–953.

    CAS  PubMed  Google Scholar 

  11. Slany RK. When epigenetics kills: MLL fusion proteins in leukemia. Hematol Oncol 2005;23(1):1–9.

    CAS  PubMed  Google Scholar 

  12. Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 2005; 41(16):2381–2402.

    CAS  PubMed  Google Scholar 

  13. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996;5(4–5):245–253.

    PubMed  Google Scholar 

  14. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999;21(1):103–107.

    CAS  PubMed  Google Scholar 

  15. Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 1996;56(4):722–727.

    CAS  PubMed  Google Scholar 

  16. Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 1989;3(5): 612–619.

    CAS  PubMed  Google Scholar 

  17. Bird AP, Wolffe AP. Methylation-induced repression — belts, braces, and chromatin. Cell 1999;99(5):451–454.

    CAS  PubMed  Google Scholar 

  18. Nimer SD, Moore MA. Effects of the leukemia-associated AML1-ETO protein on hematopoietic stem and progenitor cells. Oncogene 2004;23(24):4249–4254.

    CAS  PubMed  Google Scholar 

  19. Tonks A, Tonks AJ, Pearn L, et al. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 2004;18(7):1238–1245.

    CAS  PubMed  Google Scholar 

  20. Peterson LF, Zhang DE. The 8;21 translocation in leukemogenesis. Oncogene 2004;23(24):4255–4262.

    CAS  PubMed  Google Scholar 

  21. Nishida S, Hosen N, Shirakata T, et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with Wilms’ tumor gene, WT1. Blood 2006;107(8):3303–3312.

    CAS  PubMed  Google Scholar 

  22. Castilla LH, Garrett L, Adya N, et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999;23(2):144–146.

    CAS  PubMed  Google Scholar 

  23. Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005;102(2):449–454.

    CAS  PubMed  Google Scholar 

  24. DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002;99(10): 3780–3785.

    CAS  PubMed  Google Scholar 

  25. DiMartino JF, Miller T, Ayton PM, et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 2000;96(12):3887–3893.

    CAS  PubMed  Google Scholar 

  26. Forster A, Pannell R, Drynan LF, et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 2003;3(5):449–458.

    CAS  PubMed  Google Scholar 

  27. Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996;85(6):853–861.

    CAS  PubMed  Google Scholar 

  28. Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997;278(5340): 1059–1064.

    CAS  PubMed  Google Scholar 

  29. Martin ME, Milne TA, Bloyer S, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 2003;4(3):197–207.

    CAS  PubMed  Google Scholar 

  30. Sano K. Structure of AF3p21, a new member of mixed lineage leukemia (MLL) fusion partner proteins-implication for MLL-induced leukemogenesis. Leuk Lymphoma 2001;42(4):595–602.

    CAS  PubMed  Google Scholar 

  31. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 2000;19(5):843–851.

    CAS  PubMed  Google Scholar 

  32. Eguchi M, Eguchi-Ishimae M, Greaves M. The small oligomerization domain of gephyrin converts MLL to an oncogene. Blood 2004;103(10):3876–3882.

    CAS  PubMed  Google Scholar 

  33. Schermelleh L, Spada F, Easwaran HP, et al. Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods 2005;2(10):751–756.

    CAS  PubMed  Google Scholar 

  34. Petti MC, Mandelli F, Zagonel V, et al. Pilot study of 5-aza-2′-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 1993;7 (suppl 1): 36–41.

    PubMed  Google Scholar 

  35. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103(5):1635–1640.

    CAS  PubMed  Google Scholar 

  36. van den Bosch J, Lubbert M, Verhoef G, Wijermans PW. The effects of 5-aza-2′-deoxycytidine (Decitabine) on the platelet count in patients with intermediate and high-risk myelodysplastic syndromes. Leuk Res 2004;28(8):785–790.

    PubMed  Google Scholar 

  37. Claus R, Almstedt M, Lubbert M. Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Semin Oncol 2005;32(5):511–520.

    CAS  PubMed  Google Scholar 

  38. Hackanson B, Robbel C, Wijermans P, Lubbert M. In vivo effects of decitabine in myelodysplasia and acute myeloid leukemia: review of cytogenetic and molecular studies. Ann Hematol 2005;84 (suppl 13):32–38.

    CAS  PubMed  Google Scholar 

  39. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002;20(10):2429–2440.

    CAS  PubMed  Google Scholar 

  40. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002;100(8):2957–2964.

    CAS  PubMed  Google Scholar 

  41. Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006;66(12):6361–6369.

    CAS  PubMed  Google Scholar 

  42. Silverman LR, Mufti GJ. Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2005;2 (suppl 10):S12–23.

    Google Scholar 

  43. Ruter B, Wijermans PW, Lubbert M. Superiority of prolonged low-dose azanucleoside administration?: results of 5-aza-2′-deoxycytidine retreatment in high-risk myelodysplasia patients. Cancer 2006;106(8):1744–1750.

    PubMed  Google Scholar 

  44. Oki Y, Kantarijan H, Davis J, et al. Hypomethylation induction in MDS after treatment with decitabine at three different doses. ASCO Annual Meeting 2005;Abstract No: 6546.

    Google Scholar 

  45. Bouchard J. Mechanism of action of 5-AZA-dC: induced DNA hypomethylation does not lead to aberrant gene expression in human leukemic CEM cells. Leuk Res 1989;13(8):715–722.

    CAS  PubMed  Google Scholar 

  46. Zhu WG, Hileman T, Ke Y, et al. 5-Aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004;279(15):15,161–15,166.

    CAS  PubMed  Google Scholar 

  47. Schmelz K, Wagner M, Dorken B, Tamm I. 5-Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer 2005;114(5):683–695.

    CAS  PubMed  Google Scholar 

  48. Tamm I, Wagner M, Schmelz K. Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann Hematol 2005;84 (suppl 13):47–53.

    CAS  PubMed  Google Scholar 

  49. Sambucetti LC, Fischer DD, Zabludoff S, et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 1999;274(49):34,940–34,947.

    CAS  PubMed  Google Scholar 

  50. Kosugi H, Towatari M, Hatano S, et al. Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999;13(9):1316–1324.

    CAS  PubMed  Google Scholar 

  51. Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999;401(6749):188–193.

    CAS  PubMed  Google Scholar 

  52. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 2003;4(1):13–18.

    CAS  PubMed  Google Scholar 

  53. Ruefli AA, Ausserlechner MJ, Bernhard D, et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 2001;98(19):10,833–10,838.

    CAS  PubMed  Google Scholar 

  54. Butler LM, Zhou X, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 2002;99(18):11,700–11,705.

    CAS  PubMed  Google Scholar 

  55. Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 2005;7(7):646–657.

    CAS  PubMed  Google Scholar 

  56. Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005;11(1):71–76.

    CAS  PubMed  Google Scholar 

  57. Rosato RR, Almenara JA, Dai Y, Grant S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003;2(12):1273–1284.

    CAS  PubMed  Google Scholar 

  58. Amin HM, Saeed S, Alkan S. Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 2001;115(2):287–297.

    CAS  PubMed  Google Scholar 

  59. Guo F, Sigua C, Tao J, et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004;64(7):2580–2589.

    CAS  PubMed  Google Scholar 

  60. Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2005;9(4):809–824.

    CAS  PubMed  Google Scholar 

  61. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391(6669):811–814.

    CAS  PubMed  Google Scholar 

  62. Jing Y, Xia L, Waxman S. Targeted removal of PML-RARalpha protein is required prior to inhibition of histone deacetylase for overcoming all-trans retinoic acid differentiation resistance in acute promyelocytic leukemia. Blood 2002;100(3):1008–1013.

    CAS  PubMed  Google Scholar 

  63. Redner RL, Wang J, Liu JM. Chromatin remodeling and leukemia: new therapeutic paradigms. Blood 1999;94(2):417–428.

    CAS  PubMed  Google Scholar 

  64. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML-and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998;91(8):2634–2642.

    CAS  PubMed  Google Scholar 

  65. Licht JD, Chomienne C, Goy A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995;85(4):1083–1094.

    CAS  PubMed  Google Scholar 

  66. He LZ, Guidez F, Tribioli C, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998;18(2):126–135.

    CAS  PubMed  Google Scholar 

  67. Linggi B, Muller-Tidow C, van de Locht L, et al. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 2002;8(7):743–750.

    CAS  PubMed  Google Scholar 

  68. Rahmani M, Dai Y, Grant S. The histone deacetylase inhibitor sodium butyrate interacts synergistically with phorbol myristate acetate (PMA) to induce mitochondrial damage and apoptosis in human myeloid leukemia cells through a tumor necrosis factor-alpha-mediated process. Exp Cell Res 2002;277(1):31–47.

    CAS  PubMed  Google Scholar 

  69. Almenara J, Rosato R, Grant S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002;16(7):1331–1343.

    CAS  PubMed  Google Scholar 

  70. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003;101(8):3236–3239.

    CAS  PubMed  Google Scholar 

  71. Yu C, Rahmani M, Almenara J, et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and-resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 2003;63(9):2118–2126.

    CAS  PubMed  Google Scholar 

  72. Shaker S, Bernstein M, Momparler LF, Momparler RL. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res 2003;27(5):437–444.

    CAS  PubMed  Google Scholar 

  73. Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003;102(10):3765–3774.

    CAS  PubMed  Google Scholar 

  74. Rahmani M, Yu C, Dai Y, et al. Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res 2003;63(23):8420–8427.

    CAS  PubMed  Google Scholar 

  75. Rahmani M, Reese E, Dai Y, et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 2005;65(6):2422–2432.

    CAS  PubMed  Google Scholar 

  76. Gore SD, Carducci MA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs 2000 9(12):2923–2934.

    CAS  PubMed  Google Scholar 

  77. Gore SD, Weng LJ, Zhai S, et al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 2001;7(8):2330–2339.

    CAS  PubMed  Google Scholar 

  78. Gore SD, Weng LJ, Figg WD, et al. Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 2002;8(4):963–970.

    CAS  PubMed  Google Scholar 

  79. Kelly WK, O’Connor OA, Krug LM, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 2005;23(17):3923–3931.

    CAS  PubMed  Google Scholar 

  80. Ryan QC, Headlee D, Acharya M, et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 2005;23(17):3912–3922.

    CAS  PubMed  Google Scholar 

  81. Kuendgen A, Strupp C, Aivado M, et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004;104(5):1266–1269.

    CAS  PubMed  Google Scholar 

  82. Kuendgen A, Knipp S, Fox F, et al. Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 2005;84 (suppl 13):61–66.

    CAS  PubMed  Google Scholar 

  83. Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 2004;104(8):2492–2498.

    CAS  PubMed  Google Scholar 

  84. Otterson GA, Khleif SN, Chen W, Coxon AB, Kaye FJ. CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene 1995;11(6):1211–1216.

    CAS  PubMed  Google Scholar 

  85. Kawano S, Miller CW, Gombart AF, et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999;94(3):1113–1120.

    CAS  PubMed  Google Scholar 

  86. Yasunaga J, Taniguchi Y, Nosaka K, et al. Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res 2004;64(17):6002–6009.

    CAS  PubMed  Google Scholar 

  87. Ying J, Srivastava G, Hsieh WS, et al. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 2005;11(18):6442–6449.

    CAS  PubMed  Google Scholar 

  88. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001;61(8):3225–3229.

    CAS  PubMed  Google Scholar 

  89. Furukawa Y, Sutheesophon K, Wada T, et al. Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res 2005;3(6):325–334.

    CAS  PubMed  Google Scholar 

  90. Agirre X, Roman-Gomez J, Jimenez-Velasco A, et al. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 2006;25(13):1862–1870.

    CAS  PubMed  Google Scholar 

  91. Ishii H, Vecchione A, Furukawa Y, et al. Expression of FRA16D/WWOX and FRA3B/FHIT genes in hematopoietic malignancies. Mol Cancer Res 2003;1(13):940–947.

    CAS  PubMed  Google Scholar 

  92. Issa JP, Zehnbauer BA, Kaufmann SH, Biel MA, Baylin SB. HIC1 hypermethylation is a late event in hematopoietic neoplasms. Cancer Res 1997;57(9):1678–1681.

    CAS  PubMed  Google Scholar 

  93. Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG. SOCS-1 a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003;101(7):2784–2788.

    CAS  PubMed  Google Scholar 

  94. Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 2004;103(12):4630–4635.

    CAS  PubMed  Google Scholar 

  95. van Doorn R, Zoutman WH, Dijkman R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2005;23(17):3886–3896.

    PubMed  Google Scholar 

  96. Agrelo R, Setien F, Espada J, et al. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J Clin Oncol 2005;23(17):3940–3947.

    CAS  PubMed  Google Scholar 

  97. Tischkowitz M, Ameziane N, Waisfisz Q, et al. Bi-allelic silencing of the Fanconi anaemia gene FANCF in acute myeloid leukaemia. Br J Haematol 2003;123(3):469–471.

    CAS  PubMed  Google Scholar 

  98. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 1995;92(16):7416–7419.

    CAS  PubMed  Google Scholar 

  99. Airoldi I, Di Carlo E, Banelli B, et al. The IL-12Rbeta2 gene functions as a tumor suppressor in human B cell malignancies. J Clin Invest 2004;113(11):1651–1659.

    CAS  PubMed  Google Scholar 

  100. Youssef EM, Chen XQ, Higuchi E, et al. Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res 2004;64(7):2411–2417.

    CAS  PubMed  Google Scholar 

  101. Roman J, Castillejo JA, Jimenez A, et al. Hypermethylation of the calcitonin gene in acute lymphoblastic leukaemia is associated with unfavourable clinical outcome. Br J Haematol 2001;113(2):329–338.

    CAS  PubMed  Google Scholar 

  102. Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 2006;76(1):23–32.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fandy, T., Carraway, H., Gore, S.D. (2007). Modulating Gene Expression as a Therapeutic Approach in the Treatment of AML. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics