Genomics and Polycystic Ovary Syndrome (PCOS): The Use of Microarray Analysis to Identify New Candidate Genes

  • Jennifer R. Wood
  • Jerome F. StraussIII
Part of the Contemporary Endocrinology book series (COE)


Transcriptome profiling offers a potentially valuable approach to the identification of candidate genes and pathways that contribute to complex diseases. Here we describe the application of microarray analysis of human theca cells and ovaries to the understanding of the pathophysiology of polycystic ovary syndrome (PCOS), a complex reproductive endocrine and metabolic disorder, and the investigation of selected candidate genes derived from these analyses with respect to association and linkage to PCOS.


Polycystic ovary syndrome theca cells steroidogenesis follicle ovary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Stein, I. & Leventhal, M. (1935). Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29, 181–91.Google Scholar
  2. Franks, S. (1995). Polycystic ovary syndrome [published erratum appears in N Engl J Med 1995 Nov 23; 333(21):1435] [see comments]. N Engl J Med 333, 853–61.PubMedCrossRefGoogle Scholar
  3. Ehrmann, D. A. (2005). Polycystic ovary syndrome. N Engl J Med 352, 1223–36.PubMedCrossRefGoogle Scholar
  4. Legro, R. S. (2001). Polycystic ovary syndrome: the new millenium. Mol Cell Endocrinol 184, 87–93.PubMedCrossRefGoogle Scholar
  5. Dunaif, A., Givens, J., Haseltine, F. & Merriam, G. (1992). The Polycystic Ovary Syndrome. Blackwell Scientific, Cambridge.Google Scholar
  6. Moran, C., Knochenhauer, E., Boots, L. R. & Azziz, R. (1999). Adrenal androgen excess in hyperandrogenism: relation to age and body mass. Fertil Steril 71, 671–4.PubMedCrossRefGoogle Scholar
  7. Kumar, A., Woods, K. S., Bartolucci, A. A. & Azziz, R. (2005). Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 62, 644–9.CrossRefGoogle Scholar
  8. Legro, R. S., Spielman, R., Urbanek, M., Driscoll, D., Strauss, J. F. III & Dunaif, A. (1998). Phenotype and genotype in polycystic ovary syndrome. Recent Prog Horm Res 53, 217–56.PubMedGoogle Scholar
  9. Gilling-Smith, C., Willis, D. S., Beard, R. W. & Franks, S. (1994). Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab 79, 1158–65.PubMedCrossRefGoogle Scholar
  10. Nelson, V. L., Legro, R. S., Strauss, J. F. III & McAllister, J. M. (1999). Augmented androgen production is a stable steroidogenic phenotype of propogated theca cells from polycystic ovaries. Mol Endocrinol 13, 946–57.PubMedCrossRefGoogle Scholar
  11. Nelson, V. L., Qin Kn, K. N., Rosenfield, R. L., Wood, J. R., Penning, T. M., Legro, R. S., Strauss, J. F. III & McAllister, J. M. (2001). The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 86, 5925–33.PubMedCrossRefGoogle Scholar
  12. Doi, S. A., Towers, P. A., Scott, C. J. & Al-Shoumer, K. A. (2005). PCOS: an ovarian disorder that leads to dysregulation in the hypothalamic-pituitary-adrenal axis? Eur J Obstet Gynecol Reprod Biol 118, 4–16.PubMedCrossRefGoogle Scholar
  13. Zeleznik, A. J. (2004). The physiology of follicle selection. Reprod Biol Endocrinol 2, 31.PubMedCrossRefGoogle Scholar
  14. van den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–51.PubMedCrossRefGoogle Scholar
  15. McGee, E. A. & Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21, 200–14.PubMedCrossRefGoogle Scholar
  16. Knight, P. G. & Glister, C. (2001). Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 121, 503–12.PubMedCrossRefGoogle Scholar
  17. Hayashi, M., McGee, E. A., Min, G., Klein, C., Rose, U. M., van Duin, M. & Hsueh, A. J. (1999). Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140, 1236–44.PubMedCrossRefGoogle Scholar
  18. Juengel, J. L. & McNatty, K. P. (2005). The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 11, 143–60.PubMedGoogle Scholar
  19. Franks, S., Mason, H. & Willis, D. (2000). Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 163, 49–52.PubMedCrossRefGoogle Scholar
  20. Ehrmann, D. A., Barnes, R. B. & Rosenfield, R. L. (1995). Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 16, 322–53.PubMedCrossRefGoogle Scholar
  21. Waldstreicher, J., Santoro, N. F., Hall, J. E., Filicori, M. & Crowley, W. F., Jr. (1988). Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab 66, 165–72.PubMedCrossRefGoogle Scholar
  22. McCartney, C. R., Eagleson, C. A. & Marshall, J. C. (2002). Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin Reprod Med 20, 317–26.PubMedCrossRefGoogle Scholar
  23. Ledee-Bataille, N., Lapree-Delage, G., Taupin, J. L., Dubanchet, S., Taieb, J., Moreau, J. F. & Chaouat, G. (2001). Follicular fluid concentration of leukaemia inhibitory factor is decreased among women with polycystic ovarian syndrome during assisted reproduction cycles. Hum Reprod 16, 2073–8.PubMedCrossRefGoogle Scholar
  24. Teixeira Filho, F. L., Baracat, E. C., Lee, T. H., Suh, C. S., Matsui, M., Chang, R. J., Shimasaki, S. & Erickson, G. F. (2002). Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab 87, 1337–44.PubMedCrossRefGoogle Scholar
  25. Pigny, P., Merlen, E., Robert, Y., Cortet-Rudelli, C., Decanter, C., Jonard, S. & Dewailly, D. (2003). Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab 88, 5957–62.PubMedCrossRefGoogle Scholar
  26. Stubbs, S. A., Hardy, K., Da Silva-Buttkus, P., Stark, J., Webber, L. J., Flanagan, A. M., Themmen, A. P., Visser, J. A., Groome, N. P. & Franks, S. (2005). Anti-mullerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab 90, 5536–43.PubMedCrossRefGoogle Scholar
  27. Welt, C. K., Taylor, A. E., Fox, J., Messerlian, G. M., Adams, J. M. & Schneyer, A. L. (2005). Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 90, 5582–7.PubMedCrossRefGoogle Scholar
  28. Welt, C. K., Taylor, A. E., Martin, K. A. & Hall, J. E. (2002). Serum inhibin B in polycystic ovary syndrome: regulation by insulin and luteinizing hormone. J Clin Endocrinol Metab 87, 5559–65.PubMedCrossRefGoogle Scholar
  29. Fujiwara, T., Sidis, Y., Welt, C., Lambert-Messerlian, G., Fox, J., Taylor, A. & Schneyer, A. (2001). Dynamics of inhibin subunit and follistatin mRNA during development of normal and polycystic ovary syndrome follicles. J Clin Endocrinol Metab 86, 4206–15.PubMedCrossRefGoogle Scholar
  30. Dunaif, A. (1997). Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 18, 774–800.PubMedCrossRefGoogle Scholar
  31. Dunaif, A. (1999). Insulin action in the polycystic ovary syndrome. Endocrinol Metab Clin North Am 28, 341–59.PubMedCrossRefGoogle Scholar
  32. Dunaif, A., Xia, J., Book, C. B., Schenker, E. & Tang, Z. (1995). Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 96, 801–10.PubMedCrossRefGoogle Scholar
  33. Dunaif, A., Wu, X., Lee, A. & Diamanti-Kandarakis, E. (2001). Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 281, E392–9.PubMedGoogle Scholar
  34. Corbould, A., Kim, Y. B., Youngren, J. F., Pender, C., Kahn, B. B., Lee, A. & Dunaif, A. (2005). Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am J Physiol Endocrinol Metab 288, E1047–54.PubMedCrossRefGoogle Scholar
  35. Solomon, C. G. (1999). The epidemiology of polycystic ovary syndrome. Prevalence and associated disease risks. Endocrinol Metab Clin North Am 28, 247–63.PubMedCrossRefGoogle Scholar
  36. Legro, R. S., Driscoll, D., Strauss, J. F., III, Fox, J. & Dunaif, A. (1998). Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci U S A 95, 14956–60.PubMedCrossRefGoogle Scholar
  37. Kahsar-Miller, M. D., Nixon, C., Boots, L. R., Go, R. C. & Azziz, R. (2001). Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril 75, 53–8.PubMedCrossRefGoogle Scholar
  38. Franks, S., Gharani, N. & McCarthy, M. (2001). Candidate genes in polycystic ovary syndrome. Hum Reprod Update 7, 405–10.PubMedCrossRefGoogle Scholar
  39. Legro, R. S. & Strauss, J. F., III (2002). Molecular progress in infertility: polycystic ovary syndrome. Fertil Steril 78, 569–76.PubMedCrossRefGoogle Scholar
  40. Roldan, B., San Millan, J. L. & Escobar-Morreale, H. F. (2004). Genetic basis of metabolic abnormalities in polycystic ovary syndrome: implications for therapy. Am J Pharmacogenomics 4, 93–107.PubMedCrossRefGoogle Scholar
  41. Rosenbaum, D., Haber, R. S. & Dunaif, A. (1993). Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes. Am J Physiol 264, E197–202.PubMedGoogle Scholar
  42. Jakimiuk, A. J., Weitsman, S. R., Navab, A. & Magoffin, D. A. (2001). Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab 86, 1318–23.PubMedCrossRefGoogle Scholar
  43. Nestler, J. E., Jakubowicz, D. J., de Vargas, A. F., Brik, C., Quintero, N. & Medina, F. (1998). Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 83, 2001–5.PubMedCrossRefGoogle Scholar
  44. Wickenheisser, J. K., Quinn, P. G., Nelson, V. L., Legro, R. S., Strauss, J. F., III & McAllister, J. M. (2000). Differential activity of the cytochrome P450 17α-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 85, 2304–11.PubMedCrossRefGoogle Scholar
  45. Wood, J. R., Nelson-Degrave, V. L., Jansen, E., McAllister, J. M., Mosselman, S. & Strauss, J. F., III (2005). Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects. Physiol Genomics 20, 233–43.PubMedGoogle Scholar
  46. Wood, J. R., Nelson, V. L., Ho, C., Jansen, E., Wang, C. Y., Urbanek, M., McAllister, J. M., Mosselman, S. & Strauss, J. F., III (2003). The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem 278, 26380–90.PubMedCrossRefGoogle Scholar
  47. Jansen, E., Laven, J. S., Dommerholt, H. B., Polman, J., van Rijt, C., van den Hurk, C., Westland, J., Mosselman, S. & Fauser, B. C. (2004). Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol 18, 3050–63.PubMedCrossRefGoogle Scholar
  48. Diao, F. Y., Xu, M., Hu, Y., Li, J., Xu, Z., Lin, M., Wang, L., Zhou, Y., Zhou, Z., Liu, J. & Sha, J. (2004). The molecular characteristics of polycystic ovary syndrome (PCOS) ovary defined by human ovary cDNA microarray. J Mol Endocrinol 33, 59–72.PubMedCrossRefGoogle Scholar
  49. Oksjoki, S., Soderstrom, M., Inki, P., Vuorio, E. & Anttila, L. (2005). Molecular profiling of polycystic ovaries for markers of cell invasion and matrix turnover. Fertil Steril 83, 937–44.PubMedCrossRefGoogle Scholar
  50. Chuaqui, R. F., Bonner, R. F., Best, C. J., Gillespie, J. W., Flaig, M. J., Hewitt, S. M., Phillips, J. L., Krizman, D. B., Tangrea, M. A., Ahram, M., Linehan, W. M., Knezevic, V. & Emmert-Buck, M. R. (2002). Post-analysis follow-up and validation of microarray experiments. Nat Genet 32 Suppl, 509–14.PubMedCrossRefGoogle Scholar
  51. Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl, 490–5.PubMedCrossRefGoogle Scholar
  52. Quackenbush, J. (2002). Microarray data normalization and transformation. Nat Genet 32 Suppl, 496–501.PubMedCrossRefGoogle Scholar
  53. Holloway, A. J., van Laar, R. K., Tothill, R. W. & Bowtell, D. D. (2002). Options available—from start to finish—for obtaining data from DNA microarrays II. Nat Genet 32 Suppl, 481–9.PubMedCrossRefGoogle Scholar
  54. Sharov, A. A., Dudekula, D. B. & Ko, M. S. (2005). A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21, 2548–9.PubMedCrossRefGoogle Scholar
  55. Attia, G. R., Dooley, C. A., Rainey, W. E. & Carr, B. R. (2000). Transforming growth factor beta inhibits steroidogenic acute regulatory (StAR) protein expression in human ovarian thecal cells. Mol Cell Endocrinol 170, 123–9.PubMedCrossRefGoogle Scholar
  56. Christenson, L. K., Johnson, P. F., McAllister, J. M. & Strauss, J. F., III (1999). CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene. J Biol Chem 274, 26591–8.PubMedCrossRefGoogle Scholar
  57. Devoto, L., Christenson, L. K., McAllister, J. M., Makrigiannakis, A. & Strauss, J. F., III (1999). Insulin and insulin-like growth factor-I and -II modulate human granulosa-lutein cell steroidogenesis: enhancement of steroidogenic acute regulatory protein (StAR) expression. Mol Hum Reprod 5, 1003–10.PubMedCrossRefGoogle Scholar
  58. Zhang, G., Garmey, J. C. & Veldhuis, J. D. (2000). Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17alpha- hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology 141, 2735–42.PubMedCrossRefGoogle Scholar
  59. Wood, J. R. & Strauss, J. F., III (2002). Multiple signal transduction pathways regulate ovarian steroidogenesis. Rev Endocr Metab Disord 3, 33–46.PubMedCrossRefGoogle Scholar
  60. Molkentin, J. D. (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275, 38949–52.PubMedCrossRefGoogle Scholar
  61. Tremblay, J. J. & Viger, R. S. (2003). Novel roles for GATA transcription factors in the regulation of steroidogenesis. J Steroid Biochem Mol Biol 85, 291–8.PubMedCrossRefGoogle Scholar
  62. Jimenez, P., Saner, K., Mayhew, B. & Rainey, W. E. (2003). GATA-6 is expressed in the human adrenal and regulates transcription of genes required for adrenal androgen biosynthesis. Endocrinology 144, 4285–8.PubMedCrossRefGoogle Scholar
  63. Saner, K. J., Suzuki, T., Sasano, H., Pizzey, J., Ho, C., Strauss, J. F., III, Carr, B. R. & Rainey, W. E. (2005). Steroid sulfotransferase 2A1 gene transcription is regulated by steroidogenic factor 1 and GATA-6 in the human adrenal. Mol Endocrinol 19, 184–97.PubMedCrossRefGoogle Scholar
  64. Fluck, C. E. & Miller, W. L. (2004). GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. Mol Endocrinol 18, 1144–57.PubMedCrossRefGoogle Scholar
  65. Ho, C. K., Wood, J. R., Stewart, D. R., Ewens, K., Ankener, W., Wickenheisser, J., Nelson-Degrave, V., Zhang, Z., Legro, R. S., Dunaif, A., McAllister, J. M., Spielman, R. & Strauss, J. F., III (2005). Increased transcription and increased mRNA stability contribute to increased GATA6 mRNA abundance in PCOS theca cells. J Clin Endocrinol Metab 90, 6596–6602.PubMedCrossRefGoogle Scholar
  66. Gottesman, M. E., Quadro, L. & Blaner, W. S. (2001). Studies of vitamin A metabolism in mouse model systems. Bioessays 23, 409–19.PubMedCrossRefGoogle Scholar
  67. Napoli, J. L. (1996).Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol 80, S52–62.PubMedCrossRefGoogle Scholar
  68. Chetyrkin, S. V., Belyaeva, O. V., Gough, W. H. & Kedishvili, N. Y. (2001). Characterization of a novel type of human microsomal 3alpha-hydroxysteroid dehydrogenase: unique tissue distribution and catalytic properties. J Biol Chem 276, 22278–86.PubMedCrossRefGoogle Scholar
  69. Rexer, B. N., Zheng, W. L. & Ong, D. E. (2001). Retinoic acid biosynthesis by normal human breast epithelium is via aldehyde dehydrogenase 6, absent in MCF-7 cells. Cancer Res 61, 7065–70.PubMedGoogle Scholar
  70. Livera, G., Rouiller-Fabre, V., Pairault, C., Levacher, C. & Habert, R. (2002). Regulation and perturbation of testicular functions by vitamin A. Reproduction 124, 173–80.PubMedCrossRefGoogle Scholar
  71. Minegishi, T., Hirakawa, T., Kishi, H., Abe, K., Ibuki, Y. & Miyamoto, K. (2000). Retinoic acid (RA) represses follicle stimulating hormone (FSH)-induced luteinizing hormone (LH) receptor in rat granulosa cells. Arch Biochem Biophys 373, 203–10.PubMedCrossRefGoogle Scholar
  72. Minegishi, T., Hirakawa, T., Kishi, H., Abe, K., Tano, M., Abe, Y. & Miyamoto, K. (2000). The mechanisms of retinoic acid-induced regulation on the follicle-stimulating hormone receptor in rat granulosa cells. Biochim Biophys Acta 1495, 203–11.PubMedCrossRefGoogle Scholar
  73. Wickenheisser, J. K., Nelson-DeGrave, V. L., Hendricks, K. L., Legro, R. S., Strauss, J. F., III & McAllister, J. M. (2005). Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated from normal cycling women and women with polycystic ovary syndrome. J Clin Endocrinol Metab 90, 4858–65.PubMedCrossRefGoogle Scholar
  74. Clagett-Dame, M. & DeLuca, H. F. (2002). The role of vitamin a in Mammalian reproduction and embryonic development. Annu Rev Nutr 22, 347–81.PubMedCrossRefGoogle Scholar
  75. Carvalho, C. R., Carvalheira, J. B., Lima, M. H., Zimmerman, S. F., Caperuto, L. C., Amanso, A., Gasparetti, A. L., Meneghetti, V., Zimmerman, L. F., Velloso, L. A. & Saad, M. J. (2003). Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 144, 638–47.PubMedCrossRefGoogle Scholar
  76. Munir, I., Yen, H. W., Geller, D. H., Torbati, D., Bierden, R. M., Weitsman, S. R., Agarwal, S. K. & Magoffin, D. A. (2004). Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology 145, 175–83.PubMedCrossRefGoogle Scholar
  77. Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. (2003). TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–7.PubMedCrossRefGoogle Scholar
  78. Mei, F. C., Qiao, J., Tsygankova, O. M., Meinkoth, J. L., Quilliam, L. A. & Cheng, X. (2002). Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 277, 11497–504.PubMedCrossRefGoogle Scholar
  79. Urbanek, M., Woodroffe, A., Ewens, K. G., Diamanti-Kandarakis, E., Legro, R. S., Strauss, J. F., III Dunaif, A. & Spielman, R. S. (2005). Candidate Gene Region for Polycystic Ovary Syndrome (PCOS) on Chromosome 19p13.2. J Clin Endocrinol Metab 90, 6623–6629.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Jennifer R. Wood
  • Jerome F. StraussIII

There are no affiliations available

Personalised recommendations