Skip to main content

Techniques in the Assessment of Cardiovascular Blood Flow and Velocity

  • Chapter
Book cover Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Magnetic resonance imaging (MRI) has been increasingly recognized for its role in the diagnosis, treatment planning, and clinical management of patients with cardiovascular disease and has several important advantages over alternative imaging modalities, including electrocardiogram (ECG) synchronized and direct three-dimensional (3D) volumetric imaging unrestricted by imaging depth. In addition, the intrinsic sensitivity of MRI to flow, motion, and diffusion offers the unique possibility to acquire spatially registered functional information simultaneously with the morphological data within a single experiment (113,1619,31,36,38). As a result, flow-sensitive MRI techniques, also known as phase contrast (PC) MRI, provide noninvasive methods for the accurate and quantitative assessment of blood flow or tissue motion. Characterizations of the dynamic components of blood flow and cardiovascular function provide insight into normal and pathological physiology and have made considerable progress (14,15,2029,35,55).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hahn EL. Detection of sea water motion by nuclear precession. J Geophys Res 1960;65(2):776–777.

    Article  Google Scholar 

  2. Morse OC, Singer JR. Blood velocity measurements in intact subjects. Science 1970;170:440–441.

    Article  PubMed  CAS  Google Scholar 

  3. Burt CT. NMR measurements and flow. J Nucl Med 1982;23:1044–1045.

    PubMed  CAS  Google Scholar 

  4. Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1982;1:197–203.

    Article  PubMed  Google Scholar 

  5. Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol 1984;143:1157–1166.

    PubMed  CAS  Google Scholar 

  6. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984;8:588–593.

    Article  PubMed  CAS  Google Scholar 

  7. Constantinesco A, Mallet JJ, Bonmartin A, Lallot C, Briguet A. Spatial or flow velocity phase encoding gradients in NMR imaging. Magn Reson Imaging 1984;2:335–340.

    Article  PubMed  CAS  Google Scholar 

  8. Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984;171:429–436.

    Article  Google Scholar 

  9. Feinberg DA, Crooks LE, Sheldon P, Hoenninger J 3rd, Watts J, Arakawa M. Magnetic resonance imaging the velocity vector components of fluid flow. Magn Reson Med 1985;2:555–566.

    Article  PubMed  CAS  Google Scholar 

  10. O’Donnell M. NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys 1985;12:59–64.

    Article  PubMed  Google Scholar 

  11. Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986;10:715–722.

    Article  PubMed  CAS  Google Scholar 

  12. Axel L, Morton D. MR flow imaging by velocity-compensated/uncompensated difference images. J Comput Assist Tomogr 1987;11:31–34.

    Article  PubMed  CAS  Google Scholar 

  13. Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr 1987;11:751–756.

    Article  PubMed  CAS  Google Scholar 

  14. Underwood SR, Firmin DN, Klipstein RH, Rees RS, Longmore DB. Magnetic resonance velocity mapping: clinical application of a new technique. Br Heart J 1987;57:404–412.

    Article  PubMed  CAS  Google Scholar 

  15. Bogren HG, Underwood SR, Firmin DN, et al. Magnetic resonance velocity mapping in aortic dissection. Br J Radiol 1988;61:456–462.

    Article  PubMed  CAS  Google Scholar 

  16. Walker MF, Souza SP, Dumoulin CL. Quantitative flow measurement in phase contrast MR angiography. J Comput Assist Tomogr 1988;12:304–313.

    Article  PubMed  CAS  Google Scholar 

  17. Firmin DN, Nayler GL, Kilner PJ, Longmore DB. The application of phase shifts in NMR for flow measurement. Magn Reson Med 1990;14:230–241.

    Article  PubMed  CAS  Google Scholar 

  18. Pelc NJ, Bernstein MA, Shimakawa A, Glover GH. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imag 1991;1:405–413.

    Article  CAS  Google Scholar 

  19. Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR. Phase contrast cine magnetic resonance imaging. Magn Reson Q 1991;7:229–254.

    PubMed  CAS  Google Scholar 

  20. Bernstein MA, Shimakawa A, Pelc NJ. Minimizing TE in moment-nulled or flow-encoded two-and three-dimensional gradient-echo imaging. J Magn Reson Imaging 1992;2:583–588.

    Article  PubMed  CAS  Google Scholar 

  21. Conturo TE, Robinson BH. Analysis of encoding efficiency in MR imaging of velocity magnitude and direction. Magn Reson Med 1992;25:233–247.

    Article  PubMed  CAS  Google Scholar 

  22. Kraft KA, Fei DY, Fatouros PP. Quantitative phase-velocity MR imaging of in-plane laminar flow: effect of fluid velocity, vessel diameter, and slice thickness. Med Phys 1992;19:79–85.

    Article  PubMed  CAS  Google Scholar 

  23. Napel S, Lee DH, Frayne R, Rutt BK. Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging 1992;2:143–153.

    Article  PubMed  CAS  Google Scholar 

  24. Wedeen VJ. Magnetic resonance imaging of myocardial kinematics. Technique to detect, localize, and quantify the strain rates of the active human myocardium. Magn Reson Med 1992;27:52–67.

    Article  PubMed  CAS  Google Scholar 

  25. Frayne R, Rutt BK. Frequency response to retrospectively gated phase-contrast MR imaging: effect of interpolation. J Magn Reson Imaging 1993;3:907–917.

    Article  PubMed  CAS  Google Scholar 

  26. Hangiandreou NJ, Rossman PJ, Riederer SJ. Analysis of MR phase-contrast measurements of pulsatile velocity waveforms. J Magn Reson Imaging 1993;3:387–394.

    Article  PubMed  CAS  Google Scholar 

  27. Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 1993;88(5 pt 1):2235–2247.

    PubMed  CAS  Google Scholar 

  28. Mohiaddin RH, Kilner PJ, Rees S, Longmore DB. Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol 1993;22:1515–1521.

    Article  PubMed  CAS  Google Scholar 

  29. Rebergen SA, van der Wall EE, Doornbos J, de Roos A. Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 1993;126:1439–1456.

    Article  PubMed  CAS  Google Scholar 

  30. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 1993;3:521–530.

    Article  PubMed  CAS  Google Scholar 

  31. Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstructions of phase contrast, phased array multicoil data. Magn Reson Med 1994;32:330–334.

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton CA. Correction of partial volume inaccuracies in quantitative phase contrast MR angiography. Magn Reson Imaging 1994;12:1127–1130.

    Article  PubMed  CAS  Google Scholar 

  33. Lauzon ML, Holdsworth DW, Frayne R, Rutt BK. Effects of physiologic waveform variability in triggered MR imaging: theoretical analysis. J Magn Reson Imaging 1994;4:853–867.

    Article  PubMed  CAS  Google Scholar 

  34. Mohiaddin RH, Yang GZ, Kilner PJ. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping. J Comput Assist Tomogr 1994;18:383–392.

    Article  PubMed  CAS  Google Scholar 

  35. Pelc LR, Sayre J, Yun K, et al. Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Invest Radiol 1994;29:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  36. Pelc NJ, Sommer FG, Li KC, Brosnan TJ, Herfkens RJ, Enzmann DR. Quantitative magnetic resonance flow imaging. Magn Reson Q 1994;10:125–147.

    PubMed  CAS  Google Scholar 

  37. Pike GB, Meyer CH, Brosnan TJ, Pelc NJ. Magnetic resonance velocity imaging using a fast spiral phase contrast sequence. Magn Reson Med 1994;32:476–483.

    Article  PubMed  CAS  Google Scholar 

  38. Dumoulin CL. Phase contrast MR angiography techniques. Magn Reson Imaging Clin North Am 1995;3:399–411.

    CAS  Google Scholar 

  39. Frayne R, Rutt BK. Frequency response of prospectively gated phase-contrast MR velocity measurements. J Magn Reson Imaging 1995;5:65–73.

    Article  PubMed  CAS  Google Scholar 

  40. Frayne R, Steinman DA, Ethier CR, Rutt BK. Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 1995;5:428–431.

    Article  PubMed  CAS  Google Scholar 

  41. Lingamneni A, Hardy PA, Powell KA, Pelc NJ, White RD. Validation of cine phase-contrast MR imaging for motion analysis. J Magn Reson Imaging 1995;5:331–338.

    Article  PubMed  CAS  Google Scholar 

  42. McCauley TR, Pena CS, Holland CK, Price TB, Gore JC. Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J Magn Reson Imaging 1995;5:663–668.

    Article  PubMed  CAS  Google Scholar 

  43. Pelc NJ, Drangova M, Pelc LR, et al. Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging 1995;5:339–345.

    Article  PubMed  CAS  Google Scholar 

  44. Tang C, Blatter DD, Parker DL. Correction of partial-volume effects in phase-contrast flow measurements. J Magn Reson Imaging 1995;5:175–180.

    Article  PubMed  CAS  Google Scholar 

  45. Xiang QS. Temporal phase unwrapping for CINE velocity imaging. J Magn Reson Imaging 1995;5:529–534.

    Article  PubMed  CAS  Google Scholar 

  46. Andersen AH, Kirsch JE. Analysis of noise in phase contrast MR imaging. Med Phys 1996;23:857–869.

    Article  PubMed  CAS  Google Scholar 

  47. Polzin JA, Frayne R, Grist TM, Mistretta CA. Frequency response of multi-phase segmented k-space phase-contrast. Magn Reson Med 1996;35:755–762.

    Article  PubMed  CAS  Google Scholar 

  48. Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magn Reson Med 1996;36:800–803.

    Article  PubMed  CAS  Google Scholar 

  49. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN. Computation of flow pressure fields from magnetic resonance velocity mapping. Magn Reson Med 1996;36:520–526.

    Article  PubMed  CAS  Google Scholar 

  50. Bogren HG, Mohiaddin RH, Kilner PJ, Jimenez-Borreguero LJ, Yang GZ, Firmin DN. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Magn Reson Imaging 1997;7:784–793.

    Article  PubMed  CAS  Google Scholar 

  51. Drangova M, Zhu Y, Pelc NJ. Effect of artifacts due to flowing blood on the reproducibility of phase-contrast measurements of myocardial motion. J Magn Reson Imaging 1997;7:664–668.

    Article  PubMed  CAS  Google Scholar 

  52. Lee VS, Spritzer CE, Carroll BA, et al. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol 1997;169:1125–1131.

    PubMed  CAS  Google Scholar 

  53. Bernstein MA, Zhou XJ, Polzin JA, et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 1998;39:300–308.

    Article  PubMed  CAS  Google Scholar 

  54. Hennig J, Schneider B, Peschl S, Markl M, Krause T, Laubenberger J. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: methodology and applications to normal volunteers and patients. J Magn Reson Imaging 1998;8:868–877.

    Article  PubMed  CAS  Google Scholar 

  55. Mohiaddin RH, Pennell DJ. MR blood flow measurement. Clinical application in the heart and circulation. Cardiol Clin 1998;16:161–187.

    Article  PubMed  CAS  Google Scholar 

  56. van der Geest RJ, Niezen RA, van der Wall EE, de Roos A, Reiber JH. Automated measurement of volume flow in the ascending aorta using MR velocity maps: evaluation of inter-and intraobserver variability in healthy volunteers. J Comput Assist Tomogr 1998;22:904–911.

    Article  PubMed  Google Scholar 

  57. Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature 2000;404:759–761.

    Article  PubMed  CAS  Google Scholar 

  58. Thunberg P, Wigstrom L, Wranne B, Engvall J, Karlsson M. Correction for acceleration-induced displacement artifacts in phase contrast imaging. Magn Reson Med 2000;43:734–738.

    Article  PubMed  CAS  Google Scholar 

  59. Ebbers T, Wigstrom L, Bolger AF, Engvall J, Karlsson M. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn Reson Med 2001;45:872–879.

    Article  PubMed  CAS  Google Scholar 

  60. Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging 2001;13:690–698.

    Article  PubMed  CAS  Google Scholar 

  61. Ebbers T, Wigstrom L, Bolger AF, Wranne B, Karlsson M. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J Biomech Eng 2002;124:288–293.

    Article  PubMed  CAS  Google Scholar 

  62. Thunberg P, Wigstrom L, Ebbers T, Karlsson M. Correction for displacement artifacts in 3D phase contrast imaging. J Magn Reson Imaging 2002;16:591–597.

    Article  PubMed  Google Scholar 

  63. Markl M, Alley MT, Pelc NJ. Balanced phase-contrast steady-state free precession (PC-SSFP): a novel technique for velocity encoding by gradient inversion. Magn Reson Med 2003;49:945–952.

    Article  PubMed  CAS  Google Scholar 

  64. Markl M, Bammer R, Alley MT, et al. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 2003;50:791–801.

    Article  PubMed  CAS  Google Scholar 

  65. Bogren HG, Buonocore MH, Valente RJ. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging 2004;19:417–427.

    Article  PubMed  Google Scholar 

  66. Jung B, Schneider B, Markl M, Saurbier B, Geibel A, Hennig J. Measurement of left ventricular velocities: phase contrast MRI velocity mapping vs tissue-Doppler-ultrasound in healthy volunteers. J Cardiovasc Magn Reson 2004;6:777–783.

    Article  PubMed  Google Scholar 

  67. Korperich H, Gieseke J, Barth P, et al. Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping: a validation study. Circulation 2004;109:1987–1993.

    Article  PubMed  Google Scholar 

  68. Kvitting JP, Ebbers T, Engvall J, Sutherland GR, Wranne B, Wigstrom L. Three-directional myocardial motion assessed using 3D phase contrast MRI. J Cardiovasc Magn Reson 2004;6:627–636.

    Article  PubMed  Google Scholar 

  69. Nasiraei-Moghaddam A, Behrens G, Fatouraee N, Agarwal R, Choi ET, Amini AA. Factors affecting the accuracy of pressure measurements in vascular stenoses from phase-contrast MRI. Magn Reson Med 2004;52:300–309.

    Article  PubMed  Google Scholar 

  70. Ringgaard S, Oyre SA, Pedersen EM. Arterial MR imaging phase-contrast flow measurement: improvements with varying velocity sensitivity during cardiac cycle. Radiology 2004;232:289–294.

    Article  PubMed  Google Scholar 

  71. Thompson RB, McVeigh ER. Flow-gated phase-contrast MRI using radial acquisitions. Magn Reson Med 2004;52:598–604.

    Article  PubMed  Google Scholar 

  72. van der Weide R, Viergever MA, Bakker CJ. Resolution-insensitive velocity and flow rate measurement in low-background phase-contrast MRA. Magn Reson Med 2004;51:785–793.

    Article  PubMed  Google Scholar 

  73. Lotz J, Doker R, Noeske R, et al. In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 2005;21:604–610.

    Article  PubMed  Google Scholar 

  74. Peeters JM, Bos C, Bakker CJ. Analysis and correction of gradient nonlinearity and B0 inhomogeneity related scaling errors in two-dimensional phase contrast flow measurements. Magn Reson Med 2005;53:126–133.

    Article  PubMed  Google Scholar 

  75. Oshinski JN, Ku DN, Bohning DE, Pettigrew RI. Effects of acceleration on the accuracy of MR phase velocity measurements. J Magn Reson Imaging 1992;2:665–670.

    Article  PubMed  CAS  Google Scholar 

  76. Oshinski JN, Ku DN, Mukundan S Jr, Loth F, Pettigrew RI. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. J Magn Reson Imaging 1995;5:640–647.

    Article  PubMed  CAS  Google Scholar 

  77. Markl M, Hennig J. Phase contrast MRI with improved temporal resolution by view sharing: k-space related velocity mapping properties. Magn Reson Imaging 2001;19:669–676.

    Article  PubMed  CAS  Google Scholar 

  78. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 1995;195:471–478.

    PubMed  CAS  Google Scholar 

  79. Tyszka JM, Laidlaw DH, Asa JW, Silverman JM. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 2000;12:321–329.

    Article  PubMed  CAS  Google Scholar 

  80. Markl M, Draney MT, Hope MD, et al. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr 2004;28:459–468.

    Article  PubMed  Google Scholar 

  81. Thunberg P, Karlsson M, Wigstrom L. Accuracy and reproducibility in phase contrast imaging using SENSE. Magn Reson Med 2003;50:1061–1068.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Markl, M. (2008). Techniques in the Assessment of Cardiovascular Blood Flow and Velocity. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics