Skip to main content

Assessment of Arterial Elasticity by Cardiovascular MRI

  • Chapter
Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 2281 Accesses

Abstract

Although some of the energy of left ventricular contraction produces forward blood flow during systole, the majority is briefly stored as potential energy in the distended arteries. During diastole, this energy is then reconverted into forward flow as the arteries contract (1,2). This serves to ease the load on the left ventricle, promote coronary artery perfusion, and maintain forward flow to the peripheral vessels. In Otto Frank’s original “Windkessel” model (3), the arterial system acts as an elastic chamber in which diastolic pressure decays exponentially with a time constant determined by total arterial resistance and capacitance or compliance. Later refinements to this model include the addition of an inductance, or blood inertia, term and the division of the arterial tree into smaller Windkessel elements in analogy to a transmission line (4,5). Systemic arterial compliance is dominated by the aorta, which contributes over 60% of the total value (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Firmin DN, Mohiaddin RH, Underwood SR, Longmore DB. Magnetic resonance imaging: a method for the assessment of changes in vascular structure and function. J Hum Hypertens 1991;5(suppl 1);31–40.

    PubMed  Google Scholar 

  2. Metafratzi ZM, Efremidis SC, Skopelitou AS, De Roos A. The clinical significance of aortic compliance and its assessment with magnetic resonance imaging. J Cardiovasc Magn Reson 2002;4:481–491.

    Article  PubMed  Google Scholar 

  3. Frank, O. Die theorie der pulswellen. Z Biol 1926;85:91–130.

    Google Scholar 

  4. Milnor WR. Hemodynamics. 2nd ed. Baltimore, MD: Williams and Wilkins; 1989.

    Google Scholar 

  5. Greenwald, SE. Pulse pressure and arterial elasticity. QJM 2002;95:107–112.

    Article  PubMed  CAS  Google Scholar 

  6. Stergiopulos N, Segers P, Westerhof N. Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol 1999;276:H424–H428.

    PubMed  CAS  Google Scholar 

  7. Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 1966;18:278–292.

    PubMed  CAS  Google Scholar 

  8. Mohiaddin RH, Underwood SR, Bogren HG, et al. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J 1989;62:90–96.

    Article  PubMed  CAS  Google Scholar 

  9. Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol 1993;74:492–497.

    PubMed  CAS  Google Scholar 

  10. Bogren HG, Mohiaddin RH, Klipstein RK, et al. The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic study of aortic compliance and blood flow patterns. Am Heart J 1989;118:234–247.

    Article  PubMed  CAS  Google Scholar 

  11. Matsumoto Y, Honda T, Hamada M, Matsuoka H, Hiwada K. Evaluation of aortic distensibility in patients with coronary artery disease by use of cine magnetic resonance. Angiology 1996;47:149–155.

    Article  PubMed  CAS  Google Scholar 

  12. Di Renzi P, De Santis M, Fedele F, Passariello R. [Evaluation of aortic distensibility using cine-MR before and after antihypertensive treatment with calcium antagonists and ACE-inhibitors]. Cardiologia 1993;38:779–784.

    PubMed  Google Scholar 

  13. Honda T, Yano K, Matsuoka H, Hamada M, Hiwada K. Evaluation of aortic distensibility in patients with essential hypertension by using cine magnetic resonance imaging. Angiology 1994;45:207–212.

    Article  PubMed  CAS  Google Scholar 

  14. Resnick LM, Militianu D, Cunnings AJ, et al. Direct magnetic resonance determination of aortic distensibility in essential hypertension: relation to age, abdominal visceral fat, and in situ intracellular free magnesium. Hypertension 1997;30:654–659.

    PubMed  CAS  Google Scholar 

  15. Toikka JO, Niemi P, Ahotupa M, et al. Decreased large artery distensibility in borderline hypertension is related to increased in vivo low-density lipoprotein oxidation. Scand J Clin Lab Invest 2002;62:301–306.

    Article  PubMed  CAS  Google Scholar 

  16. Bogren HG, Klipstein RH, Mohiaddin RH, et al. Pulmonary artery distensibility and blood flow patterns: a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension. Am Heart J 1989;118:990–999.

    Article  PubMed  CAS  Google Scholar 

  17. Rerkpattanapipat P, Hundley WG, Link KM, et al. Relation of aortic distensibility determined by magnetic resonance imaging in patients > or = 60 years of age to systolic heart failure and exercise capacity. Am J Cardiol 2002;90:1221–1225.

    Article  PubMed  Google Scholar 

  18. Hundley WG, Kitzman DW, Morgan TM, et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol 2001;38:796–802.

    Article  PubMed  CAS  Google Scholar 

  19. Savolainen A, Keto P, Hekali P, et al. Aortic distensibility in children with the Marfan syndrome. Am J Cardiol 1992;70:691–693.

    Article  PubMed  CAS  Google Scholar 

  20. Adams JN, Brooks M, Redpath TW, et al. Aortic distensibility and stiffness index measured by magnetic resonance imaging in patients with Marfan’s syndrome. Br Heart J 1995;73:265–269.

    Article  PubMed  CAS  Google Scholar 

  21. Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following ?-blocker therapy in the Marfan syndrome. Am J Cardiol 1998;82:203–208.

    Article  PubMed  CAS  Google Scholar 

  22. Fattori R, Bacchi Reggiani L, Pepe G, et al. Magnetic resonance imaging evaluation of aortic elastic properties as early expression of Marfan syndrome. J Cardiovasc Magn Reson 2000;2:251–256.

    Article  PubMed  CAS  Google Scholar 

  23. Nollen GJ, Groenink M, Tijssen JG, Van Der Wall EE, Mulder BJ. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur Heart J 2004;25:1146–1152.

    Article  PubMed  Google Scholar 

  24. Van Kien PK, Mathieu F, Zhu L, et al. Mapping of familial thoracic aortic aneurysm/dissection with patent ductus arteriosus to 16p12.2–p13.13. Circulation 2005;112:200–206.

    Article  Google Scholar 

  25. Wilcken DE, Charlier AA, Hoffman JI, Guz A. Effects of alterations in aortic impedance on the performance of the ventricles. Circ Res 1964;14:283–293.

    PubMed  CAS  Google Scholar 

  26. Urschel CW, Covell JW, Sonnenblick EH, Ross J Jr, Braunwald E. Effects of decreased aortic compliance on performance of the left ventricle. Am J Physiol 1968;214:298–304.

    PubMed  CAS  Google Scholar 

  27. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart Disease? The Framingham Heart Study. Circulation 1999;100:354–360.

    PubMed  CAS  Google Scholar 

  28. Dart AM, Lacombe F, Yeoh JK, et al. Aortic distensibility in patients with isolated hypercholesterolaemia, coronary artery disease, or cardiac transplant. Lancet 1991;338:270–273.

    Article  PubMed  CAS  Google Scholar 

  29. Merillon JP, Motte G, Fruchaud J, Masquet C, Gourgon R. Evaluation of the elasticity and characteristic impedance of the ascending aorta in man. Cardiovasc Res 1978;12:401–406.

    Article  PubMed  CAS  Google Scholar 

  30. Dahan M, Paillole C, Ferreira B, Gourgon R. Doppler echocardiographic study of the consequences of aging and hypertension on the left ventricle and aorta. Eur Heart J 1990;11(suppl G):39–45.

    PubMed  Google Scholar 

  31. Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989;80:1652–1659.

    Article  PubMed  CAS  Google Scholar 

  32. Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 1993;88:1456–1462.

    PubMed  CAS  Google Scholar 

  33. Ting CT, Chang MS, Wang SP, Chiang BN, Yin FC. Regional pulse wave velocities in hypertensive and normotensive humans. Cardiovasc Res 1990;24:865–872.

    Article  PubMed  CAS  Google Scholar 

  34. Kuecherer HF, Just A, Kirchheim H. Evaluation of aortic compliance in humans. Am J Physiol Heart Circ Physiol 2000;278:H1411–H1413.

    PubMed  CAS  Google Scholar 

  35. Roach MR, Burton AC. The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 1957;35:681–690.

    Article  PubMed  CAS  Google Scholar 

  36. Caro CG, Pedley TJ, Schroter RC, Seed WA. The mechanics of the circulation. Oxford, UK: Oxford University Press; 1978.

    Google Scholar 

  37. Chien D, Saloner D, Laub G, Anderson CM. High resolution cine MRI of vessel distension. J Comput Assist Tomogr 1994;18:576–580.

    Article  PubMed  CAS  Google Scholar 

  38. Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 1993;14:160–167.

    Article  PubMed  CAS  Google Scholar 

  39. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH. Report of the Task Group on Reference Man. Oxford, UK: Pergamon Press; 1975.

    Google Scholar 

  40. Paz R, Mohiaddin RH, Longmore DB. Magnetic resonance assessment of the pulmonary arterial trunk anatomy, flow, pulsatility and distensibility. Eur Heart J 1993;14:1524–1530.

    Article  PubMed  CAS  Google Scholar 

  41. Buonocore MH, Bogren H. Optimized pulse sequences for magnetic resonance measurement of aortic cross sectional areas. Magn Reson Imaging 1991;9:435–447.

    Article  PubMed  CAS  Google Scholar 

  42. Forbat SM, Mohiaddin RH, Yang GZ, Firmin DN, Underwood SR. Measurement of regional aortic compliance by MR imaging: a study of reproducibility. J Magn Reson Imaging 1995;5:635–639.

    Article  PubMed  CAS  Google Scholar 

  43. Krug R, Boese JM, Schad LR. Determination of aortic compliance from magnetic resonance images using an automatic active contour model. Phys Med Biol 2003;48:2391–2404.

    Article  PubMed  Google Scholar 

  44. Crowe LA, Gatehouse P, Yang GZ, et al. Volume-selective 3D turbo spin echo imaging for vascular wall imaging and distensibility measurement. J Magn Reson Imaging 2003;17:572–580.

    Article  PubMed  Google Scholar 

  45. Boese JM, Bock M, Schoenberg SO, Schad LR. Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. Phys Med Biol 2000;45:1703–1713.

    Article  PubMed  CAS  Google Scholar 

  46. Grotenhuis HB, Westenberg JJM, Doornbos J, et al. In-plane pulse wave velocity with MRI in ischemic heart disease: validation of a new technique. Society for Cardiovascular Magnetic Resonance 8th Annual Meeting, San Francisco, January 21–23, 2005. J Cardiovasc Magn Reson 2005;7:120–121.

    Google Scholar 

  47. Hardy CJ, Bolster BD, McVeigh ER, Adams WJ, Zerhouni EA. A one-dimensional velocity technique for NMR measurement of aortic distensibility. Magn Reson Med 1994;31:513–520.

    Article  PubMed  CAS  Google Scholar 

  48. Pauly J, Nishimura D, Macovski A. A k-space analysis of small tip-angle excitation. J Magn Reson 1989;81:43–56.

    Article  Google Scholar 

  49. Hardy C, Cline H. Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity. J Appl Phys 1989;66:1513–1516.

    Article  Google Scholar 

  50. Bolster BD Jr, Atalar E, Hardy CJ, McVeigh ER. Accuracy of arterial pulse-wave velocity measurement using MR. J Magn Reson Imaging 1998;8:878–888.

    Article  PubMed  Google Scholar 

  51. Redpath TW, Norris DG, Jones RA, Hutchison JM. A new method of NMR flow imaging. Phys Med Biol 1984;29:891–895.

    Article  PubMed  CAS  Google Scholar 

  52. Feinberg DA, Crooks LE, Sheldon P, Hoenninger J 3rd, Watts J, Arakawa M. Magnetic resonance imaging the velocity vector components of fluid flow. Magn Reson Med 1985;2:555–566.

    Article  PubMed  CAS  Google Scholar 

  53. Dumoulin CL, Doorly DJ, Caro CG. Quantitative measurement of velocity at multiple positions using comb excitation and Fourier velocity encoding. Magn Reson Med 1993;29:44–52.

    Article  PubMed  CAS  Google Scholar 

  54. Hardy CJ, Bolster BD Jr, McVeigh ER, Iben IE, Zerhouni, EA. Pencil excitation with interleaved Fourier velocity encoding: NMR measurement of aortic distensibility. Magn Reson Med 1996;35:814–819.

    Article  PubMed  CAS  Google Scholar 

  55. Bock M, Schad LR, Muller E, Lorenz WJ. Pulsewave velocity measurement using a new real-time MR-method. Magn Reson Imaging 1995;13:21–29.

    Article  PubMed  CAS  Google Scholar 

  56. Itskovich VV, Kraft KA, Fei DY. Rapid aortic wave velocity measurement with MR imaging. Radiology 2001;219:551–557.

    PubMed  CAS  Google Scholar 

  57. Kraft KA, Itskovich VV, Fei DY. Rapid measurement of aortic wave velocity: in vivo evaluation. Magn Reson Med 2001;46:95–102.

    Article  PubMed  CAS  Google Scholar 

  58. Macgowan CK, Henkelman RM, Wood ML. Pulse-wave velocity measured in one heartbeat using MR tagging. Magn Reson Med 2002;48:115–121.

    Article  PubMed  Google Scholar 

  59. Shao X, Fei DY, Kraft KA. Rapid measurement of pulse wave velocity via multisite flow displacement. Magn Reson Med 2004;52:1351–1357.

    Article  PubMed  Google Scholar 

  60. Kraft KA, Shao X, Arena R, Fei DY. Proceedings of 13th Meeting of International Society for Magnetic Resonance in Medicine; Miami Beach, FL; 2005; p. 601.

    Google Scholar 

  61. Urchuk SN, Plewes DB. A velocity correlation method for measuring vascular compliance using MR imaging. J Magn Reson Imaging 1995;5:628–634.

    Article  PubMed  CAS  Google Scholar 

  62. Urchuk SN, Fremes SE, Plewes DB. In vivo validation of MR pulse pressure measurement in an aortic flow model: preliminary results. Magn Reson Med 1997;38:215–223.

    Article  PubMed  CAS  Google Scholar 

  63. Vulliemoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. Magn Reson Med 2002;47:649–654.

    Article  PubMed  Google Scholar 

  64. Auseon AJ, Tran T, Garcia AM, Hardy CJ, Valavalkar P, Moeschberger M, Raman SV. Aortic pathophysiology by cardiovascular magnetic resonance in patients with clinical suspicion of coronary artery disease. J Cardiovase Magn Reson 2007;9:43–48.

    Article  Google Scholar 

  65. Groenink M, de Roos A, Mulder BJ, et al. Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping. Radiology 2001;219:535–540.

    PubMed  CAS  Google Scholar 

  66. Oosterhof T, Nollen GJ, van der Wall EE, et al. Comparison of aortic stiffness in patients with juvenile forms of ascending aortic dilatation with vs without Marfan’s syndrome. Am J Cardiol 2005;95:996–998.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hardy, C.J. (2008). Assessment of Arterial Elasticity by Cardiovascular MRI. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics