Skip to main content

Nuclear Cardiology and CMR for the Assessment of Coronary Artery Disease

  • Chapter
Book cover Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 2290 Accesses

Abstract

The purpose of this chapter is not to produce a list of comparative studies between nuclear-based techniques and the cardiac magnetic resonance (MR) exam. These will change with time. It is rather to look at the two modalities in terms of physical principles and methods to determine where they differ, their degree of difference, where they are similar, and how they may be correlative. Nuclear imaging has had a long life within cardiology, and there is much magnetic resonance imaging (MRI) has to learn from it. It is a waste of resources to repeat the mistakes of the past. Consequently, practitioners of cardiovascular magnetic resonance imaging should have a foundation of the nuclear imaging past and present. The two modalities will certainly compete for the molecular imaging of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clements IP, Brown ML, Smith HC. Radionuclide measurement of left ventricular volume. Mayo Clin Proc 1981;56:733–739.

    PubMed  CAS  Google Scholar 

  2. Wackers FJ, Berger HJ, Johnstone DE, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol 1979;43:1159–1166.

    Article  PubMed  CAS  Google Scholar 

  3. Slutsky R, Karliner J, Battler A, Pfisterer M, Swanson S, Ashburn W. Reproducibility of ejection fraction and ventricular volume by gated radionuclide angiography after myocardial infarction. Radiology 1979;132:155–159.

    PubMed  CAS  Google Scholar 

  4. Upton MT, Palmeri ST, Jones RH, Coleman RE, Cobb FR. Assessment of left ventricular function by resting and exercise radionuclide angiocardiography following acute myocardial infarction. Am Heart J 1982;104:1232–1243.

    Article  PubMed  CAS  Google Scholar 

  5. Oberman A, Fan PH, Nanda NC, et al. Reproducibility of two-dimensional exercise echocardiography. J Am Coll Cardiol 1989;14:923–928.

    Article  PubMed  CAS  Google Scholar 

  6. Otterstad JE, Froeland G, St John Sutton M, Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J 1997;18:507–513.

    PubMed  CAS  Google Scholar 

  7. Gottdiener JS, Livengood SV, Meyer PS, Chase GA. Should echocardiography be performed to assess effects of antihypertensive therapy? Test-retest reliability of echocardiography for measurement of left ventricular mass and function. J Am Coll Cardiol 1995;25:424–430.

    Article  PubMed  CAS  Google Scholar 

  8. Benjelloun H, Cranney GB, Kirk KA, Blackwell GG, Lotan CS, Pohost GM. Interstudy reproducibility of biplane cine nuclear magnetic resonance measurements of left ventricular function. Am J Cardiol 1991;67:1413–1420.

    Article  PubMed  CAS  Google Scholar 

  9. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29–34.

    Article  PubMed  Google Scholar 

  10. Sanchez-Ortiz GI, Wright GJ, Clarke N, Declerck J, Banning AP, Noble JA. Automated 3-D echocardiography analysis compared with manual delineations and SPECT MUGA. IEEE Trans Med Imaging 2002;21:1069–1076.

    Article  PubMed  Google Scholar 

  11. Miller TD, Taliercio CP, Zinsmeister AR, Gibbons RJ. Risk stratification of single or double vessel coronary artery disease and impaired left ventricular function using exercise radionuclide angiography. Am J Cardiol 1990;65:1317–1321.

    Article  PubMed  CAS  Google Scholar 

  12. White HD, Norris, RM, Brown MA, Brandt PW, Whitlock M. Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1978;76:44–51.

    Article  Google Scholar 

  13. Gibbons RJ, Zinsmeister AR, Miller TD, Clements IP. Supine exercise electrocardiography compared with exercise radionuclide angiography in noninvasive identification of severe coronary artery disease. Ann Intern Med 1990;112:743–749.

    PubMed  CAS  Google Scholar 

  14. Port S, Cobb FR, Coleman RE, Jones RH. Effect of age on the response of the left ventricular ejection fraction to exercise. N Engl J Med 1980;303:1133–1137.

    Article  PubMed  CAS  Google Scholar 

  15. Olvey SK, Reduto LA, Stevens PM, Deaton WJ, Miller RR. First pass radionuclide assessment of right and left ventricular ejection fraction in chronic pulmonary disease. Effect of oxygen upon exercise response. Chest 1980;78:4–9.

    Article  PubMed  CAS  Google Scholar 

  16. Chareonthaitawee P, Christian TF, Miller TD, Hodge, DO, Gibbons RJ. The correlation of resting first pass left ventricular ejection fraction with resting infarct size: is ventricular function assessment always necessary? Am J Cardiol 1998;81:1281–1285.

    Article  PubMed  CAS  Google Scholar 

  17. Chua T, Kiat H, Germano G, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. Correlation with echocardiography and rest thallium-201 scintigraphy. J Am Coll Cardiol 1994;23:1107–1114.

    Article  PubMed  CAS  Google Scholar 

  18. Taillefer R, Primeau M, Costi P, Lambert R, Leveille J, Latour Y. Technetium-99m-sestamibi myocardial perfusion imaging in detection of coronary artery disease: comparison between initial (1-hour) and delayed (3-hours) postexercise images. J Nucl Med 1991;32:1961–1965.

    PubMed  CAS  Google Scholar 

  19. Johnson LL, Verdesca SA, Aude WY, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 1997;30:1641–1648.

    Article  PubMed  CAS  Google Scholar 

  20. Germano G, Kiat H, Kavanagh PB, et al. Recovery of regional left ventricular dysfunction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–2147.

    PubMed  CAS  Google Scholar 

  21. Schaefer WM, Lipke CSA, Nowak B, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: comparison with cardiac MRI. J Nucl Med 2004;45:74–79.

    PubMed  Google Scholar 

  22. Iskandrian AE, Germano G, VanDecker E, et al. Validation of left ventricular volume measurement by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 1998;5:574–578.

    Article  PubMed  CAS  Google Scholar 

  23. Ioannidis JP, Trikalinos TA, Danias PG. Electocardiogram-gated single-photon emission computed tomography vs cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol 2002;39:2059–2068.

    Article  PubMed  Google Scholar 

  24. Rajappan K, Livieratos L, Camici PG, Pennell DJ. Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 2002;43:806–810.

    PubMed  Google Scholar 

  25. Manrique A, Faraggi M, Vera P, et al. 201Tl and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 1999;40:805–809.

    PubMed  CAS  Google Scholar 

  26. Persson E, Carlsson M, Palmer J, Pahlm O, Arheden H. Evaluation of left ventricular volumes and ejection fraction by automated gated myocardial SPECT vs cardiovascular magnetic resonance. Clin Physiol Funct Imaging 2005;25:135–141.

    Article  PubMed  Google Scholar 

  27. Kane GC, Hauser MF, Behrenbeck T, Miller TD, Gibbons RJ, Christian TF. The impact of gender on Tc-99m sestamibi gated left ventricular ejection fraction. Am J Cardiol 2002;89:1238–1241.

    Article  PubMed  Google Scholar 

  28. Travin MI, Heller GV, Johnson LL, et al. The prognostic value of ECG-gated SPECT imaging in patients undergoing stress Tc-99m sestamibi myocardial perfusion imaging. J Nucl Cardiol 2004;11:253–262.

    Article  PubMed  Google Scholar 

  29. Leppo JA, Okada RD, Strauss HW, Pohost GM. Effect of hyperaemia on thallium-201 redistribution in normal canine myocardium. Cardiovasc Res 1985;19:679–685.

    Article  PubMed  CAS  Google Scholar 

  30. Kushner FG, Okada RD, Kirshenbaum HD, Boucher CA, Strauss HW, Pohost GM. Lung thallium-201 uptake after stress testing in patients with coronary artery disease. Circulation 1981;63:341–347.

    Article  PubMed  CAS  Google Scholar 

  31. Mahmarian JJ. State of the art for coronary disease detection: thallium-201. In Zaret BL, Beller GA, eds. Nuclear cardiology: state of the art and future directions. St. Louis, MO: Mosby; 1999:237–272.

    Google Scholar 

  32. Kwok JM, Miller TD, Christian TF, Hodge DO, Gibbons RJ. Prognostic value of a treadmill exercise score in symptomatic patients with nonspecific ST-T abnormalities on resting ECG. JAMA 1999;282:1047–1053.

    Article  PubMed  CAS  Google Scholar 

  33. Mark DB, Shaw L, Harrell FE Jr, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 1991;325:849–853.

    Article  PubMed  CAS  Google Scholar 

  34. Hu TC, Christian TF, Aletras AH, Taylor JL, Korestsky AP, Arai AE. Maganese enhanced MRI of normal and ischemic canine myocardium. Magn Reson Med 2005;54:196–200.

    Article  PubMed  CAS  Google Scholar 

  35. Natanzon A, Aletras AH, Hsu LY, Arai AE. Determining canine myocardial area at risk with manganese-enhanced MR imaging. Radiology 2005;236:859–866.

    Article  PubMed  Google Scholar 

  36. Glover DK, Ruiz M, Edwards NC, et al. Comparison between 201Tl and 99mTc sestamibi uptake during adenosine-induced vasodilation as a function of coronary stenosis severity. Circulation 1995 Feb 1;91:813–820.

    PubMed  CAS  Google Scholar 

  37. Christian TF, Rettmann DW, Aletras AH, et al. Absolute myocardial perfusion in canines measured using dual-bolus first-pass MR imaging. Radiology 2004;232:677–684.

    Article  PubMed  Google Scholar 

  38. Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998;25:73–84.

    Article  PubMed  CAS  Google Scholar 

  39. Kroll K, Wilke N, Jerosch-Herold M, et al. Modeling regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol 1996;271(4 pt 2):H1643–H1655.

    PubMed  CAS  Google Scholar 

  40. Nagel E, Thouet T, Klein C, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432–437;Epub July 14, 2003.

    Article  PubMed  Google Scholar 

  41. Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 2002;39:864–870.

    Article  PubMed  Google Scholar 

  42. Sensky PR, Samani NJ, Reek C, Cherryman GR. Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 2002;18:373–383.

    Article  PubMed  Google Scholar 

  43. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101:1379–1383.

    PubMed  CAS  Google Scholar 

  44. Ling LH, Christian TF, Mulvagh SL, et al. Determining myocardial viability in chronic ischemic left ventricular dysfunction: a prospective comparison of rest-redistribution thallium 201 single-photon emission computed tomography, nitroalvcerin-dobutamine echocardiography, and intracoronary myocardial contrast echocardiography. Am Heart J 2006 Apr;151(4):882–9.

    Article  PubMed  Google Scholar 

  45. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–1453.

    Article  PubMed  CAS  Google Scholar 

  46. Uemura S, Sakuma H, Motoyasu M, et al. Thallium-201 SPECT and low-dose dobutamine stress cine MRI for predicting functional recovery of regional myocardial contraction in patients with myocardial infarction. J Cardiovasc Magn Reson 2004;6:697–707.

    Article  PubMed  Google Scholar 

  47. Gunning MG, Anagnostopoulos C, Knight CJ, et al. Comparison of 20T1, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998;98:1869–1874.

    PubMed  CAS  Google Scholar 

  48. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1992;86:1125–1137.

    PubMed  Google Scholar 

  49. Wagdy H, Christian TF, Miller TD, Gibbons RJ. The value of 24 hours images after rest thallium injection. Nucl Med Commun 2002;23:629–637.

    Article  PubMed  CAS  Google Scholar 

  50. Piwnica-Worms D, Kronauge JF, Holman BL, Lister-James J, Davison A, Jones AG. Hexakis(carbomethoxyisopropylisonitrile) technetium(I), a new myocardial perfusion imaging agent: binding characteristics in cultured chick heart cells. J Nucl Med 1988;29:55–61.

    PubMed  CAS  Google Scholar 

  51. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F] fluorodeoxyglucose. Circulation 1994;89:578–587.

    PubMed  CAS  Google Scholar 

  52. Gerber BL, Ordoubadi FF, Wijns W, et al. Positron emission tomography using F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of F-fluoro-deoxyglucose positron emission tomography for the detection of myocardial viability. Eur Heart J 2001;22:1691–1701.

    Article  PubMed  CAS  Google Scholar 

  53. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633–644

    PubMed  CAS  Google Scholar 

  54. Kuhl HP, Beek AM, Van der Weert AP, et al. Myocardial viability in chronic ischemic heart disease comparison of contrast-enhanced magnetic resonance imaging with 18F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2003;41:1341–1348.

    Article  PubMed  Google Scholar 

  55. Giorgettie A, Pingitore A, Favilli B, et al. Baseline/postnitrate tetrofosmin SPECT for myocardial viability assessment in patients with postischemic severe left ventricular dysfunction: new evidence from MRI. J Nucl Med 2005;46:1285–1293.

    Google Scholar 

  56. Ibrahim T, Nekolla SG, Hornke M, et al. Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: comparison with single-photon emission tomography using tc99m-sestamibi. J Am Coll Cardiol 2005;45:544–552.

    Article  PubMed  Google Scholar 

  57. Lund GK, Stork A, Saeed M, et al. Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201T1 SPECT imaging. Radiology 2004;232:49–57; Epub May 27, 2004.

    Article  PubMed  Google Scholar 

  58. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002;105:162–167.

    Article  PubMed  Google Scholar 

  59. Slomka PJ, Fieno D, Thomson L, et al. Automatic detection and size quantification of infarcts by myocardial perfusion SPECT: clinical validation by delayed-enhancement MRI. J Nucl Med 2005;46:728–735.

    PubMed  Google Scholar 

  60. Thiele H, Kappl MJE, Conradi S, Niebauer J, Hambrecht R, Schuler G. Reproducibility of chronic and acute infarct size measurement by delayed enhancement magnetic resonance imaging. J Am Coll Cardiol 2006 Apr 18;47(8):1641–5.

    Article  PubMed  Google Scholar 

  61. Mahrholdt H, Wagner A, Holly TA, Elliott MD, Bonow RO, Kim RJ. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002;106:2322–2327.

    Article  PubMed  CAS  Google Scholar 

  62. O’Connor MK, Hammell T, Gibbons RJ. In vitro validation of a simple tomographic technique for estimation of percentage myocardium at risk using methoxyisobutyl isonitrile technetium 99m (sestamibi). Eur J Nucl Med 1990;17:69–76.

    Article  PubMed  Google Scholar 

  63. Miller TD, Hodge DO, Sutton JM, et al. Usefulness of Tc-99m sestamibi infarct size in predicting posthospital mortality following acute myocardial infarction. Am J Cardiol 1998;81:1491–1493.

    Article  PubMed  CAS  Google Scholar 

  64. Christian TF. Related articles links. No abstracts. Positively magnetic north. J Am Coll Cardiol 2006 Apr 18;47(8):1646–1648.

    Article  PubMed  Google Scholar 

  65. Wagner A, Marholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003;361:374–379.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Christian, T.F. (2008). Nuclear Cardiology and CMR for the Assessment of Coronary Artery Disease. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics