Skip to main content

Safety and Monitoring for Cardiac Magnetic Resonance Imaging

  • Chapter
Book cover Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 2296 Accesses

Abstract

Because of unsurpassed soft tissue resolution, lack of ionizing radiation, and multi-planar imaging capability, magnetic resonance imaging (MRI) has become an important tool in the evaluation and treatment of cardiovascular disorders. However, an increasing proportion of patients with cardiovascular disease have higher acuity of disease and ferromagnetic implants with potential for interaction with the MRI environment. Familiarity with each device class and its potential for electromagnetic interaction is essential for radiologists and cardiologists performing MRI examinations in this population of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prasad SK, Pennell DJ. Safety of cardiovascular magnetic resonance in patients with cardiovascular implants and devices. Heart 2004;90:1241–1244.

    Article  PubMed  CAS  Google Scholar 

  2. Manner I, Alanen A, Komu M, Savunen T, Kantonen I, Ekfors T. MR imaging in the presence of small circular metallic implants. Assessment of thermal injuries. Acta Radiol 1996;37:551–554.

    Article  PubMed  CAS  Google Scholar 

  3. Okamura Y, Yamada Y, Mochizuki Y, et al. [Evaluation of coronary artery bypass grafts with magnetic resonance imaging]. Nippon Kyobu Geka Gakkai Zasshi 1997;45:801–805.

    PubMed  CAS  Google Scholar 

  4. Hartnell GG, Spence L, Hughes LA, Cohen MC, Saouaf R, Buff B. Safety of MR imaging in patients who have retained metallic materials after cardiac surgery. AJR Am J Roentgenol 1997;168:1157–1159.

    PubMed  CAS  Google Scholar 

  5. Murphy KJ, Cohan RH, Ellis JH. MR imaging in patients with epicardial pacemaker wires. AJR Am J Roentgenol 1999;172:727–728.

    PubMed  CAS  Google Scholar 

  6. Roguin A, Zviman MM, Meininger GR, et al. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 T. Circulation 2004;110:475–482.

    Article  PubMed  Google Scholar 

  7. Soulen RL, Budinger TF, Higgins CB. Magnetic resonance imaging of prosthetic heart valves. Radiology 1985;154:705–707.

    PubMed  CAS  Google Scholar 

  8. Edwards MB, Taylor KM, Shellock FG. Prosthetic heart valves: evaluation of magnetic field interactions, heating, and artifacts at 1.5 T. J Magn Reson Imaging 2000;12:363–369.

    Article  PubMed  CAS  Google Scholar 

  9. Shellock FG. Prosthetic heart valves and annuloplasty rings: assessment of magnetic field interactions, heating, and artifacts at 1.5 T. J Cardiovasc Magn Reson 2001;3:317–324.

    Article  PubMed  CAS  Google Scholar 

  10. Shellock FG. Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-T MR system. J Magn Reson Imaging 2002;16:721–732.

    Article  PubMed  Google Scholar 

  11. Edwards MB, Draper ER, Hand JW, Taylor KM, Young IR. Mechanical testing of human cardiac tissue: some implications for MRI safety. J Cardiovasc Magn Reson 2005;7:835–840.

    Article  PubMed  Google Scholar 

  12. Shellock FG. Magnetic resonance safety update 2002: implants and devices. J Magn Reson Imaging 2002;16:485–496.

    Article  PubMed  Google Scholar 

  13. Condon B, Hadley DM. Potential MR hazard to patients with metallic heart valves: the Lenz effect. J Magn Reson Imaging 2000;12:171–176.

    Article  PubMed  CAS  Google Scholar 

  14. van Gorp MJ, van der Graaf Y, de Mol BA, et al. Bjork-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures. Radiology 2004;230:709–714.

    Article  PubMed  Google Scholar 

  15. Ho JC, Shellock FG. Magnetic properties of Ni-Co-Cr-base Elgiloy. J Mater Sci Mater Med 1999;10:555–560.

    Article  PubMed  CAS  Google Scholar 

  16. Edwards MB, Ordidge RJ, Hand JW, Taylor KM, Young IR. Assessment of magnetic field (4.7 T) induced forces on prosthetic heart valves and annuloplasty rings. J Magn Reson Imaging 2005;22:311–317.

    Article  PubMed  Google Scholar 

  17. Strohm O, Kivelitz D, Gross W, et al. Safety of implantable coronary stents during 1H-magnetic resonance imaging at 1.0 and 1.5 T. J Cardiovasc Magn Reson 1999;1:239–245.

    Article  PubMed  CAS  Google Scholar 

  18. Scott NA, Pettigrew RI. Absence of movement of coronary stents after placement in a magnetic resonance imaging field. Am J Cardiol 1994;73:900–901.

    Article  PubMed  CAS  Google Scholar 

  19. Hug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E. Coronary arterial stents: safety and artifacts during MR imaging. Radiology 2000;216:781–787.

    PubMed  CAS  Google Scholar 

  20. Kramer CM, Rogers WJ Jr, Pakstis DL. Absence of adverse outcomes after magnetic resonance imaging early after stent placement for acute myocardial infarction: a preliminary study. J Cardiovasc Magn Reson 2000;2:257–261.

    Article  PubMed  CAS  Google Scholar 

  21. Gerber TC, Fasseas P, Lennon RJ, et al. Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol 2003;42:1295–1298.

    Article  PubMed  Google Scholar 

  22. Porto I, Selvanayagam J, Ashar V, Neubauer S, Banning AP. Safety of magnetic resonance imaging 1 to 3 days after bare metal and drug-eluting stent implantation. Am J Cardiol 2005;96:366–368

    Article  PubMed  CAS  Google Scholar 

  23. Shellock FG, Forder JR. Drug eluting coronary stent: in vitro evaluation of magnet resonance safety at 3 T. J Cardiovasc Magn Reson 2005;7:415–419.

    Article  PubMed  Google Scholar 

  24. Busch M, Vollmann W, Bertsch T, et al. On the heating of inductively coupled resonators (stents) during MRI examinations. Magn Reson Med 2005;54:775–782.

    Article  PubMed  Google Scholar 

  25. Engellau L, Olsrud J, Brockstedt S, et al. MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysms: ferromagnetism, heating, artifacts, and velocity mapping. J Magn Reson Imaging 2000;12:112–121.

    Article  PubMed  CAS  Google Scholar 

  26. Ahmed S, Shellock FG. Magnetic resonance imaging safety: implications for cardiovascular patients. J Cardiovasc Magn Reson 2001;3:171–182.

    Article  PubMed  CAS  Google Scholar 

  27. Stables RH, Mohiaddin R, Panting J, Pennell DJ, Pepper J, Sigwart U. Images in cardiovascular medicine. Exclusion of an aneurysmal segment of the thoracic aorta with covered stents. Circulation 2000;101:1888–1889.

    PubMed  CAS  Google Scholar 

  28. Marshall MW, Teitelbaum GP, Kim HS, Deveikis J. Ferromagnetism and magnetic resonance artifacts of platinum embolization microcoils. Cardiovasc Intervent Radiol 1991;14:163–166.

    Article  PubMed  CAS  Google Scholar 

  29. Okahara M, Kiyosue H, Hori Y, Yamashita M, Nagatomi H, Mori H. Three-dimensional time-of-flight MR angiography for evaluation of intracranial aneurysms after endosaccular packing with Guglielmi detachable coils: comparison with 3D digital subtraction angiography. Eur Radiol 2004;14:1162–1168.

    Article  PubMed  Google Scholar 

  30. Soeda A, Sakai N, Sakai H, et al. Thromboembolic events associated with Guglielmi detachable coil embolization of asymptomatic cerebral aneurysms: evaluation of 66 consecutive cases with use of diffusion-weighted MR imaging. AJNR Am J Neuroradiol 2003;24:127–132.

    PubMed  Google Scholar 

  31. Albayram S, Selcuk H, Kara B, et al. Thromboembolic events associated with balloon-assisted coil embolization: evaluation with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 2004;25:1768–1777.

    PubMed  Google Scholar 

  32. Cottier JP, Bleuzen-Couthon A, Gallas S, et al. Follow-up of intracranial aneurysms treated with detachable coils: comparison of plain radiographs, 3D time-of-flight MRA and digital subtraction angiography. Neuroradiology 2003;45:818–824.

    Article  PubMed  CAS  Google Scholar 

  33. Yamada N, Hayashi K, Murao K, Higashi M, Iihara K. Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive to residual flow than is digital subtraction angiography. AJNR Am J Neuroradiol 2004;25:1154–1157.

    PubMed  Google Scholar 

  34. Cronqvist M, Wirestam R, Ramgren B, et al. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology 2005;47:855–873.

    Article  PubMed  CAS  Google Scholar 

  35. Williamson MR, McCowan TC, Walker CW, Ferris EJ. Effect of a 1.5 T magnetic field on Greenfield filters in vitro and in dogs. Angiology 1988;39:1022–1024.

    Article  PubMed  CAS  Google Scholar 

  36. Liebman CE, Messersmith RN, Levin DN, Lu CT. MR imaging of inferior vena caval filters: safety and artifacts. AJR Am J Roentgenol 1988;150:1174–1176.

    PubMed  CAS  Google Scholar 

  37. Honda M, Obuchi M, Sugimoto H. Artifacts of vena cava filters ex vivo on MR angiography. Magn Reson Med Sci 2003;2:71–77.

    Article  PubMed  Google Scholar 

  38. Teitelbaum GP, Ortega HV, Vinitski S, et al. Low-artifact intravascular devices: MR imaging evaluation. Radiology 1988;168:713–719.

    PubMed  CAS  Google Scholar 

  39. Teitelbaum GP, Ortega HV, Vinitski S, et al. Optimization of gradient-echo imaging parameters for intracaval filters and trapped thromboemboli. Radiology 1990;174:1013–1019.

    PubMed  CAS  Google Scholar 

  40. Grassi CJ, Matsumoto AH, Teitelbaum GP. Vena caval occlusion after Simon nitinol filter placement: identification with MR imaging in patients with malignancy. J Vasc Interv Radiol 1992;3:535–539.

    Article  PubMed  CAS  Google Scholar 

  41. Kim D, Edelman RR, Margolin CJ, et al. The Simon nitinol filter: evaluation by MR and ultrasound. Angiology 1992;43:541–548.

    Article  PubMed  CAS  Google Scholar 

  42. Frahm C, Gehl HB, Lorch H, et al. MR-guided placement of a temporary vena cava filter: technique and feasibility. J Magn Reson Imaging 1998;8:105–109.

    Article  PubMed  CAS  Google Scholar 

  43. Bucker A, Neuerburg JM, Adam GB, et al. Real-time MR guidance for inferior vena cava filter placement in an animal model. J Vasc Interv Radiol 2001;12:753–756.

    Article  PubMed  CAS  Google Scholar 

  44. Shellock FG, Morisoli SM. Ex vivo evaluation of ferromagnetism and artifacts of cardiac occluders exposed to a 1.5-T MR system. J Magn Reson Imaging 1994;4:213–215.

    Article  PubMed  CAS  Google Scholar 

  45. Rickers C, Jerosch-Herold M, Hu X, et al. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation 2003;107:132–138.

    Article  PubMed  Google Scholar 

  46. Shellock FG, Valencerina S. Septal repair implants: evaluation of magnetic resonance imaging safety at 3 T. Magn Reson Imaging 2005;23:1021–1025.

    Article  PubMed  Google Scholar 

  47. Shellock FG, Shellock VJ. Vascular access ports and catheters: ex vivo testing of ferromagnetism, heating, and artifacts associated with MR imaging. Magn Reson Imaging 1996;14:443–447.

    Article  PubMed  CAS  Google Scholar 

  48. Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003;362:1877–1882.

    Article  PubMed  Google Scholar 

  49. Susil RC, Yeung CJ, Halperin HR, Lardo AC, Atalar E. Multifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter. Magn Reson Med 2002;47:594–600.

    Article  PubMed  Google Scholar 

  50. Gimbel JR, Zarghami J, Machado C, Wilkoff BL. Safe scanning, but frequent artifacts mimicking bradycardia and tachycardia during magnetic resonance imaging (MRI) in patients with an implantable loop recorder (ILR). Ann Noninvasive Electrocardiol 2005;10:404–408.

    Article  PubMed  Google Scholar 

  51. Brown DW, Croft JB, Giles WH, Anda RF, Mensah GA. Epidemiology of pacemaker procedures among Medicare enrollees in 1990, 1995, and 2000. Am J Cardiol 2005;95:409–411.

    Article  PubMed  Google Scholar 

  52. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877–883.

    Article  PubMed  Google Scholar 

  53. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845–1853.

    Article  PubMed  Google Scholar 

  54. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140–2150.

    Article  PubMed  CAS  Google Scholar 

  55. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005;352:225–237.

    Article  PubMed  CAS  Google Scholar 

  56. Kalin R, Stanton MS. Current clinical issues for MRI scanning of pacemaker and defibrillator patients. Pacing Clin Electrophysiol 2005;28:326–328.

    Article  PubMed  Google Scholar 

  57. Shellock FG, Tkach JA, Ruggieri PM, Masaryk TJ. Cardiac pacemakers, ICDs, and loop recorder: evaluation of translational attraction using conventional (“long-bore”) and “short-bore” 1.5-and 5-3.0-T MR systems. J Cardiovasc Magn Reson 2003; 5:387–397.

    Article  PubMed  Google Scholar 

  58. Erlebacher JA, Cahill PT, Pannizzo F, Knowles RJ. Effect of magnetic resonance imaging on DDD pacemakers. Am J Cardiol 1986;57:437–440.

    Article  PubMed  CAS  Google Scholar 

  59. Hayes DL, Holmes DR Jr, Gray JE. Effect of 1.5 T nuclear magnetic resonance imaging scanner on implanted permanent pacemakers. J Am Coll Cardiol 1987;10:782–786.

    Article  PubMed  CAS  Google Scholar 

  60. Smith JM. Industry viewpoint: guidant: pacemakers, ICDs, and MRI. Pacing Clin Electrophysiol 2005;28:264.

    Article  PubMed  Google Scholar 

  61. Stanton MS. Industry viewpoint: Medtronic: pacemakers, ICDs, and MRI. Pacing Clin Electrophysiol 2005;28:265.

    Article  PubMed  Google Scholar 

  62. Levine PA. Industry viewpoint: St. Jude Medical: pacemakers, ICDs and MRI. Pacing Clin Electrophysiol 2005;28:266–267.

    Article  PubMed  Google Scholar 

  63. Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004;232:635–652.

    Article  PubMed  Google Scholar 

  64. Faris OP, Shein MJ. Government viewpoint: U.S. Food and Drug Administration: pacemakers, ICDs and MRI. Pacing Clin Electrophysiol 2005;28:268–269.

    Article  PubMed  Google Scholar 

  65. Gimbel JR, Johnson D, Levine PA, Wilkoff BL. Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. Pacing Clin Electrophysiol 1996;19:913–919.

    Article  PubMed  CAS  Google Scholar 

  66. Sommer T, Vahlhaus C, Lauck G, et al. MR imaging and cardiac pacemakers: in-vitro evaluation and in-vivo studies in 51 patients at 0.5 T. Radiology 2000;215:869–879.

    PubMed  CAS  Google Scholar 

  67. Vahlhaus C, Sommer T, Lewalter T, et al. Interference with cardiac pacemakers by magnetic resonance imaging: are there irreversible changes at 0.5 T? Pacing Clin Electrophysiol 2001;24:489–495.

    Article  PubMed  CAS  Google Scholar 

  68. Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-T. J Am Coll Cardiol 2004;43:1315–1324.

    Article  PubMed  Google Scholar 

  69. Del Ojo JL, Moya F, Villalba J, et al. Is magnetic resonance imaging safe in cardiac pacemaker recipients? Pacing Clin Electrophysiol 2005;28:274–278.

    Article  PubMed  Google Scholar 

  70. Shellock FG, Fieno DS, Thomson LJ, Talavage TM, Berman DS. Cardiac pacemaker: in vitro assessment at 1.5 T. Am Heart J 2006;151:436–443.

    Article  PubMed  Google Scholar 

  71. Gimbel JR, Kanal E, Schwartz KM, Wilkoff BL. Outcome of magnetic resonance imaging (MRI) in selected patients with implantable cardioverter defibrillators (ICDs). Pacing Clin Electrophysiol 2005;28:270–273.

    Article  PubMed  Google Scholar 

  72. Nazarian S, Roguin A, Zviman MM, Lardo AC, Dickfeld TL, Calkins H, Weiss RG, Berger RD, Bluemke DA, Halperin HR. Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla. Circulation 2006 Sep 19;114(12):1277–1284.

    Article  PubMed  Google Scholar 

  73. Baker KB, Tkach JA, Nyenhuis JA, et al. Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating. J Magn Reson Imaging 2004;20:315–320.

    Article  PubMed  Google Scholar 

  74. Rezai AR, Finelli D, Nyenhuis JA, et al. Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 T. J Magn Reson Imaging 2002;15:241–250.

    Article  PubMed  Google Scholar 

  75. Finelli DA, Rezai AR, Ruggieri PM, et al. MR imaging-related heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 2002;23:1795–1802.

    PubMed  Google Scholar 

  76. Bhidayasiri R, Bronstein JM, Sinha S, et al. Bilateral neurostimulation systems used for deep brain stimulation: in vitro study of MRI-related heating at 1.5 T and implications for clinical imaging of the brain. Magn Reson Imaging 2005;23:549–555.

    Article  PubMed  Google Scholar 

  77. Rezai AR, Phillips M, Baker KB, et al. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 2004;39:300–303.

    Article  PubMed  Google Scholar 

  78. Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery 2005;57:E1063; discussion E1063.

    Article  PubMed  Google Scholar 

  79. Rezai AR, Baker KB, Tkach JA, et al. Is magnetic resonance imaging safe for patients with neurostimulation systems used for deep brain stimulation? Neurosurgery 2005;57:1056–1062; discussion 1056–1062.

    Article  PubMed  Google Scholar 

  80. Azevedo CF, Amado LC, Kraitchman DL, et al. The effect of intra-aortic balloon counterpulsation on left ventricular functional recovery early after acute myocardial infarction: a randomized experimental magnetic resonance imaging study. Eur Heart J 2005;26:1235–1241.

    Article  PubMed  Google Scholar 

  81. New PF, Rosen BR, Brady TJ, et al. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 1983;147:139–148.

    PubMed  CAS  Google Scholar 

  82. Mechlin M, Thickman D, Kressel HY, Gefter W, Joseph P. Magnetic resonance imaging of postoperative patients with metallic implants. AJR Am J Roentgenol 1984;143:1281–1284.

    PubMed  CAS  Google Scholar 

  83. Mesgarzadeh M, Revesz G, Bonakdarpour A, Betz RR. The effect on medical metal implants by magnetic fields of magnetic resonance imaging. Skeletal Radiol 1985;14:205–206.

    Article  PubMed  CAS  Google Scholar 

  84. Shellock FG, Crues JV. High-field-strength MR imaging and metallic biomedical implants: an ex vivo evaluation of deflection forces. AJR Am J Roentgenol 1988;151:389–392.

    PubMed  CAS  Google Scholar 

  85. Lyons CJ, Betz RR, Mesgarzadeh M, Revesz G, Bonakdarpour A, Clancy M. The effect of magnetic resonance imaging on metal spine implants. Spine 1989;14:670–672.

    Article  PubMed  CAS  Google Scholar 

  86. Shellock FG, Morisoli S, Kanal E. MR procedures and biomedical implants, materials, and devices: 1993 update. Radiology 1993;189:587–599.

    PubMed  CAS  Google Scholar 

  87. Shellock FG, Mink JH, Curtin S, Friedman MJ. MR imaging and metallic implants for anterior cruciate ligament reconstruction: assessment of ferromagnetism and artifact. J Magn Reson Imaging 1992;2:225–228.

    Article  PubMed  CAS  Google Scholar 

  88. Peh WC, Chan JH. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001;30:179–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Nazarian, S., Halperin, H.R., Bluemke, D.A. (2008). Safety and Monitoring for Cardiac Magnetic Resonance Imaging. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics