Skip to main content

Minimally Invasive Perfusion Techniques

  • Chapter
On Bypass

Abstract

The “invasiveness” of most surgical and interventional procedures relies heavily on the physician ’s access to the operative field. In the majority of surgical specialties, a procedure is deemed less “invasive” when it is performed with limited or no incisions. In cardiac surgery, the invasiveness of an operation has at least two components: the incision and the presence of the cardiopulmonary bypass machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pisano GP, Bohmer RM, Edmondson AC. Organizational Differences in Rates of Learning: Evidence from the Adoption of Minimally Invasive Cardiac Surgery. Management Sci 2001;47:752–768.

    Article  Google Scholar 

  2. Banbury MK, White JA, Blackstone EH, Cosgrove DM. Vacuum-assisted venous return reduces blood usage. J Thorac Cardiovasc Surg 2003;126:680–687.

    Article  PubMed  Google Scholar 

  3. Hessel EA, II, Edmunds LH, Jr. Extracorporeal Circulation: Perfusion Systems. In Cardiac Surgery in the Adult. Cohn LH, Edmunds LH, Jr, editors. McGraw-Hill, New York. 2003:317–338.

    Google Scholar 

  4. Nelson DA, Lich BV. The Ultimate Guide to Assisted Venous Drainage. Available from: http://www.perfusion.com. Accessed.

    Google Scholar 

  5. Lapietra A, Grossi EA, Pua BB, Esposito RA, Galloway AC, Deriveux CC, et al. Assisted venous drainage presents the risk of undetected air microembolism. J Thorac Cardiovasc Surg 2000;120:856–862.

    Article  CAS  PubMed  Google Scholar 

  6. Barak M, Katz Y. Microbubbles: pathophysiology and clinical implications. Chest. 2005;128:2918–2932.

    Article  PubMed  Google Scholar 

  7. Likosky DS, Groom RC, Cantwell C, Forest RJ, et al. A method for identifying mechanisms of neurologic injury from cardiac surgery. Heart Surg Forum 2004;7(6):348–352.

    Article  PubMed  Google Scholar 

  8. Wilcox TW, Mitchell MB, Gorman DF. Venous air in the bypass circuit: a source of arterial line emboli exacerbated by vacuum-assisted drainage. Ann Thorac Surg 1999;(68):1285–1289.

    Google Scholar 

  9. Cirri S, Negri L, Babbini M, Khlat B, et al. Haemolysis due to active venous drainage during cardiopulmonary bypass: comparison of two different techniques. Perfusion 2000;16(4):313–318.

    Google Scholar 

  10. Mueller XM, Tevaerai HT, Horisberger J, Augstburger M, Burke M, von Segesser LK. Vacuum assisted venous drainage does not increase trauma to blood cells. ASAIO J 2001;47(6):651–654.

    Article  CAS  PubMed  Google Scholar 

  11. Strauch JT, Spielvogel D, Lauten A, Galla JD, Lansman SL, McMurtry K, Griepp RB. Technical advances in total aortic arch replacement. Ann Thorac Surg 2004;77(2):581–589; discussion 589–590.

    Article  PubMed  Google Scholar 

  12. Muhs BE, Galloway AC, Lombino M, et al. Arterial injuries from femoralartery cannulation with port access cardiac surgery. Vasc Endovascular Surg 2005:39(2):153–158.

    Article  PubMed  Google Scholar 

  13. Schachner T, Bonaros N, Feuchtner G, et al. How to handle remote access perfusion for endoscopie cardiac surgery. Heart Surg Forum 2005;8(4):E232–E235.

    Article  PubMed  Google Scholar 

  14. Orihashi K, Sueda T, Okada K, Imai K. Newly developed aortic dissection in the abdominal aorta after femoral arterial perfusion. Ann Thorac Surg 2005;79:1945–1949.

    Article  PubMed  Google Scholar 

  15. Navia JL, Cosgrove DM III. Minimally invasive mitral valve operations. Ann Thorac Surg 1996;62:1542–1544.

    Article  CAS  PubMed  Google Scholar 

  16. Cohn LH, Adams DH, Couper GS, et al. Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair. Ann Surg 1997;226:421–426.

    Article  CAS  PubMed  Google Scholar 

  17. Gundry SR, Shattuck OH, Razzouk, AJ, et al. Facile minimally invasive cardiac surgery via ministernotomy. Ann Thorac Surg 1998;65:1100–1104.

    Article  CAS  PubMed  Google Scholar 

  18. Cosgrove DM, Sabik JF, Navia J. Minimally invasive valve surgery. Ann Thorac Surg 1998;65:1535–1539.

    Article  PubMed  Google Scholar 

  19. Cohn L. Operative incisions for minimally invasive cardiac surgery. Op Tech Thorac Cardiovasc Surg 2000;5:146–155.

    Article  Google Scholar 

  20. Gillinov AM, Banbury MK, Cosgrove DM. hemisternotomy approach for aortic and mitral valve surgery. J Cardiac Surgery 2000;15:15–20.

    Article  CAS  Google Scholar 

  21. Gillinov AM, Cosgrove DM. Minimally invasive mitral valve surgery: ministernotomy with extended transseptal approach. Sem Thorac Cardiovasc Surg 1999;11:206–211.

    CAS  Google Scholar 

  22. Mihaljevic T, Cohn LH, Unic D, Aranki SF, Couper GS, Byrne JG. One thousand minimally invasive valve operations: early and late results. Ann Surg 2004;240:529–534.

    Article  PubMed  Google Scholar 

  23. Grossi EA, Galloway AC, LaPietra A, et al. Minimally invasive mitral valve surgery: a 6 year experience with 714 patients. Ann Thorac Surg 2002;74:660–663.

    Article  PubMed  Google Scholar 

  24. Vanermen H, Farhat F, Wellens F, et al. Minimally invasive video-assisted mitral valve surgery: from Port-Access towards a totally endoscopie procedure. J Cardiac Surg 2000;15:51–60.

    Article  CAS  Google Scholar 

  25. Dogan S, Aybek T, Risteski PS, et al. Minimally invasive port access versus conventional mitral valve surgery: prospective randomized study. Ann Thorac Surg 2005;79:492–498.

    Article  PubMed  Google Scholar 

  26. Nifong LW, Chitwood WR, Pappas PS, et al. Robotic mitral valve surgery: A United States multicenter trial. J Thorac Cardiovasc Surg 2005;129:1395–1404.

    Article  PubMed  Google Scholar 

  27. Kypson AP, Chitwood WR, Jr. Robotic mitral valve surgery. Am J Surg 2004;188(4A suppl):83S–88S.

    Article  PubMed  Google Scholar 

  28. Gillinov AM, Banbury MK, Cosgrove DM. Hemisternotomy approach for aortic and mitral valve surgery. J Card Surg 2000;15(1):15–20.

    Article  Google Scholar 

  29. Bouchard D, Perrault LP, Carrier M, Menasche P, Bel A, Pelletier LC. Minister-notomy for aortic valve replacement: a study of the preliminary experience. Can J Surg 2000;43(1):39–42.

    CAS  PubMed  Google Scholar 

  30. Bonacchi M, Prifti E, Giunti G, Frati G, Sani G. Does ministernotomy improve postoperative outcome in aortic valve operation? A prospective randomized study. Ann Thorac Surg. 2002;73(2):460–465; discussion 465–466.

    Article  PubMed  Google Scholar 

  31. Liu J, Sidiropoulos A, Konertz W. Minimally invasive aortic valve replacement (AVR) compared to standard AVR. Eur J Cardiothorac Surg 1999;16:280–283.

    Google Scholar 

  32. Dias AR, Dias RR, Gaiotto F, et al. Mini-sternotomy for treatment of aortic valve lesions. Arq Bras Cardiol 2001:7:221–228.

    Google Scholar 

  33. Hayashi Y, Sawa Y, Nishimura M, Sathoh H, Ohtake S, Matsuda H. Avoidance of full-sternotomy: effect on inflammatory cytokine production during cardiopulmonary bypass in rats. J Card Surg 2003;18(5):390–395.

    Article  PubMed  Google Scholar 

  34. Svensson LG. Progress in ascending and aortic arch surgery: minimally invasive surgery, blood conservation, and neurological deficit prevention. Ann Thorac Surg 2002;74(5):S1786–S1788; discussion S1792-S1799.

    Article  PubMed  Google Scholar 

  35. Svensson LG, Nadolny EM, Kimmel WA. Minimal access aortic surgery including re-operations. Eur J Cardiothorac Surg 2001;19(1):30–33.

    Article  CAS  PubMed  Google Scholar 

  36. Byrne JG, Adams DH, Couper GS, Rizzo RJ, Cohn LH, Aranki SF. Minimallyinvasive aortic root replacement. Heart Surg Forum 1999;2(4):326–329.

    CAS  PubMed  Google Scholar 

  37. Sun L, Zheng J, Chang Q, Tang Y, Feng J, Sun X, Zhu X. Aortic root replacement by ministernotomy: technique and potential benefit. Ann Thorac Surg 2000;70(6):1958–1961.

    Article  CAS  PubMed  Google Scholar 

  38. Demirsoy E, Arbatli H, Unal M, Yagan N, Tukenmez F, Sonmez B. Atrial septal defect repair with minithoracotomy using two stage single venouscannula. J Cardiovasc Surg 2004 Feb;45(1):21–25.

    CAS  Google Scholar 

  39. Doll N, Walther T, Falk V, et al. Secundum ASD closure using a right lateral minithoracotomy: five-year experience in 122 patients. Ann Thorac Surg 2003;75(5):1527–1530; discussion 1530–1531.

    Article  PubMed  Google Scholar 

  40. Bonaros N, Schachner T, Oehlinger A, et al. Experience on the way to totally endoscopic atrial septal defect repair. Heart Surg Forum 2004;7(5):E440–E445.

    Article  PubMed  Google Scholar 

  41. Morgan JA, Peacock JC, Kohmoto T, et al. Robotic techniques improve quality of life in patients undergoing atrial septaldefect repair. Ann Thorac Surg 2004 Apr;77(4):1328–1333.

    Article  PubMed  Google Scholar 

  42. Argenziano M, Oz MC, Kohmoto T, et al. Totally endoscopic atrial septal defect repair with robotic assistance. Circulation 2003;108:II191–II194.

    Article  PubMed  Google Scholar 

  43. Puskas J, Cheng D, Knight J, et al. Off-pump versus conventional coronary artery bypass grafting: A meta-analysis and consensus statement from the 2004 ISMICS consensus. Innovations 2005;1:3–27.

    Google Scholar 

  44. Cheng DC, Bainbridge D, Martin JA, Novick RJ. Does off-pump coronary artery bypass reduce mortality, morbidity and resource utilization when compared to conventional coronary artery bypass? A meta-analysis of randomized trials. Anesthesiology 2005;102:188–203.

    Article  PubMed  Google Scholar 

  45. Khan NE, De Souza A, Mister R, et al. A randomized comparison of off-pump and on-pump multivessel coronary-artery bypass surgery. N Engl J Med 2004;350:21–28.

    Article  CAS  PubMed  Google Scholar 

  46. Puskas JD, Williams WH, Duke PG, et al. Off-pump coronary artery bypass grafting provides complete revascularization with reduced myocardial injury, transfusion requirements and length of stay: A prospective randomized comparison of two hundred unselected patients undergoing off-pump versus conventional coronary artery bypass grafting. J Thorac Cardiovasc Surg 2003;125:797–808.

    Article  CAS  PubMed  Google Scholar 

  47. Zamvar V, Williams D, Hall J, et al. Assessment of neurocognitive impairment after off-pump and on-pump techniques for coronary artery bypass graft surgery: prospective randomized controlled trial. BMJ 2002;325:1268.

    Article  PubMed  Google Scholar 

  48. van Dijk D, Jansen EWL, Hijman R, et al. for the Octopus Study Group. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery. A randomized trial. JAMA 2002;287:1405–1412.

    Article  PubMed  Google Scholar 

  49. Lund C, Hol PK, Lundbland R, et al. Comparison of cerebral embolization during off-pump and on-pump coronary artery bypass surgery. Ann Thorac Surg 2003;76:765–770.

    Article  PubMed  Google Scholar 

  50. Al-Ruzzeh S, Nakamura K, Athanasiou T, et al. Does off-pump coronary artery bypass (OPCAB) surgery improve the outcome in high risk patients?: A comparative study of 1398 high-risk patients. Eur J Cardiothorac Surg 2003;23:50–55.

    Article  PubMed  Google Scholar 

  51. Boyd WD, Desai ND, Del Rizzo DF, et al. Off-pump surgery decreases postoperative complications and resource utilization in the elderly. Ann Thorac Surg 1999;68:1490–1493.

    Article  CAS  PubMed  Google Scholar 

  52. Martinovic I, Farah I, Mair R, et al. Reduced mortality and cerebrovascular morbidity with off-pump coronary artery bypass grafting surgery in octogenarians. Heart Surg Forum 2003;6:S13.

    Google Scholar 

  53. Nanthoe HM, van Dijk D, Jansen EWL, et al. A comparison of on-pump and offpump coronary bypass surgery in low-risk patients. N Engl J Med 2003;348:394–402.

    Article  Google Scholar 

  54. Edgerton JR, Dewey TM, Magee MJ, et al. Conversion in off-pump coronary artery bypass grafting: An analysis of predictors and outcomes. Ann Thorac Surg 2003;76:1138–1143.

    Article  PubMed  Google Scholar 

  55. DeRose JJ, Jr., Balaram SK, Ro C, et al. Mid-term results and patient perceptions of robotically-assisted coronary artery bypass grafting. Interactive Cardiovasc Thorac Surg 2005;4:406–411.

    Article  Google Scholar 

  56. Mohr FW, Falk V, Diegeler A, et al. Computer-enhanced robotic cardiac surgery— Experience in 148 patients. J Thorac Cardiovasc Surg 2001;121:842–853.

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava S, Gadasalli S, Agusala M, et al. Use of bilateral internal thoracic arteries in CABG through lateral thoracotomy with robotic assistance in 150 patients. Ann Thorac Surg 2006;81:800–806.

    Article  PubMed  Google Scholar 

  58. Subramanian S, Patel NU, Patel NC, Loulmet DF. Robotic assisted multivessel minimally invasive direct coronary artery bypass with port-access stabilization and cardiac positioning: paving the way for outpatient coronary surgery? Ann Thorac Surg 2005;79:1590–1596.

    Article  PubMed  Google Scholar 

  59. Vassiliades. Atraumatic coronary artery bypass: technique and outcomes. Heart Surg Forum 2001;4:331–334.

    PubMed  Google Scholar 

  60. Lee MS, Wilentz JR, Raj R, et al. Hybrid revascularization using percutaneous coronary intervention and robotically-assisted minimally invasive direct coronary artery bypass surgery. J Invasive Cardiol 2004;16:419–425.

    PubMed  Google Scholar 

  61. Riess FC, Bader R, Kremer P, et al. Coronary hybrid revascularization from January 1997 to January 2001: a clinical follow-up. Ann Thorac Surg 2002;73:1849–1855.

    Article  PubMed  Google Scholar 

  62. Dogan S, Aybek T, Andressen E, et al. Totally endoscopie coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: report of forty-five cases. J Thorac Cardiovasc Surg 2002;123:1125–1131.

    Article  CAS  PubMed  Google Scholar 

  63. Kappert U, Schneider J, Cichon R, et al. Closed chest totally endoscopic coronary artery bypass surgery: fantasy or reality? Current Card Rep 2000;2:558–563.

    Article  CAS  Google Scholar 

  64. Mohr FW, Falk V, Diegeler A, et al. Computer-enhanced robotic cardiac surgery— Experience in 148 patients. J Thorac Cardiovasc Surg 2001;121:842–853.

    Article  CAS  PubMed  Google Scholar 

  65. Falk V, Diegeler A, Walther T, et al. Endoscopie coronary artery bypass grafting on the beating heart using a computer enhanced telemanipulation system. Heart Surg Forum 1999;2:199–205.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balaram, S.K., Markham, J., DeRose, J.J. (2008). Minimally Invasive Perfusion Techniques. In: Mongero, L.B., Beck, J.R. (eds) On Bypass. Current Cardiac Surgery. Humana Press. https://doi.org/10.1007/978-1-59745-305-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-305-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-636-8

  • Online ISBN: 978-1-59745-305-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics