Skip to main content
  • 10k Accesses

Abstract

The road to a safe, effective, and enjoyable fitness and athletic lifestyle should be considered an ultramarathon and not a 100-meter sprint. The often quoted phrase that “Rome was not built in one day” really holds credence here because of the number of annual exercisers that initiate an exercise protocol only to quit within a few weeks because they did not attain the desired results in “their” specified time frame. Because of inappropriate dietary habits and or training protocols that lead to overreaching (short-term) and overtraining (long-term), decrements of physiologic and psychologic outcomes occur in many exercisers (Kreider et al. In: Kreider et al., eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers; 1 998:vii-ix). Whereas intense training is necessary to optimize performance, intense training over prolonged periods can hinder performance. The truth of the matter is, although it may take a person 30 or 40 years to display their current physical fitness state, it is human nature to want to immediately become, although unrealistic, the next Mr. or Ms. Olympia overnight. Yes, an effective athletic or fitness lifestyle becomes a journey and not a weekend vacation that involves the development of knowledge, patience, proper nutritional practices, variety, commitment and tenacity, not to mention hard work, in order for a person to reach and maintain their optimal athletic/exercise/fitness goals. Although research supports a plethora of reasons why people abandon exercise protocols (Weinberg and Gould. Foundations of Sport and Exercise Psychology. Champaign, IL: Human Kinetics Publishers; 1999:371–395), the scientific literature has varied on the precise reasons why and how the processes of overreaching/overtraining occur and can be reduced or eliminated. With these elements in mind, the purpose of this chapter is to present the following information: 1) physiologic and psychologic effects of overtraining related to sport and exercise, 2) valid fitness and health assessment guidelines to limit aspects of overtraining, 3) strength and conditioning periodization design to reduce occurrences of overtraining, and 4) scientific-based nutritional strategies to promote and prevent overtraining with exercise and sport populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kreider RB, Fry AC, O’Toole ML. Overtraining in sport: terms, definitions, and prevalence. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers; 1998:vii-ix.

    Google Scholar 

  2. Urhausen A, Kindermann W. Diagnosis of overtraining—what tools do we have? Sports Med 2002;32:95-102.

    Article  Google Scholar 

  3. O’Connor PT. Overtraining and staleness. In: Morgan WP, ed. Physical Activity and Mental Health. Washington, DC: Taylor & Francis; 1997:145-160.

    Google Scholar 

  4. Kraemer WJ. Physiological adaptations to anaerobic and aerobic endurance training programs. In: Baechle TR, Earle RW, eds. Essentials of Strength Training and Conditioning. 2nd ed. Champaign, IL: Human Kinetics Publishers; 2000:161 and 166.

    Google Scholar 

  5. Lehmann M, Foster C, Gastmann U, et al. Physiological responses to short- and long-term overtraining in endurance athletes. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers; 1998: 29-46.

    Google Scholar 

  6. Keizer H. Neuroendocrine considerations. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers; 1998:145-168.

    Google Scholar 

  7. Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Med 1991;12:32-65.

    Article  CAS  Google Scholar 

  8. Kreider RB, Leutoholtz B. Nutritional considerations for preventing overtraining. In: Antonio J, Stout JR, eds. Sports Supplements. Philadelphia: Lippincott Williams & Wilkins; 2001:199-208.

    Google Scholar 

  9. Armstrong L, VanNeest J. The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Med 2002;32:185-209.

    Article  Google Scholar 

  10. Beming TR. Energy intake, diet, and muscle wasting. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers; 1998:275-288.

    Google Scholar 

  11. Snyder AC. Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc. 1998;30(7):1146–1150.

    Article  CAS  Google Scholar 

  12. Sherman WM, Jacobs KA, Leenders N. Carbohydrate metabolism during enduranee exercise. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kineties Publishers; 1998:289-308.

    Google Scholar 

  13. Newsholme EA, Parry-Billings M, McAndrew M, et al. Biochemical mechanism to explain some characteristics of overtraining. In: Brouns F, ed. Medical Sports Science, Advances in Nutrition and Top Sport. Basel, Switzerland: S. Karger; 1991:79-93.

    Google Scholar 

  14. Bloomstrand E, Celsing F, Newshorne EA. Changes in plasma concentrations of aromatic and branch-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand 1988;133:115-121.

    Article  Google Scholar 

  15. Bloomstrand E, Hassmen P, Ekblom B, et al. Administration of branch-chain amino acids during sustained exercise-effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol 1991;63:83-88.

    Article  Google Scholar 

  16. Bloomstrand E, Hassmen P, Newsholme E. Effect of branch-chain amino acid supplementation on mental performance. Acta Physiol Scand 1991;143:225-226.

    Article  Google Scholar 

  17. Davis JM. Carbohydrates, branched-chain amino acids, and endurance: the central fatigue hypothesis. Int J Sport Nutr 1991;5(Suppl):29-38.

    CAS  Google Scholar 

  18. Segura R, Ventura J. Effect of L-tryptophan supplementation on exercise performance. Int J Sports Med 1988;9:301-305.

    Article  CAS  Google Scholar 

  19. Rowbottom DG, Keast D, Morton AR. Monitoring and prevention of overreaehing and overtraining in endurance athletes. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers; 1998:47-68.

    Google Scholar 

  20. Franklin BA, Whaley MH, Howley ET, et al. ACSM′s Guidelines for Exercise Testing and Preseription. Baltimore: Lippincott Williams & Wilkins; 2000:1-130.

    Google Scholar 

  21. Baechle T, Earle R, Wathen D. Resistance training. In: Baechle TR, Earle RW, eds. Essentials of Strength Training and Conditioning. 2nd ed. Champaign, IL: Human Kinetics Publishers; 2000:395-426.

    Google Scholar 

  22. Plisk S, Stone MH. Periodization strategies. Strength Cond J 2003;25:19-37.

    Google Scholar 

  23. Wathen D, Baechle T, Earle R. Training variation: periodization. In: Baechle TR, Earle RW, eds. Essentials of Strength Training and Conditioning. 2nd ed. Champaign, IL: Human Kinetics Publishers; 2000:513-528.

    Google Scholar 

  24. Venkatraman JT, Pendergast DR. Effect of dietary intake on immune function in athletes. Sports Med 2002;32(5 ):323-33 7.

    Article  Google Scholar 

  25. Nieman DC, Pedersen BK. Exercise and immune function, recent developments. Sports Med 1999;27:72-80.

    Article  Google Scholar 

  26. Nieman De. Effects of athletic endurance training on infection rates and immunity. In: Kreider RB, Fry AC, O’Toole ML, eds. Overtraining in Sport. Champaign, IL:Human Kinetics Publishers; 1998:193-218.

    Google Scholar 

  27. Kreider RB. Central fatigue hypothesis and overtraining. In: Kreider RB, Fry AC, O'Toole ML, eds. Overtraining in Sport. Champaign, IL: Human Kinetics Publishers;1998:309-331.

    Google Scholar 

  28. Kreider RB, Almada AL, Antonio J, et al. ISSN exercise and sport nutrition review: research recommendations. Sports Nutr Rev J 2004;1(1):1-44.

    Article  Google Scholar 

  29. Kargotich S, Rowbottom DG, Keast D, et al. Plasma glutamine changes after high intensity exercise in elite male swimmers [abstract]. Med Sci Sports Exerc 1996;28(suppl):133.

    Google Scholar 

  30. Castell LM. Can glutamine modify the apparent immunodepression observed after prolonged, exhaustive exercise? Nutrition 2002;18(5):371-375.

    Article  CAS  Google Scholar 

  31. Newsholme EA, Calder PC. The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 1997;13:728-730.

    Article  CAS  Google Scholar 

  32. Parry-Billings M, Budgett R, Koutedakis K, et al. Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc 1992;24:1353-1358.

    CAS  Google Scholar 

  33. Bucci LR, Unlu LM. Proteins and amino acid supplements in exercise and sport. In: Driskell JA, Wolinsky I, eds. Energy-Yielding Macronutrients and Energy Metabolism in Sports Nutrition. Boca Raton, FL: CRC Press; 1999:191-212.

    Google Scholar 

  34. Kreider RB, Miriel V, Bertun E. Amino acid supplementation and exercise performance: proposed ergogenic value. Sports Med 1993;16:190-209.

    Article  CAS  Google Scholar 

  35. Hemila H. Vitamin C and common cold incidence: a review of studies with subjects under heavy physical stress. Int J Sports Med 1996;17:379-383.

    Article  CAS  Google Scholar 

  36. Peters EM, Goetzsche JM, Grobbelaar B, Noakes TD. Vitamin C supplementation reduces the incidence of postrace symptoms of upper-respiratory-tract infection in ultramarathon runners. Am J Clin Nutr 1993;57:170-174.

    CAS  Google Scholar 

  37. Tauler P, Aguilo A, Gimeno I, et al. Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res 2003;37(9):931-938.

    Article  CAS  Google Scholar 

  38. Jeurissen A, Bossuyt X, Ceuppens JL, Hespel P. The effects of physical exercise on the immune system. Ned Tijdschr Geneeskd 2003;147(28):1347-1351.

    CAS  Google Scholar 

  39. Gleeson M, Lancaster G, Bishop N. Nutritional strategies to minimize exercise-induced immunosuppression in athletes. Can J Appl Physiol 2001;26:523-535.

    Google Scholar 

  40. Konig O, Weinstock C, Keul J, Northoff H, Berg A. Zinc, iron, and magnesium status in athlctes: influenee on the regulation of exercise-induced stress and immune function. Exerc Immunol Rev 1998;4:2-21.

    CAS  Google Scholar 

  41. Prasad AS. Zinc and immunity. Mol Cell Biochem 1998;188(1-2):63-69.

    Article  CAS  Google Scholar 

  42. Routsias JC, Kosmopoulou A, Makri A, et al. Zinc ion dependent B-cell epitope, associated with primary Sjögren’s syndrome, resides within the putative zinc finger domain of R060kD auto antigen: physical and immunologic properties. J Med Chem 2004;47(17):4327-4334.

    Article  CAS  Google Scholar 

  43. Mocchegiani E, Ciacconi R, Muti E, et al. Zinc, immune plasticity, aging, and successful aging: role of metallothionein. Ann NY Acad Sci 2004;1019:127-134.

    Article  CAS  Google Scholar 

  44. Singh A, Failla ML, Deuster PA. Exercise-induced changes in immune function: effects of zinc supplementation. J Appl Physiol 1994;76:2298-2303.

    CAS  Google Scholar 

  45. Mishima S, Saito K, Maruyama H, et al. Antioxidant and immuno-enhancing effects of Echinacea purpurea. Biol Pharm Bull 2004;27(7):1004-1009.

    Article  CAS  Google Scholar 

  46. Jurkstiene V, Kondrotas AJ, Kevelaitis E. Compensatory reactions of immune system and action of Purple Coneflower (Echinacea purpurea (L.) Moench) preparations. Medicina (Kaunas) 2004;40(7):657-662.

    Google Scholar 

  47. Brinkeborn RM, Shah DV, Degenring FH. Echinaforce and other echinacea fresh plant preparations in the treatment of the common cold. A randomized, placebo controlled, double-blind clinical trial. Phytomedicine 1999;6:1-6.

    Article  CAS  Google Scholar 

  48. American College of Sports Medicine. Encyclopedia of Sports Sciences and Medicine. New York: Macmillan Publishing; 1999:1128-1129.

    Google Scholar 

  49. Leutholtz B, Kreider RB. Exercise and sport nutrition. In: Temple N, Wilson T, eds. Nutritional Health. Totowa NJ: Humana Press; 2001:207-239.

    Google Scholar 

  50. Ivy J, Portman P. The Future of Sports Nutrition: Nutrient Timing. North Bergen, NJ: Basic Health Publications; 2004:7-14.

    Google Scholar 

  51. Davis JM, Baily SP, Woods JA, et al. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol 1992;65:513-519.

    Article  CAS  Google Scholar 

  52. Henson DA, Nieman DC, Blodgett AD, et al. Influence of exercise mode and carbohydrate on the immune response to prolonged exercise. Int J Sport Nutr 1999;9(2):213-228.

    CAS  Google Scholar 

  53. Lemon PW, Tamopolsky MA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol 1992;73(2):767-775.

    CAS  Google Scholar 

  54. Tamopolsky MA, MacDougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol 1988;64(1):187-193.

    Google Scholar 

  55. Tamopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP. Evaluation of protein requirements for trained strength athletes. J Appl Physiol 1992; 73(5): 1986-1995.

    Google Scholar 

  56. Tamopolsky MA. Protein and physical performance. Curr Opin Clin Nutr Metab Care 1999;2(6):533-537.

    Article  Google Scholar 

  57. Kreider RB. Effects of protein and amino acid supplementation on athletic performance. Sportscience 1999. Available at: http://www.sportsci.org/jour/990l/rbk.html:3(1).

  58. Boiric Y, Dangin M, Cachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulatc postprandial protein accretion. Proc Natl Acad Sci USA 1997;94(26):14930-14935.

    Article  Google Scholar 

  59. Boirie Y, Cachon P, Cordat N, Ritz P, Beaufrere B. Differential insulin sensitivities of glucose, amino acid, and albumin metabolism in elderly men and women. J Clin Endocrinol Metab 2001;86(2):638-644.

    Article  CAS  Google Scholar 

  60. Boirie Y, Cachon P, Comy S, Fauquant J, Maubois JL, Beaufrere B. Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. Am J Physiol 1996;271(6 Pt 1):E1083-1091.

    CAS  Google Scholar 

  61. Kreider RB, Kleiner SM. Protein supplements for athletes: need vs. convenience. Your Patient Fitness 2000;14(6):12-18.

    Google Scholar 

  62. Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med 1999;27:97-110.

    Article  CAS  Google Scholar 

  63. Williams MH. Facts and fallacies of purported ergogenic amino acid supplements. Clin Sports Med 1999;18:633-649.

    Article  CAS  Google Scholar 

  64. Di Pasquale MC. Proteins and amino acids in exercise and sport. In: Driskell JA, Wolinsky I, eds. Energy-Yielding Macronutrients and Energy Metabolism in Sports Nutrition. Boca Raton, FL: CRC Press; 1999:119-162.

    Google Scholar 

  65. Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenal-gland responses to highintensity resistance exercise overtraining. J Appl Physiol 1998;85(6):2352-2359.

    CAS  Google Scholar 

  66. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord 1997;21:941-947.

    Article  CAS  Google Scholar 

  67. Struder HK, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K. Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horrn Metab Res 1998;30(4):188-194.

    Article  CAS  Google Scholar 

  68. Davis JM, Welsh RS, De Volve KL, Alderson NA. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int J Sports Med 1999;20(5):309-314.

    Article  CAS  Google Scholar 

  69. Mittleman KD, Ricci MR, Bailey SP. Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc 1998;30(1):83-9l.

    Article  CAS  Google Scholar 

  70. Calders P, Matthys D, Derave W, Pannier JL. Effect of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on endurance performance in rats. Med Sci Sports Exerc 1999;31(4):583-587.

    Article  CAS  Google Scholar 

  71. Varnier M, Leese GP, Thompson J, Rennie MJ. Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. Am J Physiol 1995;269(2 Pt 1):E309-315.

    CAS  Google Scholar 

  72. Antonio J, Street C. Glutamine: a potentially useful supplement for athletes. Can J Appl PhysiolI999;24(1):1-14.

    Article  Google Scholar 

  73. Williams MH, Kreider R, Branch JD. Creatine: The Power Supplement. Champaign, IL: Human Kinetics Publishers; 1999.

    Google Scholar 

  74. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem 2003;244(1-2):89-94.

    Article  CAS  Google Scholar 

  75. Kreider RB, Melton C, Rasmussen CJ, et al. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem 2003;244(1-2):95-104.

    Article  CAS  Google Scholar 

  76. Greenwood M, Kreider RB, Melton C, et al. Creatine supplementation during college football training does not increase the incidence of cramping or injury. Mol Cell Biochem 2003;244(1-2):83-88.

    Article  CAS  Google Scholar 

  77. Greenwood M, Kreider R, Greenwood L, Byars A. Cramping and injury incidence are not increased by creatine supplementation in collegiate football players. Journal of Athletic Training 2003;38(3):216-219.

    Google Scholar 

  78. Greenwood M, Kreider R, Greenwood L, Byars A. Creatine supplementation does not increase the incidence of injury or cramping in college baseball players. Journal of Exercise Physiology: Online 2003;6(4):16-23.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press. a part of Spring Science+Business Media, LLC

About this chapter

Cite this chapter

Greenwood, M. (2008). Aspects of Overtraining. In: Antonio, J., Kalman, D., Stout, J.R., Greenwood, M., Willoughby, D.S., Haff, G.G. (eds) Essentials of Sports Nutrition and Supplements. Humana Press. https://doi.org/10.1007/978-1-59745-302-8_6

Download citation

Publish with us

Policies and ethics