Skip to main content
  • 10k Accesses

Abstract

For optimal health and athletic performance, gaining lean skeletal muscle mass and losing body fat mass is one ideal outcome of a nutritional/exercise intervention desired by athletes and fitness competitors alike. While achieving a lean muscular physique based on proper diet and intense training may be a goal of bodybuilding and fitness populations, it may not be the primary goal of competitive athletes. Athletes training and competing for specific events are often judged on sport-specific performance affected by a number of interactive variables including but not limited to excellent body composition (i.e. high degree of muscularity and low body fat levels). With these elements in mind, this chapter focuses on various clinical trials that have examined body composition changes through various diet and/or exercise interventions. Issues surrounding the mechanisms governing why substituting carbohydrate for protein and/or fat can enhance body composition are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kanehisa H, Kondo M, Ikegawa S, Fukunaga T. Characteristics of body composition and muscle strength in college Sumo wrestlers. Int J Sports Med 1997;18(7):510-515.

    Article  CAS  Google Scholar 

  2. Kanehisa H, Kondo M, Ikegawa S, Fukunaga T. Body composition and isokinetic strength of professional Sumo wrestlers. Eur J Appl Physiol Occup Physiol 1998;77(4):352-359.

    Article  CAS  Google Scholar 

  3. Frisch RE, Hall GM, Aoki TT, et al. Metabolic, endocrine, and reproductive changes of a woman channel swimmer. Metabolism 1984;33(12):1106-1111.

    Article  CAS  Google Scholar 

  4. Benoit FL, Martin RL, Watten RH. Changes in body composition during weight reduction in obesity. Balance studies comparing effects of fasting and a ketogenic diet. Ann Intern Med 1965;63(4):604-612.

    CAS  Google Scholar 

  5. Young CM, Scanlan SS, Im HS, Lutwak L. Effect of body composition and other parameters in obese young men of carbohydrate level of reduction diet. Am J Clin Nutr 1971;24(3):290-296.

    CAS  Google Scholar 

  6. McManus K, Antinoro L, Sacks F. A randomized controlled trial of a moderate-fat, low-energy diet compared with a low-fat, low-energy diet for weight loss in overweight adults. Int J Obes Relat Metab Disord 2001;25(10):1503-1511.

    Article  CAS  Google Scholar 

  7. Layman DK, Baum J1. Dietary protein impact on glycemic control during weight loss. J Nutr 2004; 134(4):968S-973S.

    CAS  Google Scholar 

  8. Layman DK, Boileau RA, Erickson DJ, et al. A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J Nutr 2003;133(2):411-417.

    CAS  Google Scholar 

  9. Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 2004;140(10):769-777.

    Google Scholar 

  10. Samaha FF, Iqbal N, Seshadri P, et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003;348(21):2074-2081.

    Article  Google Scholar 

  11. Kauffman JM. Low-carbohydrate diets. J Sci Exploration 2004;18:83-134.

    Google Scholar 

  12. Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie· restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 2003;88(4):1617-1623.

    Article  CAS  Google Scholar 

  13. Sondike SB, Copperman N, Jacobson MS. Effects of a low-carbohydrate diet on weight loss and cardiovascular risk factor in overweight adolescents. J Pediatr 2003; 142(3):253-258.

    Article  CAS  Google Scholar 

  14. Greene P, Willett W, Devecis, T, et al. Pilot 12-week feeding weight loss comparison: low-fat vs. low-carbohydrate (ketogenic) diets [abstract]. Obes Res 2003;11:A23.

    Article  Google Scholar 

  15. Volek TS, Sharman MJ, Gomez AL, et al. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women. Nutr Metab (Lond) 2004;1(1):13.

    Article  Google Scholar 

  16. Volek JS, Sharman MJ, Love DM, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism 2002;51(7):864-870.

    Article  CAS  Google Scholar 

  17. Bravata DM, Sanders L, Huang J, Krumholz HM, Olkin I, Gardner CD. Efficacy and safety of low-carbohydrate diets: a systematic review. JAMA 2003;289(14):1837-1850.

    Article  CAS  Google Scholar 

  18. Kauffman TM. Bias in recent papers on diet and drugs in peer-reviewed medical journals. J Am Phys Surg 2004;9:11-14.

    Google Scholar 

  19. Foster GD, Wyatt HR, Hill JO, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003;348(21):2082-2090.

    Article  CAS  Google Scholar 

  20. Feinman RD, Fine ET. “A calorie is a calorie” violates the second law of thermodynamics. Nutr J 2004;3(1):9.

    Article  Google Scholar 

  21. Hue L. Regulation of gluconeogenesis in liver. In: Handbook of Physiology-Section 7: The Endocrine System-Volume II: The Endocrine Pancreas and Regulation of Metabolism. L. S. Jefferson and A. Cherrington(eds). Oxford: Oxford University Press; 2001:649-657.

    Google Scholar 

  22. Johnston CS, Day CS, Swan PD. Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women. J Am Coll Nutr 2002;21(1):55-61.

    CAS  Google Scholar 

  23. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004;70(3):309-319.

    Article  CAS  Google Scholar 

  24. Carlson MG, Campbell PJ. Intensive insulin therapy and weight gain in IDDM. Diabetes 1993;42(12):1700-1707.

    Article  CAS  Google Scholar 

  25. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 1997;273(1 Pt 1):E122-129.

    CAS  Google Scholar 

  26. Flakoll PT, Judy T, Flinn K, Carr C, Flinn S. Postexercise protein supplementation improves health and muscle soreness during basic military training in marine recruits. J Appl Physiol 2004;96(3):951-956.

    Article  Google Scholar 

  27. Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci 2004;22(1):15-30.

    Article  Google Scholar 

  28. Borsheim E, Aarsland A, Wolfe RR. Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport Nutr Exerc Metab 2004;14(3):255-271.

    CAS  Google Scholar 

  29. Borsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol 2004;96(2):674-678.

    Article  CAS  Google Scholar 

  30. Williams MB, Raven PB, Fogt DL, Ivy JL. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res 2003; 17(1):12-19.

    Google Scholar 

  31. Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab 2003;284(1):E76-89.

    CAS  Google Scholar 

  32. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 2003;35(3):449-455.

    Article  CAS  Google Scholar 

  33. Ivy JL, Res PT, Sprague RC, Widzer MO. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab 2003;13(3):382-395.

    CAS  Google Scholar 

  34. Roy BD, Luttmer K, Bosman MT, Tarnopolsky MA. The influence of post-exercise macronutrient intake on energy balance and protein metabolism in active females participating in endurance training. Int J Sport Nutr Exerc Metab 2002;12(2):172-188.

    CAS  Google Scholar 

  35. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA. Resistancetraining-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 2002;80(11):1045-1053.

    Article  CAS  Google Scholar 

  36. Levenhagen DK, Carr C, Carlson MG, Maron DT, Borel MT, Flakoll PJ. Postexercise protein intake enhances whole-body and leg protein accretion in humans. Med Sci Sports Exerc 2002;34(5):828-837.

    Article  CAS  Google Scholar 

  37. Ivy JL, Goforth HW Jr, Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl PhysioI2002;93(4):1337-1344.

    CAS  Google Scholar 

  38. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 2002;283(4):E648-657.

    CAS  Google Scholar 

  39. Tipton KD, Wolfe RR. Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab 2001;11(1):109-132.

    CAS  Google Scholar 

  40. Tipton KD, Rasmussen BB, Miller SL, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 2001;281(2):EI97-206.

    CAS  Google Scholar 

  41. Tipton KD. Gender differences in protein metabolism. Curr Opin Clin Nutr Metab Care 2001;4(6):493-498.

    Article  CAS  Google Scholar 

  42. Tipton KD. Muscle protein metabolism in the elderly: influence of exercise and nutrition. Can J Appl Physiol 2001;26(6):588-606.

    Article  CAS  Google Scholar 

  43. Levenhagen DK, Gresham JD, Carlson MG, Maron DT, Borel MT, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab 2001;280(6):E982-993.

    CAS  Google Scholar 

  44. Jentjens RL, van Loon LT, Mann CH, Wagenmakers AT, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol 2001;91(2):839-846.

    CAS  Google Scholar 

  45. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 2001;535(Pt 1):301-311.

    Article  CAS  Google Scholar 

  46. Doi T, Matsuo T, Sugawara M, et al. New approach for weight reduction by a combination of diet, light resistance exercise and the timing of ingesting a protein supplement. Asia Pac J Clin Nutr 2001; 10(3):226-232.

    Article  CAS  Google Scholar 

  47. van Loon LJ, Kruijshoop M, Verhagen H, Saris WH, Wagenmakers AJ. Ingestion of protein hydrolysate and amino acid-carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr 2000;130(10):2508-2513.

    Google Scholar 

  48. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 2000;72(1):106-111.

    Google Scholar 

  49. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 2000;20:457-483.

    Article  CAS  Google Scholar 

  50. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 2000;88(2):386-392.

    CAS  Google Scholar 

  51. Tipton KD, Ferrando AA, Phillips SM, Doyle D Jr, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 1999;276(4 Pt 1):E628-634.

    CAS  Google Scholar 

  52. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 1999;2 76(1 Pt 1):E118-124.

    CAS  Google Scholar 

  53. Tipton KD, Wolfe RR. Exercise-induced changes in protein metabolism. Acta Physiol Scand 1998;162(3):377-387.

    Article  CAS  Google Scholar 

  54. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 1997;273(1 Pt 1):E99-107.

    CAS  Google Scholar 

  55. Ferrando AA, Tipton KD, Bamman MM, Wolfe RR. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 1997;82(3):807- 810.

    CAS  Google Scholar 

  56. Chromiak JA, Smedley B, Carpenter W, et al. Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity. Nutrition 2004;20(5):420-427.

    Article  Google Scholar 

  57. Bellisle F, McDevitt R, Prentice AM. Meal frequency and energy balance. Br J Nutr 1997;77(Suppl 1):S57-70.

    Article  CAS  Google Scholar 

  58. Westerterp-Plantenga MS, Kovacs EM, Melanson KJ. Habitual meal frequency and energy intake regulation in partially temporally isolated men. Int J Obes Relat Metab Disord 2002;26(1):102-110.

    Article  CAS  Google Scholar 

  59. Farshchi HR, Taylor MA, Macdonald IA. Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur J Clin Nutr 2004;58(7):1071-1077.

    Article  CAS  Google Scholar 

  60. Farshchi HR, Taylor MA, Macdonald IA. Decreased thermic effect of food after an irregular compared with a regular meal pattern in healthy lean women. Int J Obes Relat Metab Disord 2004;28(5):653-660.

    Article  CAS  Google Scholar 

  61. Iwao S, Mori K, Sato Y. Effects of meal frequency on body composition during weight control in boxers. Scand J Med Sci Sports 1996;6(5):265-272.

    Article  CAS  Google Scholar 

  62. Demling RH, DeSanti L. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab 2000;44(1):21-29.

    Article  CAS  Google Scholar 

  63. Brown EC, Disilvestro RA, Babaknia A, Devor ST. Soy versus whey protein bars: effects on exercise training impact on lean body mass and antioxidant status. Nutr J 2004;3(1):22.

    Article  Google Scholar 

  64. Deibert P, Konig D, Schmidt-Trucksaess A, et al. Weight loss without losing muscle mass in pre-obese and obese subjects induced by a high-soy-protein diet. Int JObes Relat Metab Disord 2004;28(10):1349-1352.

    Article  CAS  Google Scholar 

  65. Nikawa T, Ikemoto M, Sakai T, et al. Effects of a soy protein diet on exercise-induced muscle protein catabolism in rats. Nutrition 2002;18(6):490-495.

    Article  CAS  Google Scholar 

  66. Lands LC, Grey VL, Smountas AA. Effect of supplementation with a cysteine donor on muscular performance. J Appl Physiol 1999;87(4):1381-1385.

    CAS  Google Scholar 

  67. Poortmans JR, Dellalieux O. Do regular high protein diets have potential health risks on kidney function in athletes I Int J Sport Nutr Exerc Metab 2000;10(1):28- 38.

    CAS  Google Scholar 

  68. Dawson-Hughes B, Harris SS, Rasmussen H, Song L, Dallal GE. Effect of dietary protein supplements on calcium excretion in healthy older men and women. J Clin Endocrinol Mctab 2004;89(3):1169-1173.

    Article  CAS  Google Scholar 

  69. American Heart Association. Step I, Step II and TLC Diets (January 2006) http://www.americanheart.org/presenter.jhtml?identifier=4764.

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press. a part of Spring Science+Business Media, LLC

About this chapter

Cite this chapter

Antonio, J., Manninen, A.H. (2008). Eating to Improve Body Composition. In: Antonio, J., Kalman, D., Stout, J.R., Greenwood, M., Willoughby, D.S., Haff, G.G. (eds) Essentials of Sports Nutrition and Supplements. Humana Press. https://doi.org/10.1007/978-1-59745-302-8_26

Download citation

Publish with us

Policies and ethics