Skip to main content

Targeting Smad-Dependent TGF-β Signaling with Peptide Aptamers

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1565 Accesses

Abstract

Peptide aptamers, variable constrained protein motifs displayed on a rigid protein scaffold, have been used to disrupt a number of different protein-protein interactions in cells, resulting in specific changes in cell proliferation or signaling. TGF-β signal transduction relies on the assembly of protein complexes around the Smad heterotrimer to activate or repress specific gene expression responses. In order to understand which Smad protein interactions are important for specific responses to TGF-β, and to identify protein binding sites on Smads that might be selective therapeutic targets, we are developing a library of Smad-binding peptide aptamers, initially based on displaying known, Smad binding motifs on the Thioredoxin A (Trx) scaffold. We review here the use of peptide aptamers, the known Smad binding motifs, and our initial studies that demonstrate that peptide aptamers have selective effects on TGF-β induced transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  2. Akhurst RJ, Balmain A. Genetic events and the role of TGF beta in epithelial tumour progression. J Pathol 1999;187:82–90.

    Article  CAS  PubMed  Google Scholar 

  3. Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol 2002;13:2600–2610.

    Article  PubMed  Google Scholar 

  4. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003;3:531–536.

    Article  CAS  PubMed  Google Scholar 

  5. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3:1011–1022.

    Article  CAS  PubMed  Google Scholar 

  6. Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 2000;97: 8015–8020.

    Article  CAS  PubMed  Google Scholar 

  7. Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 2003;44: 3394–3401.

    Article  PubMed  Google Scholar 

  8. Komesli S, Vivien D, Dutartre P. Chimeric extracellular domain type II transforming growth factor (TGF)-beta receptor fused to the Fc region of human immunoglobulin as a TGF-beta antagonist. Eur J Biochem 1998;254:505–513.

    Article  CAS  PubMed  Google Scholar 

  9. Bandyopadhyay A, Lopez-Casillas F, Malik SN, et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 2002;62:4690–4695.

    CAS  PubMed  Google Scholar 

  10. Kolb M, Margetts PJ, Sime PJ, Gauldie J. Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1327–L1334.

    CAS  PubMed  Google Scholar 

  11. Kasuga H, Ito Y, Sakamoto S, et al. Effects of anti-TGF-beta type II receptor antibody on experimental glomerulonephritis. Kidney Int 2001;60:1745–1755.

    Article  CAS  PubMed  Google Scholar 

  12. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118–1122.

    Article  CAS  PubMed  Google Scholar 

  13. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996;87:1215–1224.

    Article  CAS  PubMed  Google Scholar 

  14. Singh J, Ling LE, Sawyer JS, Lee WC, Zhang F, Yingling JM. Transforming the TGFbeta pathway: convergence of distinct lead generation strategies on a novel kinase pharmacophore for TbetaRI (ALK5). Curr Opin Drug Discov Dev 2004;7:437–445.

    CAS  Google Scholar 

  15. Laping NJ, Grygielko E, Mathur A, et al. Inhibition of transforming growth factor (TGF)-beta 1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 2002;62:58–64.

    Article  CAS  PubMed  Google Scholar 

  16. DaCosta Byfield S, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2004;65:744–752.

    Article  PubMed  Google Scholar 

  17. Grygielko ET, Martin WM, Tweed C, et al. Laping. Inhibition of gene markers of fibrosis with a novel inhibitor of transforming growth factor-beta type I receptor kinase in puromycin-induced nephritis. J Pharmacol Exp Ther 2005;313:943–951.

    Article  CAS  PubMed  Google Scholar 

  18. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631–635.

    Article  CAS  PubMed  Google Scholar 

  19. Souchelnytskyi S, Nakayama T, Nakao A, et al. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J Biol Chem 1998;273:25,364–25,370.

    Article  CAS  PubMed  Google Scholar 

  20. Mochizuki T, Miyazaki H, Hara T, et al. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. J Biol Chem 2004;279:31,568–31,574.

    Article  CAS  PubMed  Google Scholar 

  21. Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000;6:1365–1375.

    Article  CAS  PubMed  Google Scholar 

  22. Ebisawa T, Fukuchi M, Murakami G, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001;276:12,477–12,480.

    Article  CAS  PubMed  Google Scholar 

  23. Ruzek MC, Hawes M, Pratt B, et al. Minimal effects on immune parameters following chronic anti-TGF-beta monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 2003;25:235–257.

    Article  CAS  PubMed  Google Scholar 

  24. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109:1607–1615.

    CAS  PubMed  Google Scholar 

  25. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005;19:2783–2810.

    Article  PubMed  CAS  Google Scholar 

  26. Feng XH, Derynck R. Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.

    Article  CAS  PubMed  Google Scholar 

  27. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 1996;380:548–550.

    Article  CAS  PubMed  Google Scholar 

  28. Skerra A. Engineered protein scaffolds for molecular recognition. J Mol Recog 2000;13:167–187.

    Article  CAS  Google Scholar 

  29. Norman TC, Smith DL, Sorger PK, et al. Genetic selection of peptide inhibitors of biological pathways. Science 1999;285:591–595.

    Article  CAS  PubMed  Google Scholar 

  30. Woodman R, Yeh JT, Laurenson S, Ko Ferrigno P. Design and validation of a neutral protein scaffold for the presentation of peptide aptamers. J Mol Biol 2005;352:1118–1133.

    Article  CAS  PubMed  Google Scholar 

  31. Abedi MR, Caponigro G, Kamb A. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res 1998;26:623–630.

    Article  CAS  PubMed  Google Scholar 

  32. Klevenz B, Butz K, Hoppe-Seyler F. Peptide aptamers, exchange of the thioredoxin-A scaffold by alternative platform proteins and its influence on target protein binding. Cell Mol Life Sci 2002;59: 1993–1998.

    Article  CAS  PubMed  Google Scholar 

  33. Ladner RC. Constrained peptides as binding entities. Trends Biotechnol 1995;13:426–430.

    Article  CAS  PubMed  Google Scholar 

  34. Cohen BA, Colas P, Brent R. An artificial cell-cycle inhibitor isolated from a combinatorial library. Proc Natl Acad Sci USA 1998;95:14,272–14,277.

    Article  CAS  PubMed  Google Scholar 

  35. Fabbrizio E, Le Cam L, Polanowska J, et al. Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that functionally antagonize E2F activity. Oncogene 1999;18:4357–4363.

    Article  CAS  PubMed  Google Scholar 

  36. Butz K, Denk C, Fitscher B, et al. Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 2001;20:6579–6586.

    Article  CAS  PubMed  Google Scholar 

  37. Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F. Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 2000;97:6693–6697.

    Article  CAS  PubMed  Google Scholar 

  38. Nauenburg S, Zwerschke W, Jansen-Durr P. Induction of apoptosis in cervical carcinoma cells by peptide aptamers that bind to the HPV-16 E7 oncoprotein. FASEB J 2001;15:592–594.

    CAS  PubMed  Google Scholar 

  39. Schmidt S, Diriong S, Mery J, Fabbrizio E, Debant A. Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Lett 2002;523:35–42.

    Article  CAS  PubMed  Google Scholar 

  40. Xu CW, Luo Z. Inactivation of Ras function by allele-specific peptide aptamers. Oncogene 2002;21: 5753–5757.

    Article  CAS  PubMed  Google Scholar 

  41. Buerger C, Nagel-Wolfrum K, Kunz C, et al. Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 2003;278:37,610–37,621.

    Article  CAS  PubMed  Google Scholar 

  42. Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F, Groner B. The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res 2004;2:170–182.

    CAS  PubMed  Google Scholar 

  43. Chattopadhyay A, Tate SA, Beswick RW, Wagner SD, Ko Ferrigno P. A peptide aptamer to antagonize BCL-6 function. Oncogene 2006;25:2223–2233.

    Article  CAS  PubMed  Google Scholar 

  44. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  45. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004;29:265–273.

    Article  PubMed  CAS  Google Scholar 

  46. Shi Y, Wang YF, Jayaraman L, Yang H, Massagué J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 1998;94:585–594.

    Article  CAS  PubMed  Google Scholar 

  47. Dunn NR, Koonce CH, Anderson DC, Islam A, Bikoff EK, Robertson EJ. Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile. Genes Dev 2005;19:152–163.

    Article  CAS  PubMed  Google Scholar 

  48. Qin BY, Lam SS, Correia JJ, Lin K. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev 2002;16:1950–1963.

    Article  CAS  PubMed  Google Scholar 

  49. Wu JW, Fairman R, Penry J, Shi Y. Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem 2001;276:20,688–20,694.

    Article  CAS  PubMed  Google Scholar 

  50. Chacko BM, Qin BY, Tiwari, et al. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell 2004;15:813–823.

    Article  CAS  PubMed  Google Scholar 

  51. Wu JW, Hu M, Chai J, et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell 2001;8: 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  52. Wotton D, Lo RS, Lee S, Massagué J. A Smad transcriptional corepressor. Cell 1999;97:29–39.

    Article  CAS  PubMed  Google Scholar 

  53. Wu JW, Krawitz AR, Chai J, et al. Structural mechanism of Smad4 recognition by the nuclear oncoprotein ski: insights on ski-mediated repression of TGF-β signaling. Cell 2002;111:357–367.

    Article  CAS  PubMed  Google Scholar 

  54. Wu G, Chen YG, Ozdamar B, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 2000;287:92–97.

    Article  CAS  PubMed  Google Scholar 

  55. Chong PA, Ozdamar B, Wrana JL, Forman-Kay JD. Disorder in a target for the Smad2 mad homology 2 domain and its implications for binding and specificity. J Biol Chem 2004;279:40,707–40,714.

    Article  CAS  PubMed  Google Scholar 

  56. Randall RA, Germain S, Inman GJ, Bates PA, Hill CS. Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif. EMBO J 2002;21:145–156.

    Article  CAS  PubMed  Google Scholar 

  57. Chen YG, Hata A, Lo RS, et al. Determinants of specificity in TGF-beta signal transduction. Genes Dev 1998;12:2144–2152.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 2001;98:974–979.

    Article  CAS  PubMed  Google Scholar 

  59. Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 2000;275:36,818–36,822.

    Article  CAS  PubMed  Google Scholar 

  60. Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 1997;7:860–869.

    Article  CAS  PubMed  Google Scholar 

  61. Kang Y, Chen CR, Massagué J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003;11:915–926.

    Article  CAS  PubMed  Google Scholar 

  62. Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem 1999; 274:8949–8957.

    Article  CAS  PubMed  Google Scholar 

  63. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev 2000;14:1553–1577.

    CAS  PubMed  Google Scholar 

  64. Feng XH, Zhang Y, Wu RY, Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 1998;12:2153–2163.

    Article  CAS  PubMed  Google Scholar 

  65. Pouponnot C, Jayaraman L, Massagué J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 1998;273:22,865–22,868.

    Article  CAS  PubMed  Google Scholar 

  66. Nishihara A, Hanai JI, Okamoto N, et al. Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 1998;3:613–623.

    Article  CAS  PubMed  Google Scholar 

  67. Topper JN, Dichiara MR, Brown JD, et al. CREB binding protein is a required coactivator for Smaddependent, transforming growth factor beta transcriptional responses in endothelial cells. Proc Natl Acad Sci USA 1998;95:9506–9511.

    Article  CAS  PubMed  Google Scholar 

  68. Janknecht R, Wells NJ, Hunter T. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 1998;12:2114–2119.

    Article  CAS  PubMed  Google Scholar 

  69. de Caestecker MP, Yahata T, Wang D, et al. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem 2000;275:2115–2122.

    Article  PubMed  Google Scholar 

  70. Coyle-Rink J, Sweet T, Abraham S, et al. Interaction between TGFbeta signaling proteins and C/EBP controls basal and Tat-mediated transcription of HIV-1 LTR in astrocytes. Virology 2002;299: 240–247.

    Article  CAS  PubMed  Google Scholar 

  71. Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 2003;278:9609–9619.

    Article  CAS  PubMed  Google Scholar 

  72. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 2002;110:19–32.

    Article  CAS  PubMed  Google Scholar 

  73. Lee DK, Kim BC, Kim IY, Cho EA, Satterwhite DJ, Kim SJ. The human papilloma virus E7 oncoprotein inhibits transforming growth factor-beta signaling by blocking binding of the Smad complex to its target sequence. J Biol Chem 2002;277:38,557–38,564.

    Article  CAS  PubMed  Google Scholar 

  74. Matsuda T, Yamamoto T, Muraguchi A, Saatcioglu F. Cross-talk between transforming growth factorbeta and estrogen receptor signaling through Smad3. J Biol Chem 2001;276:42,908–42,914.

    Article  CAS  PubMed  Google Scholar 

  75. Wu L, Wu Y, Gathings B, et al. Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem 2003;278:15,192–15,200.

    Article  CAS  PubMed  Google Scholar 

  76. Li G, Wang S, Gelehrter TD. Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-beta action. J Biol Chem 2003;278:41,779–41,788.

    Article  CAS  PubMed  Google Scholar 

  77. Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C. Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 2002;277:43,749–43,756.

    Article  CAS  PubMed  Google Scholar 

  78. Yanagisawa J, Yanagi Y, Masuhiro Y, et al. convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 1999;283:1317–1321.

    Article  CAS  PubMed  Google Scholar 

  79. Pendaries V, Verrecchia F, Michel S, Mauviel A. Retinoic acid receptors interfere with the TGF-beta/Smad signaling pathway in a ligand-specific manner. Oncogene 2003;22:8212–8220.

    Article  CAS  PubMed  Google Scholar 

  80. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001;97:2815–2822.

    Article  CAS  PubMed  Google Scholar 

  81. Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C, Derynck R. Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J Biol Chem 2005;280:24,227–24,237.

    Article  CAS  PubMed  Google Scholar 

  82. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 1998;394:92–96.

    Article  CAS  PubMed  Google Scholar 

  83. Germain S, Howell M, Esslemont GM, Hill CS. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev 2000;14:435–451.

    CAS  PubMed  Google Scholar 

  84. Howell M, Inman GJ, Hill CS. A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements. Development 2002;129:2823–2834.

    CAS  PubMed  Google Scholar 

  85. Randall RA, Howell M, Page CS, Daly A, Bates PA, Hill CS. Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif. Mol Cell Biol 2004;24: 1106–1121.

    Article  CAS  PubMed  Google Scholar 

  86. Seoane J, Le HV, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117:211–223.

    Article  CAS  PubMed  Google Scholar 

  87. Yang X, Ji X, Shi X, Cao X. Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J Biol Chem 2000;275:1065–1072.

    Article  CAS  PubMed  Google Scholar 

  88. Chiba S, Takeshita K, Imai Y, et al. Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. Proc Natl Acad Sci USA 2003;100:15,577–15,582.

    Article  CAS  PubMed  Google Scholar 

  89. Blokzijl A, ten Dijke P, Ibanez CF. Physical and functional interaction between GATA-3 and Smad3 allows TGF-beta regulation of GATA target genes. Curr Biol 2002;12:35–45.

    Article  CAS  PubMed  Google Scholar 

  90. Kang JS, Alliston T, Delston R, Derynck R. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 2005;24:2543–2555.

    Article  CAS  PubMed  Google Scholar 

  91. Chou WC, Prokova V, Shiraishi K, et al. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol Biol Cell 2003;14:1279–1294.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 1998;394:909–913.

    Article  CAS  PubMed  Google Scholar 

  93. Liberati NT, Datto MB, Frederick JP, et al. Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 1999;96:4844–4849.

    Article  CAS  PubMed  Google Scholar 

  94. Qing J, Liu C, Choy L, Wu RY, Pagano JS, Derynck R. Transforming growth factor beta/Smad3 signaling regulates IRF-7 function and transcriptional activation of the beta interferon promoter. Mol Cell Biol 2004;24:1411–1425.

    Article  CAS  PubMed  Google Scholar 

  95. Hurlstone A, Clevers H. T-cell factors: turn-ons and turn-offs. EMBO J 2002;21:2303–2311.

    Article  CAS  PubMed  Google Scholar 

  96. Hu MC, Rosenblum ND. Smad1, beta-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 2005;132:215–225.

    Article  CAS  PubMed  Google Scholar 

  97. Labbe E, Letamendia, A Attisano L. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 2000;97:8358–8363.

    Article  CAS  PubMed  Google Scholar 

  98. Nishita M, Hashimoto MK, Ogata S, et al. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature 2000;403:781–785.

    Article  CAS  PubMed  Google Scholar 

  99. Hussein SM, Duff EK, Sirard C. Smad4 and beta-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J Biol Chem 2003;278:48,805–48,814.

    Article  CAS  PubMed  Google Scholar 

  100. Chen SL, Dowhan DH, Hosking BM, Muscat GE. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 2000;14:1209–1228.

    CAS  PubMed  Google Scholar 

  101. Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 1997;17:1010–1026.

    CAS  PubMed  Google Scholar 

  102. Liu D, Kang JS, Derynck R. TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 2004;23:1557–1566.

    Article  CAS  PubMed  Google Scholar 

  103. Shioda T, Lechleider RJ, Dunwoodie SL, et al. Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc Natl Acad Sci USA 1998;95:9785–9790.

    Article  CAS  PubMed  Google Scholar 

  104. Feng XH, Liang YY, Liang M, Zhai W, Lin X. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 2002;9:133–143.

    Article  CAS  PubMed  Google Scholar 

  105. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 1998;95:779–791.

    Article  CAS  PubMed  Google Scholar 

  106. Itoh F, Divecha N, Brocks L, et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells 2002;7:321–331.

    Article  CAS  PubMed  Google Scholar 

  107. Dahl R, Wani B, Hayman MJ. The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42. Oncogene 1998;16:1579–1586.

    Article  CAS  PubMed  Google Scholar 

  108. Leong GM, Subramaniam N, Figueroa J, et al. Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription. J Biol Chem 2001;276: 18,243–18,248.

    Article  CAS  PubMed  Google Scholar 

  109. Liang M, Liang YY, Wrighton K, et al. Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol Cell Biol 2004;24:7524–7537.

    Article  CAS  PubMed  Google Scholar 

  110. Bai RY, Koester C, Ouyang T, et al. SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling. Nat Cell Biol 2002;4:181–190.

    Article  CAS  PubMed  Google Scholar 

  111. Kim RH, Wang D, Tsang M, et al. A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. Genes Dev 2000;14:1605–1616.

    CAS  PubMed  Google Scholar 

  112. Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 1999;286:771–774.

    Article  CAS  PubMed  Google Scholar 

  113. Wang W, Mariani FV, Harland RM, Luo K. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells. Proc Natl Acad Sci USA 2000;97:14,394–14,399.

    Article  CAS  PubMed  Google Scholar 

  114. Feng XH, Lin X, Derynck R. Smad2, smad3 and smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 2000;19:5178–5193.

    Article  CAS  PubMed  Google Scholar 

  115. Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A. Role of smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-beta. J Biol Chem 2000;275:29,244–29,256.

    Article  CAS  PubMed  Google Scholar 

  116. Shimizu K, Bourillot PY, Nielsen SJ, Zorn AM, Gurdon JB. Swift is a novel BRCT domain coactivator of Smad2 in transforming growth factor beta signaling. Mol Cell Biol 2001;21:3901–3912.

    Article  CAS  PubMed  Google Scholar 

  117. Grinberg AV, Kerppola T. Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J Biol Chem 2003;278:11,227–11,236.

    Article  CAS  PubMed  Google Scholar 

  118. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 1999;126: 1631–1642.

    CAS  PubMed  Google Scholar 

  119. Verschueren K, Remacle JE, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 1999;274:20,489–20,498.

    Article  CAS  PubMed  Google Scholar 

  120. Postigo AA. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 2003;22:2443–2452.

    Article  CAS  PubMed  Google Scholar 

  121. Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 2003;22:2453–2462.

    Article  CAS  PubMed  Google Scholar 

  122. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 down-regulates E-cadherin and induces invasion. Mol Cell 2001;7:1267–1278.

    Article  CAS  PubMed  Google Scholar 

  123. Vandewalle C, Comijn J, De Craene B, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005;33:6566–6578.

    Article  CAS  PubMed  Google Scholar 

  124. Cui Q, Lim SK, Zhao B, Hoffmann FM. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 2005;24:3864–3874.

    Article  CAS  PubMed  Google Scholar 

  125. Kolonin MG, Finley RL, Jr. Targeting cyclin-dependent kinases in Drosophila with peptide aptamers. Proc Natl Acad Sci USA 1998;95:14,266–14,271.

    Article  CAS  PubMed  Google Scholar 

  126. Geyer CR, Colman-Lerner A, Brent R. “Mutagenesis” by peptide aptamers identifies genetic network members and pathway connections. Proc Natl Acad Sci USA 1999;96:8567–8572.

    Article  CAS  PubMed  Google Scholar 

  127. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 2000;6:1335–1340.

    Article  CAS  PubMed  Google Scholar 

  128. Colas P, Cohen B, Ferrigno PK, Silver PA, Brent R. Targeted modification and transportation of cellular proteins. Proc Natl Acad Sci USA 2000;97:13,720–13,725.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hoffmann, F.M., Cui, Q., Lim, S.K., Zhao, B.M. (2008). Targeting Smad-Dependent TGF-β Signaling with Peptide Aptamers. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_45

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics