Skip to main content

Targeted Downregulation of TGF-β2 with AP 12009 in Tumor Therapy

  • Chapter
  • 1535 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Albeit recent progress in new cancer therapies there is a high unmet medical need for the treatment of aggressive cancer types such as malignant glioma, pancreatic carcinoma, malignant melanoma, or colorectal carcinoma.

The antisense-technology is an innovative method offering a targeted approach for the treatment of various highly aggressive tumors and other diseases. Antisense oligonucleotides are being developed to inhibit the production of disease-causing proteins at the molecular level.

Transforming growth factor-β (TGF-β) plays a key role in malignant progression of various tumors by inducing proliferation, invasion, metastasis, angiogenesis, and escape from immunosurveillance. It has been shown that in a number of tumor types the degree of TGF-β production strongly correlates with tumor grade and stage. Our therapeutic approach for the treatment of high-grade glioma and other TGF-β2 overexpressing tumors is based on the specific inhibition of the TGF-β2 expression by the phosphorothioate antisense oligodeoxynucleotide AP 12009.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Tiwari RC, Murray T et al. Cancer statistics. CA Cancer J Clin 2004;54:8–29.

    Article  PubMed  Google Scholar 

  2. Akhurst RJ, Derynck R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol 2001;11:S44–S51.

    CAS  PubMed  Google Scholar 

  3. Reiss M. TGF-beta and cancer. Microbes Infect 1999;1:1327–1347.

    Article  CAS  PubMed  Google Scholar 

  4. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    Article  CAS  PubMed  Google Scholar 

  5. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. Invest New Drugs 2003;21:21–32.

    Article  CAS  PubMed  Google Scholar 

  6. Jennings MT, Pietenpol JA. The role of transforming growth factor beta in glioma progression. J Neurooncol 1998;36:123–140.

    Article  CAS  PubMed  Google Scholar 

  7. Piek E, Roberts AB. Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis. Adv Cancer Res 2001;83:1–54.

    Article  CAS  PubMed  Google Scholar 

  8. Bodmer S, Strommer K, Frei K, et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 1989;143: 3222–3229.

    CAS  PubMed  Google Scholar 

  9. Kjellman C, Olofsson SP, Hansson O, et al. Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 2000;89:251–258.

    Article  CAS  PubMed  Google Scholar 

  10. Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN. Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosung 1992;76:799–804.

    Article  CAS  Google Scholar 

  11. Friess H, Yamanaka Y, Buchler M, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993;105:1846–1856.

    CAS  PubMed  Google Scholar 

  12. von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 2001;7:925s–932s.

    Google Scholar 

  13. Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE. Elevated plasma levels of transforming growth factor (TGF)-beta1 and TGF-beta2 in patients with disseminated malignant melanoma. Br J Cancer 1998;77:1492–1494.

    CAS  PubMed  Google Scholar 

  14. Van Belle P, Rodeck U, Nuamah I, Halpern AC, Elder DE. Melanoma-associated expression of transforming growth factor-beta isoforms. Am J Pathol 1996;148:1887–1894.

    PubMed  Google Scholar 

  15. Albino AP, Davis BM, Nanus DM. Induction of growth factor RNA expression in human malignant melanoma: markers of transformation. Cancer Res 1991;51:4815–4820.

    CAS  PubMed  Google Scholar 

  16. Tsamandas AC, Kardamakis D, Ravazoula P, et al. The potential role of TGFbeta1, TGFbeta2 and TGFbeta3 protein expression in colorectal carcinomas. Correlation with classic histopathologic factors and patient survival. Strahlenther Onkol 2004;180:201–208.

    Article  PubMed  Google Scholar 

  17. Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, et al. Targeted tumor therapy with the TGF-b2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006;17:129–139.

    Article  CAS  PubMed  Google Scholar 

  18. Schlingensiepen R, Brysch W, Schlingensiepen K-H. Antisense: From Technology to Therapy: Lab Manual and Textbook. Berlin, Vienna: Blackwell Science, 1997.

    Google Scholar 

  19. Mahato RI. Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids. In: Mahato RI, ed. Boca Raton Florida: CRC Press, 2005.

    Google Scholar 

  20. Stein CA. Keeping the biotechnology of antisense in context. Nat Biotechnol 1999;17:209.

    Article  CAS  PubMed  Google Scholar 

  21. Akhtar S, Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci 1997;18: 12–18.

    Article  CAS  PubMed  Google Scholar 

  22. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978;75:280–284.

    Article  CAS  PubMed  Google Scholar 

  23. Shaw JP, Kent K, Bird J, Fishback J, Froehler B. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res 1991;19:747–750.

    Article  CAS  PubMed  Google Scholar 

  24. Agrawal S, Iyer RP. Modified oligonucleotides as therapeutic and diagnostic agents Curr Opin Biotechnol 1995;6:12–19.

    Article  CAS  PubMed  Google Scholar 

  25. Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003;270:1628–1644.

    Article  CAS  PubMed  Google Scholar 

  26. Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev 2000;10:117–121.

    CAS  PubMed  Google Scholar 

  27. Eckstein F. Phosphorothioate analogues of nucleotides — Tools for the investigation of biochemical processes. Angewandte Chemie — International Edition in English 1983;22:423–506.

    Article  Google Scholar 

  28. Mahato RI, Ye Z, Guntaka RV. Antisense and antigene oligonucleotides: Structure, stability and delivery. In: Mahato RI, ed. Biomaterials for Delivering and, Targeting of Proteins and Nucleic Acids. Boca Raton, Florida: CRC Press 2005;1:569–600.

    Google Scholar 

  29. Maher LJ, 3rd, Dolnick BJ. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system. Nucleic Acids Res 1988;16:3341–3358.

    Article  CAS  PubMed  Google Scholar 

  30. Agris CH, Blake KR, Miller PS, Reddy MP, Ts’o PO. Inhibition of vesicular stomatitis virus protein synthesis and infection by sequence-specific oligodeoxyribonucleoside methylphosphonates. Biochemistry 1986;25:6268–6275.

    Article  CAS  PubMed  Google Scholar 

  31. Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002;30:1911–1918.

    Article  CAS  PubMed  Google Scholar 

  32. Agrawal S, Jiang Z, Zhao Q, et al. Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc Natl Acad Sci USA 1997;94:2620–2625.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou L, Morocho AM, Chen BC, Cohen JS. Synthesis of phosphorothioate-methylphosphonate oligonucleotide co-polymers. Nucleic Acids Res 1994;22:453–456.

    Article  CAS  PubMed  Google Scholar 

  34. Giles RV, Spiller DG, Tidd DM. Chimeric oligodeoxynucleotide analogues: enhanced cell uptake of structures which direct ribonuclease H with high specificity. Anticancer Drug Des 1993;8:33–51.

    CAS  PubMed  Google Scholar 

  35. Giles RV, Spiller DG, Green JA, Clark RE, Tidd DM. Optimization of antisense oligodeoxynucleotide structure for targeting bcr-abl mRNA. Blood 1995;86:744–754.

    CAS  PubMed  Google Scholar 

  36. Coppelli FM, Grandis JR. Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond. Curr Pharm Des 2005;11:2825–2840.

    Article  CAS  PubMed  Google Scholar 

  37. Lahn M, Kloeker S, Berry BS. TGF-beta inhibitors for the treatment of cancer. Expert Opin Investig Drugs 2005;14:629–643.

    Article  CAS  PubMed  Google Scholar 

  38. Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene 2003;22: 9087–9096.

    Article  CAS  PubMed  Google Scholar 

  39. Gleave ME, Monia BP. Antisense therapy for cancer. Nat Rev Cancer 2005;5:468–479.

    Article  CAS  PubMed  Google Scholar 

  40. Schlingensiepen KH, Fischer-Blass B, Jachimczak P, Schlingensiepen R. The role of transforming growth factor-beta in carcinogenesis. Nat Rev Cancer 2005;5: published online: http://www.nature.com /nrc/index.html.

    Google Scholar 

  41. FDA. FDA Approves Erbitux for Colorectal Cancer. http://www.fda.gov/bbs/topics/NEWS/2004/ NEW01024.html: U.S. Food and Drug Administration 2004.

    Google Scholar 

  42. Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000;164:944–953.

    CAS  PubMed  Google Scholar 

  43. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002;20:709–760.

    Article  CAS  PubMed  Google Scholar 

  44. Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999;1489:69–84.

    CAS  PubMed  Google Scholar 

  45. Krieg AM, Yi AK, Hartmann G. Mechanisms and therapeutic applications of immune stimulatory CpG DNA. Pharmacol Ther 1999;84:113–120.

    Article  CAS  PubMed  Google Scholar 

  46. Brown DA, Kang SH, Gryaznov SM et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 1994;269:26,801–26,805.

    CAS  PubMed  Google Scholar 

  47. Levin AA, Monteith DK, Leeds JM et al. Toxicity of oligonucleotide therapeutic agents. In: Crooke ST, ed. Antisense Research and Application. Berlin Heidelberg: Springer 1998;131:169–215.

    Google Scholar 

  48. Henry SP, Monteith D, Levin AA. Antisense oligonucleotide inhibitors for the treatment of cancer: 2. Toxicological properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des 1997;12: 395–408.

    CAS  PubMed  Google Scholar 

  49. Sarmiento UM, Perez JR, Becker JM, Narayanan R. In vivo toxicological effects of rel A antisense phosphorothioates in CD-1 mice. Antisense Res Dev 1994;4:99–107.

    CAS  PubMed  Google Scholar 

  50. Marquis JK, Grindel JM. Toxicological evaluation of oligonucleotide therapeutics. Curr Opin Mol Ther 2000;2:258–263.

    CAS  PubMed  Google Scholar 

  51. Jason TL, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol. 2004;201:66–83.

    Article  CAS  PubMed  Google Scholar 

  52. Galbraith WM, Hobson WC, Giclas PC, Schechter PJ, Agrawal S. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res Dev 1994;4:201–206.

    CAS  PubMed  Google Scholar 

  53. Agrawal S. Antisense oligonucleotides: towards clinical trials. Trends Biotechnol 1996;14:376–387.

    Article  CAS  PubMed  Google Scholar 

  54. Gaudette MF, Hampikian G, Metelev V, Agrawal S, Crain WR. Effect on embryos of injection of phosphorothioate-modified oligonucleotides into pregnant mice. Antisense Res Dev 1993;3:391–397.

    CAS  PubMed  Google Scholar 

  55. Crooke ST. Commentary: regulatory issues affecting oligonucleotides. Antisense Res Dev 1993;3:301–306.

    CAS  PubMed  Google Scholar 

  56. Agrawal S, Temsamani J, Galbraith W, Tang J. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 1995;28:7–16.

    Article  CAS  PubMed  Google Scholar 

  57. Agrawal S, Zhang X, Lu Z, et al. Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem Pharmacol 1995;50:571–576.

    Article  CAS  PubMed  Google Scholar 

  58. Coudert B, Anthoney A, Fiedler W, et al. Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur J Cancer 2001;37:2194–2198.

    Article  CAS  PubMed  Google Scholar 

  59. Cripps MC, Figueredo AT, Oza AM, et al. Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 2002;8:2188–2192.

    CAS  PubMed  Google Scholar 

  60. Cunningham CC, Holmlund JT, Schiller JH, et al. A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2000;6:1626–1631.

    CAS  PubMed  Google Scholar 

  61. Oza AM, Elit L, Swenerton K, et al. Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116). Gynecol Oncol 2003;89:129–133.

    Article  CAS  PubMed  Google Scholar 

  62. Rudin CM, Holmlund J, Fleming GF, et al. Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin Cancer Res 2001;7:1214–1220.

    CAS  PubMed  Google Scholar 

  63. Stevenson JP, Yao KS, Gallagher M, et al. Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J Clin Oncol 1999;17:2227–2236.

    CAS  PubMed  Google Scholar 

  64. Tolcher AW, Reyno L, Venner PM, et al. A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2002;8:2530–2535.

    CAS  PubMed  Google Scholar 

  65. Grossman SA, Alavi JB, Supko JG, et al. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-alpha delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro-oncol 2005;7:32–40.

    Article  CAS  PubMed  Google Scholar 

  66. Nemunaitis J, Holmlund JT, Kraynak M, et al. Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 1999;17:3586–3595.

    CAS  PubMed  Google Scholar 

  67. Yuen AR, Halsey J, Fisher GA, et al. Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 1999;5:3357–3363.

    CAS  PubMed  Google Scholar 

  68. Cunningham CC, Holmlund JT, Geary RS, et al. A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 2001;92:1265–1271.

    Article  CAS  PubMed  Google Scholar 

  69. Morris MJ, Tong WP, Cordon-Cardo C, et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002;8:679–683.

    CAS  PubMed  Google Scholar 

  70. Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000;18: 1812–1823.

    CAS  PubMed  Google Scholar 

  71. Mullen P, McPhillips F, MacLeod K, Monia B, Smyth JF, Langdon SP. Antisense oligonucleotide targeting of Raf-1: importance of raf-1 mRNA, expression levels and raf-1-dependent signaling in determining growth response in ovarian cancer. Clin Cancer Res 2004;10:2100–2108.

    Article  CAS  PubMed  Google Scholar 

  72. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996;2:668–765.

    Article  CAS  PubMed  Google Scholar 

  73. Dai G, Chan KK, Liu S, et al. Cellular uptake and intracellular levels of the bcl-2 antisense g3139 in cultured cells and treated patients with acute myeloid leukemia. Clin Cancer Res 2005;11: 2998–3008.

    Article  CAS  PubMed  Google Scholar 

  74. Lai JC, Benimetskaya L, Santella RM, Wang Q, Miller PS, Stein CA. G3139 (oblimersen) may inhibit prostate cancer cell growth in a partially bis-CpG-dependent non-antisense manner. Mol Cancer Ther 2003;2:1031–1043.

    CAS  PubMed  Google Scholar 

  75. Fontana A, Hengartner H, de Tribolet N, Weber E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol 1984;132:1837–1844.

    CAS  PubMed  Google Scholar 

  76. de Martin R, Haendler B, Hofer-Warbinek R, et al. Complementary DNA for human glioblastomaderived T cell suppressor factor, a novel member of the transforming growth factor-beta gene family. EMBO J 1987;6:3673–3677.

    PubMed  Google Scholar 

  77. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000;11:59–69.

    Article  CAS  PubMed  Google Scholar 

  78. Oeklue R, Hesketh R. The latent transforming growth factor beta binding protein (LTBP) family. Biochem J 2000;352:601–610.

    Article  Google Scholar 

  79. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3:1011–1022.

    Article  CAS  PubMed  Google Scholar 

  80. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  81. Piek E, Heldin C-H, ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999;13:2105–2124.

    CAS  PubMed  Google Scholar 

  82. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 1999;10:303–360.

    CAS  PubMed  Google Scholar 

  83. Pasche B. Role of transforming growth factor beta in cancer. J Cell Physiol 2001;186:153–168.

    Article  CAS  PubMed  Google Scholar 

  84. Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  85. Massagué J, Weinberg RA. Negative regulators of growth. Curr Opin Genet Dev 1992;2:28–32.

    Article  PubMed  Google Scholar 

  86. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    Article  PubMed  Google Scholar 

  87. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  88. Birchmeier W, Birchmeier C. Epithelial-mesenchymal transitions in development and tumor progression. Exs 1995;74:1–15.

    CAS  PubMed  Google Scholar 

  89. Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998;8:1243–1252.

    Article  CAS  PubMed  Google Scholar 

  90. Kaminska B, Wesolowska A, Danilkiewicz M. TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 2005;52:329–337.

    CAS  PubMed  Google Scholar 

  91. Muraoka-Cook RS, Dumont N, Arteaga CL. Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 2005;11:937s–943s.

    CAS  PubMed  Google Scholar 

  92. Wakefield LM, Sporn MB. Suppression of carcinogenesis: a role for TGF-beta and related molecules in prevention of cancer. Immunol Ser 1990;51:217–243.

    CAS  PubMed  Google Scholar 

  93. Fernandez T, Amoroso S, Sharpe S, et al. Disruption of transforming growth factor beta signaling by a novel ligand-dependent mechanism. J Exp Med 2002;195:1247–1255.

    Article  CAS  PubMed  Google Scholar 

  94. Jachimczak P, Bogdahn U, Schneider J, et al. The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 1993;78:944–951.

    Article  CAS  PubMed  Google Scholar 

  95. Jachimczak P, Hessdorfer B, Fabel-Schulte K, et al. Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 1996;65:332–337.

    Article  CAS  PubMed  Google Scholar 

  96. Reed JA, McNutt NS, Prieto VG, Albino AP. Expression of transforming growth factor-beta 2 in malignant melanoma correlates with the depth of tumor invasion. Implications for tumor progression. Am J Pathol 1994;145:97–104.

    CAS  PubMed  Google Scholar 

  97. Steiner MS, Zhou ZZ, Tonb DC, Barrack ER. Expression of transforming growth factor-beta 1 in prostate cancer. Endocrinology 1994;135:2240–2247.

    Article  CAS  PubMed  Google Scholar 

  98. Truong LD, Kadmon D, McCune BK, Flanders KC, Scardino PT, Thompson TC. Association of transforming growth factor-beta 1 with prostate cancer: an immunohistochemical study. Hum Pathol 1993;24:4–9.

    Article  CAS  PubMed  Google Scholar 

  99. Wikstroem P, Damber J, Bergh A. Role of transforming growth factor-beta1 in prostate cancer. Microsc Res Tech 2001;52:411–419.

    Article  Google Scholar 

  100. de Visser KE, Kast WM. Effects of TGF-beta on the immune system: implications for cancer immunotherapy. Leukemia 1999;13:1188–1199.

    Article  PubMed  Google Scholar 

  101. Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M. Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 2000;268:607–611.

    Article  CAS  PubMed  Google Scholar 

  102. Polednak AP, Flannery JT. Brain, other central nervous system, and eye cancer. Cancer 1995;75:330–337.

    Article  CAS  PubMed  Google Scholar 

  103. Chang SM, Parney IF, Huang W, et al. Patterns of care for adults with newly diagnosed malignant glioma. JAMA 2005;293:557–564.

    Article  CAS  PubMed  Google Scholar 

  104. Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J Neurosurg 1998;88:1–10.

    Article  CAS  PubMed  Google Scholar 

  105. Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol 2003;13:52–61.

    PubMed  Google Scholar 

  106. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–996.

    Article  CAS  PubMed  Google Scholar 

  107. Brandes AA. State-of-the-art treatment of high-grade brain tumors. Semin Oncol 2003;30:4–9.

    Article  PubMed  Google Scholar 

  108. Athanassiou H, Synodinou M, Maragoudakis E, et al. Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol 2005;23:2372–2377.

    Article  CAS  PubMed  Google Scholar 

  109. Bogdahn U, Jachimczak P. Maligne Gliome. In: Zeller WJ, zur Hausen H, eds. Onkologie: Grundlagen — Diagnostik — Therapie — Entwicklungen. Landsberg/Lech: Ecomed Verlagsgesellschaft 1996;V-2:19.

    Google Scholar 

  110. Avgeropoulos NG, Batchelor TT. New treatment strategies for malignant gliomas. Oncologist 1999;4:209–224.

    CAS  PubMed  Google Scholar 

  111. Andrén-Sandberg Å. Demographics of exocrine pancreatic cancer with special reference to age, sex, and time trends. Int J Pancreatol 1993;16:214–216.

    Google Scholar 

  112. Evans DB; Abbruzzese JL, Rich TA. Cancer of the Pancreas. In: De Vita VT, Hellman S, Rosenberg SA, eds. Cancer: Principles und Practice of Oncology. Philadelphia: Lippincott 1997;5:1054–1077.

    Google Scholar 

  113. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1997. CA Cancer J Clin 1997;47:5–27.

    Article  CAS  PubMed  Google Scholar 

  114. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin 1999;49:33–64.

    Article  CAS  PubMed  Google Scholar 

  115. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemictabine compared to gemictabine alone in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG]. Proceedings American Society of Clinical Oncology, Orlando, Florida 2005;23:16S.

    Google Scholar 

  116. SEER. (Surveillance, Epidemiology and End Results Program) SEER*Stat database: Incidence — SEER 9 Registries (1973–2001): National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch 2004. http://seer.cancer.gov.

    Google Scholar 

  117. Moehler M, Teufel A, Galle PR. New chemotherapeutic strategies in colorectal cancer. Recent Results Cancer Res 2005;165:250–259.

    Article  PubMed  Google Scholar 

  118. Schlingensiepen K-H, Schlingensiepen R, Bischof A, Jachimczak P, Brysch W. Antisense-Nukleinsäuren in der Therapie maligner Tumoren. In: Zeller WJ, zur Hausen H eds. Onkologie: Grundlagen — Diagnostik — Therapie — Entwicklungen. Landsberg/Lech: Ecomed 2001;IV-20.

    Google Scholar 

  119. Hau P, Jachimczak P, Schlingensiepen R, et al. Inhibition of TGF-beta2 with AP12009 in recurrent malignant glioma: From preclinical to phase I/II clinical trials. Oligonucleotides 2007;17:201–212.

    Article  CAS  PubMed  Google Scholar 

  120. Cordeiro MF, Mead A, Ali RR, et al. Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther 2003;10:59–71.

    Article  CAS  PubMed  Google Scholar 

  121. Browder TM, Dunbar CE, Nienhuis AW. Private and public autocrine loops in neoplastic cells. Cancer Cells 1989;1:9–17.

    CAS  PubMed  Google Scholar 

  122. Schlingensiepen R, Goldbrunner M, Szyrach MN, et al. Intracerebral and Intrathecal Infusion of the TGF-beta2-Specific Antisense Phosphorothioate Oligonucleotide AP 12009 in Rabbits and Primates: Toxicology and Safety. Oligonucleotides 2005;15:94–104.

    Article  CAS  PubMed  Google Scholar 

  123. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91:2076–2080.

    Article  CAS  PubMed  Google Scholar 

  124. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield DH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 1995;82: 1021–1029.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Schlingensiepen, KH. et al. (2008). Targeted Downregulation of TGF-β2 with AP 12009 in Tumor Therapy. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_38

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics