Skip to main content

Perturbations of TGF-β Signaling in Leukocytes as Drivers of Leukemogenesis and Epithelial Tumorigenesis

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Abstract

The inactivation of specific components of the transforming growth factor-beta (TGF-β) signaling pathway has been implicated in many types of hematological malignancies. These range from alterations at the level of TGF-β receptors to mutations, deletions or functional inactivation of downstream signaling components such as members of the Smad family of proteins. It is becoming increasingly apparent that, in addition to playing a role in the progression of certain leukemias, disruption of TGF-β signaling in the lymphoid compartment also has profound effects on tumor progression of epithelial cells. In this respect, the use of conditional knockout murine models has been particularly instructive. We review here well-documented examples where TGF-β signaling is thought to control leukemogenesis. More recent data from our laboratory and others are lighlighted in support of a role for T-cell TGF-β signaling in regulating epithelial tumor progression. Finally, we review the link between TGF-β, regulatory T cells (Treg) and tumor immunotherapies, an understanding of which has significant therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fargeas C, Wu CY, Nakajima T, Cox D, Nutman T, Delespesse G. Differential effect of transforming growth factor beta on the synthesis of Th1-and Th2-like lymphokines by human T lymphocytes. Eur J Immunol 1992;22:2173–2176.

    Article  CAS  PubMed  Google Scholar 

  2. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005;6:600–607.

    Article  CAS  PubMed  Google Scholar 

  3. Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 2002;195:1499–1505.

    Article  CAS  PubMed  Google Scholar 

  4. Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 2000;165:4773–4777.

    CAS  PubMed  Google Scholar 

  5. Bridoux F, Badou A, Saoudi A, et al. Transforming growth factor beta (TGF-beta)-dependent inhibition of T helper cell 2 (Th2)-induced autoimmunity by self-major histocompatibility complex (MHC) class II-specific, regulatory CD4(+) T cell lines. J Exp Med 1997;185:1769–1775.

    Article  CAS  PubMed  Google Scholar 

  6. Letterio JJ. TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene 2005;24:5701–5712.

    Article  CAS  PubMed  Google Scholar 

  7. Inge TH, Hoover SK, Susskind BM, Barrett SK, Bear HD. Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1. Cancer Res 1992;52:1386–1392.

    CAS  PubMed  Google Scholar 

  8. Mule JJ, Schwarz SL, Roberts AB, Sporn MB, Rosenberg SA. Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother 1988;26:95–100.

    CAS  PubMed  Google Scholar 

  9. Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005;8:369–380.

    Article  CAS  PubMed  Google Scholar 

  10. Smith WB, Noack L, Khew-Goodall Y, Isenmann S, Vadas MA, Gamble JR. Transforming growth factor-beta 1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J Immunol 1996;157:360–368.

    CAS  PubMed  Google Scholar 

  11. Espinoza-Delgado I, Bosco MC, Musso T, et al. Inhibitory cytokine circuits involving transforming growth factor-beta, interferon-gamma, and interleukin-2 in human monocyte activation. Blood 1994; 83:3332–3338.

    CAS  PubMed  Google Scholar 

  12. Stevens DB, Gould KE, Swanborg RH. Transforming growth factor-beta 1 inhibits tumor necrosis factor-alpha/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol 1994;51:77–83.

    Article  CAS  PubMed  Google Scholar 

  13. Holter W, Kalthoff FS, Pickl WF, et al. Transforming growth factor-beta inhibits IL-4 and IFN-gamma production by stimulated human T cells. Int Immunol 1994;6:469–475.

    Article  CAS  PubMed  Google Scholar 

  14. Reddy ST, Gilbert RS, Xie W, Luner S, Herschman HR. TGF-beta 1 inhibits both endotoxin-induced prostaglandin synthesis and expression of the TIS10/prostaglandin synthase 2 gene in murine macrophages. J Leukoc Biol 1994;55:192–200.

    CAS  PubMed  Google Scholar 

  15. Pfeilschifter J, Vosbeck K. Transforming growth factor beta 2 inhibits interleukin 1 beta-and tumour necrosis factor alpha-induction of nitric oxide synthase in rat renal mesangial cells. Biochem Biophys Res Commun 1991;175:372–379.

    Article  CAS  PubMed  Google Scholar 

  16. Becker C, Fantini MC, Schramm C, et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004;21:491–501.

    Article  CAS  PubMed  Google Scholar 

  17. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875–1886.

    Article  CAS  PubMed  Google Scholar 

  18. Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005;201:1061–1067.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194:629–644.

    Article  CAS  PubMed  Google Scholar 

  20. Huang X, Zhu J, Yang Y. Protection against autoimmunity in nonlymphopenic hosts by CD4+ CD25+ regulatory T cells is antigen-specific and requires IL-10 and TGF-beta. J Immunol 2005;175:4283–4291.

    CAS  PubMed  Google Scholar 

  21. Fahlen L, Read S, Gorelik L, et al. T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med 2005;201:737–746.

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Hu B, Xu D, Liew FY. CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol 2003;171:5012–5017.

    CAS  PubMed  Google Scholar 

  23. Kullberg MC, Hay V, Cheever AW, et al. TGF-betal production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur J Immunol 2005;35:2886–2895.

    Article  CAS  PubMed  Google Scholar 

  24. Piccirillo CA, Letterio JJ, Thornton AM, et al. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 2002;196:237–246.

    Article  CAS  PubMed  Google Scholar 

  25. Jonuleit H, Adema G, Schmitt E. Immune regulation by regulatory T cells: implications for transplantation Transpl. Immunol 2003;11:267–276.

    CAS  Google Scholar 

  26. Stassen M, Fondel S, Bopp T, et al. Human CD25+ regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+ T helper cells. Eur J Immunol 2004;34:1303–1311.

    Article  CAS  PubMed  Google Scholar 

  27. Stassen M, Schmitt E, Jonuleit H. Human CD(4+)CD(25+) regulatory T cells and infectious tolerance. Transplantation 2004;77:S23–S25.

    Article  PubMed  Google Scholar 

  28. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005;115:3623–3633.

    Article  CAS  PubMed  Google Scholar 

  29. DeCoteau JF, Knaus PI, Yankelev H, et al. Loss of functional cell surface transforming growth factor beta (TGF-beta) type 1 receptor correlates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1997;94:5877–5881.

    Article  CAS  PubMed  Google Scholar 

  30. Friedenberg WR, Salzman SA, Phan SM, Burmester JK. Transforming growth factor-beta and multidrug resistance in chronic lymphocytic leukemia. Med Oncol 1999;16:110–118.

    Article  CAS  PubMed  Google Scholar 

  31. Schiemann WP, Rotzer D, Pfeifer WM, et al. Transforming growth factor-beta (TGF-beta)-resistant B cells from chronic lymphocytic leukemia patients contain recurrent mutations in the signal sequence of the type I TGF-beta receptor. Cancer Detect Prev 2004;28:57–64.

    Article  CAS  PubMed  Google Scholar 

  32. Champlin RE, Golde DW. Chronic myelogenous leukemia: recent advances. Blood 1985;65:1039–1047.

    CAS  PubMed  Google Scholar 

  33. Saglio G, Morotti A, Mattioli G, et al. Rational approaches to the design of therapeutics targeting molecular markers: the case of chronic myelogenous leukemia. Ann N Y Acad Sci 2004;1028:423–431.

    Article  CAS  PubMed  Google Scholar 

  34. Melo JV, Deininger MW. Biology of chronic myelogenous leukemia — signaling pathways of initiation and transformation Hematol. Oncol Clin North Am 2004;18:545–568.

    Article  Google Scholar 

  35. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–1338.

    Article  CAS  PubMed  Google Scholar 

  36. Rooke HM, Vitas MR, Crosier PS, Crosier KE. The TGF-beta type II receptor in chronic myeloid leukemia: analysis of microsatellite regions and gene expression. Leukemia 1999;13:535–541.

    Article  CAS  PubMed  Google Scholar 

  37. Fogli M, Carlo-Stella C, Curti A, et al. Transforming growth factor beta3 inhibits chronic myelogenous leukemia hematopoiesis by inducing Fas-independent apoptosis. Exp Hematol 2000;28:775–783.

    Article  CAS  PubMed  Google Scholar 

  38. Ogawa S, Kurokawa M, Tanaka T, et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia 1996;10:788–794.

    CAS  PubMed  Google Scholar 

  39. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998;394:92–96.

    Article  CAS  PubMed  Google Scholar 

  40. Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM. Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 1999;66:981–988.

    CAS  PubMed  Google Scholar 

  41. Kroning H, Tager M, Thiel U, et al. Overproduction of IL-7, IL-10 and TGF-beta 1 in multiple myeloma. Acta Haematol 1997;98:116–118.

    Article  CAS  PubMed  Google Scholar 

  42. Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 1996;87:1928–1938.

    CAS  PubMed  Google Scholar 

  43. Potter M. Experimental plasmacytomagenesis in mice Hematol Oncol Clin North Am 1997;11: 323–347.

    Article  CAS  Google Scholar 

  44. Amoroso SR, Huang N, Roberts AB, Potter M, Letterio JJ. Consistent loss of functional transforming growth factor beta receptor expression in murine plasmacytomas. Proc Natl Acad Sci USA 1998;95:189–194.

    Article  CAS  PubMed  Google Scholar 

  45. Fernandez T, Amoroso S, Sharpe S, et al. Disruption of transforming growth factor beta signaling by a novel ligand-dependent mechanism. J Exp Med 2002;195:1247–1255.

    Article  CAS  PubMed  Google Scholar 

  46. Brown RD, Pope B, Murray A, et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 2001;98:2992–2998.

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi T, Hideshima T, Nguyen AN, et al. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment Clin. Cancer Res 2004;10:7540–7546.

    Article  CAS  Google Scholar 

  48. Ro TB, Holt RU, Brenne AT, et al. Bone morphogenetic protein-5,-6, and-7 inhibit growth and induce apoptosis in human myeloma cells. Oncogene 2004;23:3024–3032.

    Article  PubMed  CAS  Google Scholar 

  49. Kawamura C, Kizaki M, Yamato K, et al. Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3. Blood 2000;96:2005–2011.

    CAS  PubMed  Google Scholar 

  50. Hjertner O, Hjorth-Hansen H, Borset M, Seidel C, Waage A, Sundan A. Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells. Blood 2001;97: 516–522.

    Article  CAS  PubMed  Google Scholar 

  51. Tessier N, Hoang T. Transforming growth factor beta inhibits the proliferation of the blast cells of acute myeloblastic leukemia. Blood 1988;72:159–164.

    CAS  PubMed  Google Scholar 

  52. Suzuki T, Bessho M, Hirashima K, et al. Enhancement by transforming growth factor-beta 1 (TGF-beta 1) of the proliferation of leukemic blast progenitors stimulated with IL-3. J Cell Physiol 1991; 148:396–403.

    Article  CAS  PubMed  Google Scholar 

  53. de VS, Brach MA, Asano Y, et al. Transforming growth factor-beta 1 interferes with the proliferation-inducing activity of stem cell factor in myelogenous leukemia blasts through functional down-regulation of the c-kit proto-oncogene product. Cancer Res 1993;53:3638–3642.

    Google Scholar 

  54. Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia 1997;11:2022–2031.

    Article  CAS  PubMed  Google Scholar 

  55. Soderholm J, Kobayashi H, Mathieu C, Rowley JD, Nucifora G. The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia 1997;11:352–358.

    Article  CAS  PubMed  Google Scholar 

  56. Sood R, Talwar-Trikha A, Chakrabarti SR, Nucifora G. MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-beta1. Leukemia 1999;13:348–357.

    Article  CAS  PubMed  Google Scholar 

  57. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998;394:92–96.

    Article  CAS  PubMed  Google Scholar 

  58. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001;97:2815–2822.

    Article  CAS  PubMed  Google Scholar 

  59. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998;394:92–96.

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa S, Kurokawa M, Tanaka T, et al. Structurally altered Evi-1 protein generated in the 3q21q26 syndrome. Oncogene 1996;13:183–191.

    CAS  PubMed  Google Scholar 

  61. Ogawa S, Kurokawa M, Tanaka T, et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia 1996;10:788–794.

    CAS  PubMed  Google Scholar 

  62. Okuda T, van DJ, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996;84: 321–330.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci. USA 1996;93:3444–3449.

    Article  CAS  PubMed  Google Scholar 

  64. Lutterbach B, Westendorf JJ, Linggi B, et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998;18:7176–7184.

    CAS  PubMed  Google Scholar 

  65. Jakubowiak A, Pouponnot C, Berguido F, et al. Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 2000;275: 40,282–40,287.

    Article  CAS  PubMed  Google Scholar 

  66. Imai Y, Kurokawa M, Izutsu K, et al. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene 2001;20:88–96.

    Article  CAS  PubMed  Google Scholar 

  67. Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93:3167–3215.

    CAS  PubMed  Google Scholar 

  68. Salomoni P, Pandolfi PP, The role of PML in tumor suppression. Cell 2002;108:165–170.

    Article  CAS  PubMed  Google Scholar 

  69. Kastner P, Perez A, Lutz Y, et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 1992;11:629–642.

    CAS  PubMed  Google Scholar 

  70. Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-beta signalling. Nature 2004; 431:205–211.

    Article  CAS  PubMed  Google Scholar 

  71. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 1980;77:7415–7419.

    Article  CAS  PubMed  Google Scholar 

  72. Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 1982;79: 2031–2035.

    Article  CAS  PubMed  Google Scholar 

  73. Grassmann R, Dengler C, Muller-Fleckenstein I, et al. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. Proc Natl Acad Sci USA 1989;86:3351–3355.

    Article  CAS  PubMed  Google Scholar 

  74. Tanaka A, Takahashi C, Yamaoka S, Nosaka T, Maki M, Hatanaka M. Oncogenic transformation by the tax gene of human T-cell leukemia virus type I in vitro. Proc Natl Acad Sci USA 1990;87: 1071–1075.

    Article  CAS  PubMed  Google Scholar 

  75. Kim SJ, Kehrl JH, Burton J, et al. Transactivation of the transforming growth factor beta 1 (TGF-beta 1) gene by human T lymphotropic virus type 1 tax: a potential mechanism for the increased production of TGF-beta 1 in adult T cell leukemia. J Exp Med 1990;172:121–129.

    Article  CAS  PubMed  Google Scholar 

  76. Niitsu Y, Urushizaki Y, Koshida Y, et al. Expression of TGF-beta gene in adult T cell leukemia. Blood 1988;71:263–266.

    CAS  PubMed  Google Scholar 

  77. Mori N, Morishita M, Tsukazaki T, et al. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300. Blood 2001;97:2137–2144.

    Article  CAS  PubMed  Google Scholar 

  78. Lee DK, Kim BC, Brady JN, Jeang KT, Kim SJ. Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking the association of Smad proteins with Smadbinding element. J Biol Chem 2002;277:33,766–33,775.

    Article  CAS  PubMed  Google Scholar 

  79. Arnulf B, Villemain A, Nicot C, et al. Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 2002;100:4129–4138.

    Article  CAS  PubMed  Google Scholar 

  80. Mochizuki N, Shimizu S, Nagasawa T, et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 2000;96:3209–3214.

    CAS  PubMed  Google Scholar 

  81. Yoshida M, Nosaka K, Yasunaga J, Nishikata I, Morishita K, Matsuoka M. Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells. Blood 2004;103:2753–2760.

    Article  CAS  PubMed  Google Scholar 

  82. Elhasid R, Sahar D, Merling A, et al. Mitochondrial pro-apoptotic ARTS protein is lost in the majority of acute lymphoblastic leukemia patients. Oncogene 2004;23:5468–5475.

    Article  CAS  PubMed  Google Scholar 

  83. Larisch S, Yi Y, Lotan R, et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2000;2:915–921.

    Article  CAS  PubMed  Google Scholar 

  84. Wolfraim LA, Fernandez TM, Mamura M, et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 2004;351:552–559.

    Article  CAS  PubMed  Google Scholar 

  85. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999;18:1280–1291.

    Article  CAS  PubMed  Google Scholar 

  86. Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996;85:721–732.

    Article  CAS  PubMed  Google Scholar 

  87. Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996;85:733–744.

    Article  CAS  PubMed  Google Scholar 

  88. Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707–720.

    Article  CAS  PubMed  Google Scholar 

  89. Wolfraim LA, Letterio JJ. Cutting edge: p27Kip1 deficiency reduces the requirement for CD28-mediated costimulation in naive CD8+ but not CD4+T lymphocytes. J Immunol 2005;174:2481–2484.

    CAS  PubMed  Google Scholar 

  90. Wolfraim LA, Walz TM, James Z, Fernandez T, Letterio JJ. p21 Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness. J Immunol 2004;173:3093–3102.

    CAS  PubMed  Google Scholar 

  91. Mohapatra S, Agrawal D, Pledger WJ. p27Kip1 regulates T cell proliferation. J Biol Chem 2001; 276:21,976–21,983.

    Article  CAS  PubMed  Google Scholar 

  92. Tsukiyama T, Ishida N, Shirane M, et al. Down-regulation of p27Kip1 expression is required for development and function of T cells. J Immunol 2001;166:304–312.

    CAS  PubMed  Google Scholar 

  93. Zhang S, Lawless VA, Kaplan MH. Cytokine-stimulated T lymphocyte proliferation is regulated by p27Kip1. J Immunol 2000;165:6270–6277.

    CAS  PubMed  Google Scholar 

  94. Komuro H, Valentine MB, Rubnitz JE, et al. p27KIP1 deletions in childhood acute lymphoblastic leukemia. Neoplasia 1999;1:253–261.

    Article  CAS  PubMed  Google Scholar 

  95. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999;284:770–776.

    Article  CAS  PubMed  Google Scholar 

  96. Gridley T. Notch signaling and inherited disease syndromes HuM. Mol. Genet 2003;12 Spec No 1: R9–R13.

    CAS  Google Scholar 

  97. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991;66:649–661.

    Article  CAS  PubMed  Google Scholar 

  98. Zweidler-McKay PA, Pear WS. Notch and T cell malignancy Semin. Cancer Biol 2004;14: 329–340.

    Article  CAS  Google Scholar 

  99. Pear WS, Aster JC, Scott ML, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996;183:2283–2291.

    Article  CAS  PubMed  Google Scholar 

  100. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306:269–271.

    Article  CAS  PubMed  Google Scholar 

  101. Masuda S, Kumano K, Shimizu K, et al. Notch1 oncoprotein antagonizes TGF-beta/Smad-mediated cell growth suppression via sequestration of coactivator p300 Cancer Sci 2005;96:274–282.

    Article  CAS  PubMed  Google Scholar 

  102. Sun Y, Lowther W, Kato K, et al. Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-beta signaling. Oncogene 2005;24:5365–5374.

    Article  CAS  PubMed  Google Scholar 

  103. Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000;19:1745–1754.

    Article  PubMed  Google Scholar 

  104. Kato Y, Habas R, Katsuyama Y, Naar AM, He X. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature 2002;418:641–646.

    Article  CAS  PubMed  Google Scholar 

  105. Sarmento LM, Huang H, Limon A, et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 2005;202:157–168.

    Article  CAS  PubMed  Google Scholar 

  106. Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 2000;11:159–168.

    Article  CAS  PubMed  Google Scholar 

  107. Diebold RJ, Eis MJ, Yin M, et al. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci USA 1995;92:12,215–12,219.

    Article  CAS  PubMed  Google Scholar 

  108. Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T. Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 1999;59: 3379–3386.

    CAS  PubMed  Google Scholar 

  109. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004;432:332–337.

    Article  CAS  PubMed  Google Scholar 

  110. Darnell JE. Validating Stat3 in cancer therapy. Nat Med 2005;11:595–596.

    Article  CAS  PubMed  Google Scholar 

  111. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell 1999;98:295–303.

    Article  CAS  PubMed  Google Scholar 

  112. Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 2003;306:799–804.

    Article  CAS  PubMed  Google Scholar 

  113. Hahn SA, Hoque AT, Moskaluk CA, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 1996;56:490–494.

    CAS  PubMed  Google Scholar 

  114. Takagi Y, Kohmura H, Futamura M, et al. Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 1996;111:1369–1372.

    Article  CAS  PubMed  Google Scholar 

  115. Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res 1996;56: 2527–2530.

    CAS  PubMed  Google Scholar 

  116. Howe JR, Shellnut J, Wagner B, et al. Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am J Hum Genet 2002;70:1357–1362.

    Article  CAS  PubMed  Google Scholar 

  117. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 1998;280:1086–1088.

    Article  CAS  PubMed  Google Scholar 

  118. Friedl W, Kruse R, Uhlhaas S, et al. Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes. Cancer 1999;25:403–406.

    CAS  Google Scholar 

  119. Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999;59:6113–6117.

    CAS  PubMed  Google Scholar 

  120. Xu X, Brodie SG, Yang X, et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 2000;19:1868–1874.

    Article  CAS  PubMed  Google Scholar 

  121. Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006;441(7096):1015–1019.

    Article  CAS  PubMed  Google Scholar 

  122. Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 2006;25(2):207–217.

    CAS  PubMed  Google Scholar 

  123. Li W, Qiao W, Chen L, et al. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 2003;130:6143–6153.

    Article  CAS  PubMed  Google Scholar 

  124. Yang X, Li C, Herrera PL, Deng CX. Generation of Smad4/Dpc4 conditional knockout mice. Genesis 2002;32:80–81.

    Article  CAS  PubMed  Google Scholar 

  125. de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005;7:411–423.

    Article  PubMed  CAS  Google Scholar 

  126. Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 2005;174: 5215–5223.

    CAS  PubMed  Google Scholar 

  127. Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO. Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells. Immunol Invest 1997;26:459–472.

    Article  CAS  PubMed  Google Scholar 

  128. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2002; 2:46–53.

    Article  CAS  PubMed  Google Scholar 

  129. Bogdan C, Nathan C. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10 Ann. NY Acad Sci 1993;685:713–739.

    Article  CAS  Google Scholar 

  130. Vodovotz Y, Bogdan C. Control of nitric oxide synthase expression by transforming growth factor-beta: implications for homeostasis. Prog Growth Factor Res 1994;5:341–351.

    Article  CAS  PubMed  Google Scholar 

  131. Yamaguchi Y, Tsumura H, Miwa M, Inaba K. Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells 1997;15:144–153.

    Article  CAS  PubMed  Google Scholar 

  132. Geissmann F, Revy P, Regnault A, et al. TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 1999;162:4567–4575.

    CAS  PubMed  Google Scholar 

  133. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 1993;92:2569–2576.

    Article  CAS  PubMed  Google Scholar 

  134. Hoefer M, Anderer FA. Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 1995;41:302–308.

    Article  CAS  PubMed  Google Scholar 

  135. Yang YA, Dukhanina O, Tang B, Mamura M, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109: 1607–1615.

    CAS  PubMed  Google Scholar 

  136. Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109:1551–1559.

    CAS  PubMed  Google Scholar 

  137. Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000;12:171–181.

    Article  CAS  PubMed  Google Scholar 

  138. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:118–1122.

    Article  CAS  Google Scholar 

  139. Terabe M, Matsui S, Park JM, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003;198: 1741–1752.

    Article  CAS  PubMed  Google Scholar 

  140. Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001;193:1295–1302.

    Article  CAS  PubMed  Google Scholar 

  141. Godfrey WR, Spoden DJ, Ge YG, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005;105:750–758.

    Article  CAS  PubMed  Google Scholar 

  142. Horwitz DA, Zheng SG, Gray JD, Wang JH, Ohtsuka K, Yamagiwa S. Regulatory T cells generated ex vivo as an approach for the therapy of autoimmune disease. Semin Immunol 2004;16:135–143

    Article  CAS  PubMed  Google Scholar 

  143. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+cells educate CD4+. J Immunol 2004;172:5213–5221.

    CAS  PubMed  Google Scholar 

  144. Chen ML, Pittet MJ, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 2005;102:419–424.

    Article  CAS  PubMed  Google Scholar 

  145. Woo EY, Yeh H, Chu CS, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002;168:4272–4276.

    CAS  PubMed  Google Scholar 

  146. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61: 4766–4772.

    CAS  PubMed  Google Scholar 

  147. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 2003;9:4404–4408.

    PubMed  Google Scholar 

  148. Mukherjee P, Ginardi AR, Madsen CS, et al. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment. Glycoconj J 2001;18:931–942.

    Article  CAS  PubMed  Google Scholar 

  149. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002;169:2756–2761.

    CAS  PubMed  Google Scholar 

  150. Viguier M, Lemaitre F, Verola O, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 2004;173:1444–1453.

    CAS  PubMed  Google Scholar 

  151. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001;411: 380–384.

    Article  CAS  PubMed  Google Scholar 

  152. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942–949.

    Article  CAS  PubMed  Google Scholar 

  153. Rosenberg SA, Sherry RM, Morton KE, et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 2005;175:6169–6176.

    CAS  PubMed  Google Scholar 

  154. Hussain SF, Paterson Y. CD4+CD25+ regulatory T cells that secrete TGFbeta and IL-10 are preferentially induced by a vaccine vector. J Immunother 2004;27:339–346.

    Article  CAS  PubMed  Google Scholar 

  155. Chakraborty NG, Chattopadhyay S, Mehrotra S, Chhabra A, Mukherji B. Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum Immunol 2004;65: 794–802.

    Article  CAS  PubMed  Google Scholar 

  156. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999;59:3128–3133.

    CAS  PubMed  Google Scholar 

  157. Nagai H, Horikawa T, Hara I, et al. In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 2004;13:613–620.

    Article  CAS  PubMed  Google Scholar 

  158. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 2002;32:3267–3275.

    Article  CAS  PubMed  Google Scholar 

  159. Steitz J, Bruck J, Lenz J, Knop J, Tuting T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 2001;61:8643–8646.

    CAS  PubMed  Google Scholar 

  160. Nicholl M, Lodge A, Brown I, Sugg SL, Shilyansky J. Restored immune response to an MHC-II-Restricted antigen in tumor-bearing hosts after elimination of regulatory T cells. J Pediatr Surg 2004; 39:941–946.

    Article  PubMed  Google Scholar 

  161. Li J, Hu P, Khawli LA, Epstein AL. Complete regression of experimental solid tumors by combination LEC/chTNT-3 immunotherapy and CD25(+) T-cell depletion. Cancer Res 2003;63: 8384–8392.

    CAS  PubMed  Google Scholar 

  162. Jones E, hm-Vicker M, Simon AK, et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2002;2:1.

    PubMed  Google Scholar 

  163. Tanaka H, Tanaka J, Kjaergaard J, Shu S. Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 2002;25:207–217.

    Article  CAS  PubMed  Google Scholar 

  164. Shevach EM. Fatal attraction: tumors beckon regulatory T cells. Nat Med 2004;10:900–901.

    Article  CAS  PubMed  Google Scholar 

  165. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850–854.

    Article  CAS  PubMed  Google Scholar 

  166. Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005;202:907–912.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wolfraim, L.A., Letterio, J.J. (2008). Perturbations of TGF-β Signaling in Leukocytes as Drivers of Leukemogenesis and Epithelial Tumorigenesis. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics