Skip to main content

Interaction of Smad4 and Embryonic Liver Fodrin-β-spectrin in Hyperplasia, Neoplasia, and Tumor Suppression

  • Chapter
  • 1599 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Transforming growth factor (TGF)-β is both a suppressor and promoter of tumorigenesis; however, its contribution to early tumor suppression and staging remains largely unknown. In search of the mechanism of early tumor suppression, we focus on Smad4, a transducer of TGF-β signaling, and embryonic liver fodrin (ELF), a β-spectrin, in tumorigenesis by linking a major, dynamic scaffolding protein and a key signaling protein. ELF activates and modulates Smad4 activation of the TGF-β response to confer cell polarity, to maintain cell architecture, and to inhibit epithelial-to-mesenchymal transition. In human gastric tumor samples, a significant loss of ELF and reduction of Smad4 expression was recently found. An examination of elf +/−, Smad4+/−, and elf +/−/Smad4+/− mice revealed that disruption of ELF and Smad4 displayed a synergistic effect on tumor formation in terms of incidence and duration, suggesting a cooperative interaction between ELF and Smad4 leading to enhanced tumor suppression. This review examines our understanding of the significance of the interactions between ELF and Smad4, through regulation of the TGF-β signaling pathway and repression of tumor formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attisano L, Wrana JL. Mads and Smads in TGF-β signaling. Curr Opin Cell Biol 1998;10:188–194.

    Article  CAS  PubMed  Google Scholar 

  2. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  3. Heldin C-H, Miyazono K, ten Dijke P. TGF-β signaling from cell membrane to nucleus through Smad proteins. Nature 1997;390:465–467.

    Article  CAS  PubMed  Google Scholar 

  4. Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to nucleus. Cell 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  5. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. New Eng J Med 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  6. Lu SL, Kawabata M, Imamura T, et al. HNPCC associated with germline mutation in the TGF-β type II receptor gene. Nature Genet 1998;19:17–18.

    Article  CAS  PubMed  Google Scholar 

  7. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–1338.

    Article  CAS  PubMed  Google Scholar 

  8. Myeroff LL, Parsons R, Kim SJ, et al. A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 1995;55:5545–5547.

    CAS  PubMed  Google Scholar 

  9. Tannergard P, Liu T, Weger A, Nordenskjold M, Lindbloom A. Tumorigenesis in colorectal tumors from patients with hereditary non-polyposis colorectal cancer. Hum Genet 1997;101:51–55.

    Article  CAS  PubMed  Google Scholar 

  10. Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGF-β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86:543–552.

    Article  CAS  PubMed  Google Scholar 

  11. Riggins GJ, Thiagalingam S, Rozenblum E, et al. Mad-related genes in the human. Nature Genet 1996;13:347–349.

    Article  CAS  PubMed  Google Scholar 

  12. Hahn SA, Schutte M, Hoque TMS, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–354.

    Article  CAS  PubMed  Google Scholar 

  13. Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 2003;306:799–804.

    Article  CAS  PubMed  Google Scholar 

  14. Thiagalingam S, Lengauer C, Leach FS, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genet 1996;13:343–346.

    Article  CAS  PubMed  Google Scholar 

  15. Katuri V, Tang Y, Marshall B, Rashid A, et al. Inactivation of ELF/TGF-β signaling in human gastrointestinal cancer. Oncogene 2005;24:8012–8024.

    Article  CAS  PubMed  Google Scholar 

  16. Tang Y, Katuri V, Srinivasan R, et al. Transforming growth factor-β suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 2005;65:4228–4237.

    Article  CAS  PubMed  Google Scholar 

  17. Powell SM, Harper JC, Hamilton SR, Robinson CR, Cummings OW. Inactivation of Smad4 in gastric carcinomas. Cancer Res 1997;57:4221–4224.

    CAS  PubMed  Google Scholar 

  18. Weinstein M, Yang X, Deng C. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 2000;11:49–58.

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate TGF-β signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 2000;97:4820–4825.

    Article  CAS  PubMed  Google Scholar 

  20. Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L. Disruption of transforming growth factor-β signaling in ELF β-spectrin-deficient mice. Science 2003;299:574–577.

    Article  CAS  PubMed  Google Scholar 

  21. Mishra L, Cia T, Yu P, Monger P, Mishra B. elf3 encodes a novel 200 KD β-spectrin: Role in liver development. Oncogene 1999;18:353–364.

    Article  CAS  PubMed  Google Scholar 

  22. Patterson GI, Padgett RW. TGF β-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 2000;16:27–33.

    Article  CAS  PubMed  Google Scholar 

  23. Whitman M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev 1998;12:2445–2462.

    Article  CAS  PubMed  Google Scholar 

  24. Derynck R, Gelbart WM, Harland RM, et al. Nomenclature: vertebrate mediators of TGF-β family signals. Cell 1996;87:173.

    Article  CAS  PubMed  Google Scholar 

  25. Flanders KC, Kim ES, Roberts AB. Immunohistochemical expression of Smads 1–6 in the 15-day gestation mouse embryo: signaling by BMPs and TGF-βs. Dev Dyn 2001;220:141–154.

    Article  CAS  PubMed  Google Scholar 

  26. Luukko K, Ylikorkala A, Makela TP. Developmentally regulated expression of Smad3, Smad4, Smad6, and Smad7 involved in TGF-β signaling. Mech Dev 2001;101:209–212.

    Article  CAS  PubMed  Google Scholar 

  27. Grishin NV. Mh1 domain of Smad is a degraded homing endonuclease. J Mol Biol 2001;307:31–37.

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y. Structural insights on Smad function in TGFβ signaling. Bio essays 2001;23:223–232.

    CAS  Google Scholar 

  29. Li J, Lee GI, Van Doren SR, Walker JC. The FHA domain mediates phosphoprotein interactions. J Cell Sci 2000;113:4143–4149.

    CAS  PubMed  Google Scholar 

  30. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 2002;110:19–32.

    Article  CAS  PubMed  Google Scholar 

  31. Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol Cell 2002;10:283–294.

    Article  CAS  PubMed  Google Scholar 

  32. Shioda T, Lechleider RJ, Dunwoodie SL, et al. Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc Nat Acad Sci USA 1998;95:9785–9790.

    Article  CAS  PubMed  Google Scholar 

  33. Zawel L, Dai JL, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998;1:611–617.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou S, Buckhaults P, Zawel L, et al. Targeted deletion of Smad4 shows it is required for transforming growth factor β and activin signaling in colorectal cancer cells. Proc Nat Acad Sci USA 1998;95:2412–2416.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SK, Fan Y, Papadimitrakopoulou V, et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res 1996;56:2519–2521.

    CAS  PubMed  Google Scholar 

  36. Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res 1996;56:2527–2530.

    CAS  PubMed  Google Scholar 

  37. Handra-Luca A, Condroyer C, de Moncuit C, et al. Vessels’ morphology in SMAD4 and BMPR1A-related juvenile polyposis. Am J Med Genet 2005;138A:113–117.

    Article  PubMed  Google Scholar 

  38. Friedl W, Uhlhaas S, Schulmann K, et al. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet 2002;111:108–111.

    Article  CAS  PubMed  Google Scholar 

  39. Houlston R, Bevan S, Williams A, et al. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet 1998;7:1907–1912.

    Article  CAS  PubMed  Google Scholar 

  40. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 1998;280:1086–1088.

    Article  CAS  PubMed  Google Scholar 

  41. Howe JR, Sayed MG, Ahmed AF, et al. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 2004;41:484–491.

    Article  CAS  PubMed  Google Scholar 

  42. Hayes NV, Phillips GW, Carden MJ, Baines AJ. Definition of a sequence unique in β II spectrin required for its axonspecific interaction with fodaxin. J Neurochem 1997;68:1686–1695.

    CAS  PubMed  Google Scholar 

  43. Fucini RV, Navarrete A, Vadakkan C, et al. Activated ADP-ribosylation factor assembles distinct pools of actin on golgi membranes. J Biol Chem. 2000;275:18,824–18,829.

    Article  CAS  PubMed  Google Scholar 

  44. Godi A, Santone I, Pertile P, et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci USA 1998;95:8607–8612.

    Article  CAS  PubMed  Google Scholar 

  45. Chang JG, Scarpa A, Eddy RL, et al. Cloning of a portion of the chromosomal gene and cDNA for human β-fodrin, the nonerythroid form of β-spectrin. Genomics 1993;17:287–293.

    Article  CAS  PubMed  Google Scholar 

  46. Hu RJ, Watanabe M, Bennett V. Characterization of human brain cDNA encoding the general isoform of β-spectrin. J Biol Chem 1992;267:18,715–18,722.

    CAS  PubMed  Google Scholar 

  47. Watkins PC, Eddy R, Forget BG, Chang JG, Rochelle R, Shows TB. Assignment of a non-erythroid spectrin gene to human chromosome 2. Am J Hum Genet 1998;43:A161.

    Google Scholar 

  48. Golestaneh N, Mishra B. TGF-β, neuronal stem cells and glioblastoma. Oncogene 2005;24:5722–5730.

    Article  CAS  PubMed  Google Scholar 

  49. Mishra L, Katuri V, Evans S. The Role of PRAJA and ELF in TGF-β Signaling and Gastric Cancer. Cancer Biol Ther 2005;4:694–699.

    Article  CAS  PubMed  Google Scholar 

  50. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-β signal transduction. J Cell Sci 2001;114:4359–4369.

    CAS  PubMed  Google Scholar 

  51. Wrana JL, Attisano L. The Smad pathway. Cytokine Growth Factor Rev 2000;11:5–13.

    Article  CAS  PubMed  Google Scholar 

  52. Bennett V, Baines AJ. Spectrin and Ankyrin-Based Pathways: Metazoan Inventions for Integrating Cells Into Tissues. Physiol Rev 2001;81:1353–1392.

    CAS  PubMed  Google Scholar 

  53. Nelson WJ, Veshnock PJ. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol 1986;103:1751–1765.

    Article  CAS  PubMed  Google Scholar 

  54. De Matteis MA, Morrow JS. Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 2000;113:2331–2343.

    PubMed  Google Scholar 

  55. Weinstein M, Monga SP, Liu Y, et al. Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on β1-integrin to promote normal liver development. Mol Cell Biol 2001;21:5122–5131.

    Article  CAS  PubMed  Google Scholar 

  56. Mishra L, Cai T, Levine A, et al. Identification of elf1, a β-spectrin, in early mouse liver development. Int J Dev Biol 1998;42:221–224.

    CAS  PubMed  Google Scholar 

  57. Goumans MJ, Mummery C. Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 2000;44:253–265.

    CAS  PubMed  Google Scholar 

  58. Larsson J, Goumans MJ, Sjostrand LJ, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J 2001;20:1663–1673.

    Article  CAS  PubMed  Google Scholar 

  59. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998;92:645–656.

    Article  CAS  PubMed  Google Scholar 

  60. Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998;12:107–119.

    Article  CAS  PubMed  Google Scholar 

  61. Yang X, Li C, Xu X, Deng C. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 1998;95:3667–3672.

    Article  CAS  PubMed  Google Scholar 

  62. Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999;59:6113–6117.

    CAS  PubMed  Google Scholar 

  63. Seno H, Oshima M, Ishikawa TO, et al. Cyclooxygenase 2-and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 2002;62:506–511.

    CAS  PubMed  Google Scholar 

  64. Takeda H, Miyoshi H, Tamai Y, Oshima M, Taketo MM. Simultaneous expression of COX-2 and mPGES-1 in mouse gastrointestinal hamartomas. Br J Cancer 2004;90:701–704.

    Article  CAS  PubMed  Google Scholar 

  65. Taketo MM, Takaku K. Gastrointestinal tumorigenesis in Smad4 (Dpc4) mutant mice. Hum Cell 2000;13:85–95.

    CAS  PubMed  Google Scholar 

  66. Xu X, Brodie SG, Yang X, et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cnacer in mice. Oncogene 2000;19:1868–1874.

    Article  CAS  PubMed  Google Scholar 

  67. Li W, Qiao W, Chen L, et al. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 2003;130: 6143–6153.

    Article  CAS  PubMed  Google Scholar 

  68. Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 2006;25:207–217.

    CAS  PubMed  Google Scholar 

  69. Yang X, Li C, Herrera PL, Deng XC. Generation of Smad4/Dpc4 conditional knockout mice. Genesis 2002;32:80–81.

    Article  CAS  PubMed  Google Scholar 

  70. Kretzschmar M, Doody J, Timokhina I, Massagué J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 1999;13:804–816.

    Article  CAS  PubMed  Google Scholar 

  71. Roberts AB, Sporn MB. The transforming growth factor-βs. In: Peptide Growth Factors and Their Receptors, Handbook of Experimental Pharmacology. (Sporn MB, Roberts AB eds.), Springer-Verlag, Berlin, Germany: 1990:419–472.

    Google Scholar 

  72. Peinado H, Quintanilla M, Cano A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003;278: 21,113–21,123.

    Article  CAS  PubMed  Google Scholar 

  73. Muller N, Reinacher-Schick A, Baldus S, et al. Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene 2002;21:6049–6058.

    Article  PubMed  CAS  Google Scholar 

  74. Li QL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002;109:113–124.

    Article  CAS  PubMed  Google Scholar 

  75. Sormunen RT, Leong AS, Vaaraniemi JP, Fernando SS, Eskelinen SM. Immunolocalization of the fodrin, E-cadherin, and β-catenin adhesion complex in infiltrating ductal carcinoma of the breast-comparison with an in vitro model. J Pathol 1999;187:416–423.

    Article  CAS  PubMed  Google Scholar 

  76. Brooks-Wilson AR, Kaurah P, Suriano G, et al. Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet 2004;41:508–517.

    Article  CAS  PubMed  Google Scholar 

  77. Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 2002;161:1881–1891.

    CAS  PubMed  Google Scholar 

  78. Scartozzi M, Galizia E, Freddari F, Berardi R, Cellerino R, Cascinu S. Molecular biology of sporadic gastric cancer: prognostic indicators and novel therapeutic approaches. Cancer Treat Rev 2004;30: 451–459.

    Article  CAS  PubMed  Google Scholar 

  79. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927–939.

    Article  CAS  PubMed  Google Scholar 

  80. Nelson WJ, Hammerton RW. A membrane-cytoskeletal complex containing Na+, K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol 1989;108:893–902.

    Article  CAS  PubMed  Google Scholar 

  81. Piepenhagen PA, Nelson WJ. Biogenesis of polarized epithelial cells during kidney development in situ: roles of E-cadherin-mediated cell-cell adhesion and membrane cytoskeleton organization. Mol Biol Cell 1998;9:3161–3177.

    CAS  PubMed  Google Scholar 

  82. Pinder JC, Baines AJ. A protein accumulator. Nature 2000;406:253–254.

    Article  CAS  PubMed  Google Scholar 

  83. Fath KR, Trimbur GM, Burgess DR. Molecular motors and a spectrin matrix associate with Golgi membranes in vitro. J Cell Biol 1997;139:1169–1181.

    Article  CAS  PubMed  Google Scholar 

  84. Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004;303:1483–1487.

    Article  CAS  PubMed  Google Scholar 

  85. Pradhan D, Lombardo CR, Roe S, Rimm DL, Morrow JS. α-Catenin binds directly to spectrin and facilitates spectrin-membrane assembly in vivo. J Biol Chem 2001;276:4175–4181.

    Article  CAS  PubMed  Google Scholar 

  86. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000;103:311–320.

    Article  CAS  PubMed  Google Scholar 

  87. Van de Wetering M, Sancho E, Verweij C, et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002;111:241–250.

    Article  PubMed  Google Scholar 

  88. Abraham SC, Wu TT, Klimstra DS, et al. Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/β-catenin pathway and chromosome 11p. Am J Pathol 2001;159:1619–1627.

    CAS  PubMed  Google Scholar 

  89. Cagatay T, Ozturk M. P53 mutation as a source of aberrant β-catenin accumulation in cancer cells. Oncogene 2002;21:7971–7980.

    Article  CAS  PubMed  Google Scholar 

  90. Mishra L, Shetty K, Tang Y, Stuart A, Byers SW. The role of TGF-β and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 2005;24:5775–5789.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Kim, S.S., Shuman, C., Mishra, L. (2008). Interaction of Smad4 and Embryonic Liver Fodrin-β-spectrin in Hyperplasia, Neoplasia, and Tumor Suppression. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics