Skip to main content

Transforming Growth Factor-β Peptide Signaling in Pulmonary Development, Bronchopulmonary Dysplasia, Fibrosis, and Emphysema

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Abstract

Transforming growth factor-β (TGF-β)1, 2 and 3 peptide superfamily signaling is not only essential for both prenatal and postnatal lung morphogenesis, but also plays a key role in the pathobiology of bronchopulmonary dysplasia, pulmonary fibrosis and emphysema. The respective null mutations of TGF-β1 reveals its function to protect against lung inflammation, of TGF-β2 in cardiopulmonary morphogenesis and of TGF-β3 in lung and palatal fusion. TGF-β signal transduction is tightly regulated at all levels from ligand bioavailability in the extracellular space to the nucleus. Protease-antiprotease balance, correct final assembly of lung matrix and hence completion of alveolarization are all important normal functions of the TGF-β signaling pathway. The consequences of excess TGF-β signaling depend on the developmental stage of the lung: alveolar hypoplasia and fibrosis in the growing lung, fibrosis in the adult lung. While inflammation can induce excessive TGF-β signaling, lung fibrosis per se is inflammation independent and mediated by excessive TGF-β and Smad3 signaling. Therapeutic manipulation of TGF-β-Smad3 function is therefore a rational target. However, its application to pulmonary medicine will not be easy because of the narrow therapeutic range and many-layered physiological regulation of this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelton RW, Johnson MD, Perkett EA, Gold LI, Moses HL. Expression of transforming growth factor-beta 1,-beta 2 and-beta 3 mRNA and protein in the murine lung. Am J Resp Cell Mol Biol 1991; 5:522–530.

    CAS  Google Scholar 

  2. Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development 1991;111:131–143.

    CAS  PubMed  Google Scholar 

  3. Schmid P, Cox D, Bilbe G, Maier R, McMaster GK. Differential expression of TGF beta 1, beta 2 and beta 3 genes during mouse embryogenesis. Development 1991;111:117–130.

    CAS  PubMed  Google Scholar 

  4. McLennan IS, Poussart Y, Koishi K. Development of skeletal muscles in transforming growth factor-beta 1 (TGF beta 1) null-mutant mice. Dev Dyn 2000;217:250–256.

    Article  CAS  PubMed  Google Scholar 

  5. Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbance of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation 2001;103:2745–2752.

    CAS  PubMed  Google Scholar 

  6. Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicate defects of mesenchymal-epithelial interaction. Nat Genet 1995;11:415–421.

    Article  CAS  PubMed  Google Scholar 

  7. Buckley S, Bui KC, Hussain M, Warburton D. Dynamics of TGF-beta 3 peptide activity during rat alveolar epithelial cell proliferative recovery from acute hyperoxia. Am J Physiol 1996;271:L54–60.

    CAS  PubMed  Google Scholar 

  8. Zhou L, Dey CR, Wert SE, Whitstett JA. Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-Beta1 chimeric gene. Dev Biol 1996;175:227–228.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Sime PJ, Bringas P, Jr., et al. Spatial-specific TGF-beta 1 adenoviral expression determines morphogenetic phenotypes in embryonic lung. Eur J Cell Biol 1999;78:715–725.

    CAS  PubMed  Google Scholar 

  10. Bragg AD, Moses HL, Serra R. Signaling to the epithelium is not sufficient to mediate all of the effects of transforming growth factor beat and bone morphogenetic protein 4 in murine embryonic lung development. Mech Dev 2001;109:13–26.

    Article  CAS  PubMed  Google Scholar 

  11. Serra R, Pelton RW, Moses HL. TGF beta 1 inhibits branching morphogenesis and N-myc expression in lung organ cultures. Development 1994;120:2153–2161.

    CAS  PubMed  Google Scholar 

  12. Zhao J Crowe DL, Castillo C, Wuenschell C, Chai Y, Warburton D. Epithelium-specific adenoviral transfer of a dominant-negative mutant TGF-beta type II receptor stimulates embryonic lung branching morphogenesis in culture and potentiates EGF and PDGF-AA. Mech Dev 2000;93:71–81.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Sime PJ, Bringas P, Jr., Gauldie J, Warburton D. Adenovirus-mediated decorin gene transfer prevents TGF-beta-induced inhibition of lung morphogenesis. Am J Physiol 1999;277:L412–L422.

    CAS  PubMed  Google Scholar 

  14. Zhao J, Lee M, Smith S, Warburton D. Abrogation of Smad3 and Smad2 or Smad4 gene expression positively regulates murine embryonic lung branching morphogenesis in culture. Dev Biol 1998;194: 182–195.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao J, Crowe DL, Castillo C, Wuenschell C, Chai Y, Warburton D. Smad7 is a TGF-beta-inducible attenuator of Smad2/3-mediated inhibition of embryonic lung morphogenesis. Mech Dev 2000;93:71–81.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao J, Shi W, Chen H, Warburton D. Smad7 and Smad6 differentially modulate transforming growth factor-beta-induced inhibition of embryonic lung morphogenesis. J Biol Chem 2000;275:23,992–23,997.

    Article  CAS  PubMed  Google Scholar 

  17. Gauldie J, Galt T, Bonniaud P, Robbins C, Kelly M, Warburton D. Transfer of the active form of transforming growth factor-beta 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol 2003;163:2575–2584.

    CAS  PubMed  Google Scholar 

  18. Vicencio AG, Lee CG, Cho SJ, et al. Conditional overexpression of bioactive TGF-β1 in neonatal mouse lung: A new model for bronchopulmonary dysplasia? Am J Respir Cell Mol Biol 2004;31:650–656.

    Article  CAS  PubMed  Google Scholar 

  19. Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene, 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004;200:377–389.

    Article  CAS  PubMed  Google Scholar 

  20. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta induces prolonged severe fibrosis in rat lung. J Clin Invest 1997;100: 768–776.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Shi W, Wang YL, et al. Warburton. Smad3 deficiency attenuates bleomycin-induced fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2002;282:L585–L593.

    CAS  PubMed  Google Scholar 

  22. Bonniaud P, Margetts PJ, Kolb M, et al. Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am J Resp Crit Care Med 2003;168:770–778.

    Article  PubMed  Google Scholar 

  23. Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev 2000;14:627–644.

    PubMed  Google Scholar 

  24. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;2:117–129.

    Article  Google Scholar 

  25. Roberts AB, Derynck R. Meeting report: signaling schemes for TGF-beta. Sci STKE 2001;113:PE43.

    Google Scholar 

  26. Kaartinen V, Warburton D. Fibrillin controls TGF-beta activation. Nat Genet 2003;33:331–332.

    Article  CAS  PubMed  Google Scholar 

  27. Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003;33:407–411.

    Article  CAS  PubMed  Google Scholar 

  28. Morris DG, Huang X, Kaminski N, et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 2003;422:169–173.

    Article  CAS  PubMed  Google Scholar 

  29. Shovlin CL, Hughes JM, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet 1997;61:68–79.

    Article  CAS  PubMed  Google Scholar 

  30. Bonniaud P, Margetts PJ, Kolb M, et al. Progressive TGFβ induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med 2005;171:889–898.

    Article  PubMed  Google Scholar 

  31. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 2001;107:1529–1536.

    Article  CAS  PubMed  Google Scholar 

  32. Bonniaud P, Kolb M, Galt T, et al. Smad3 null mutant mice develop airspace enlargement and are resistant to TGF-beta mediated pulmonary fibrosis. J Immunol 2004;173:2099–2108.

    CAS  PubMed  Google Scholar 

  33. Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGFbeta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 2005;175:5390–5395.

    CAS  PubMed  Google Scholar 

  34. Daniels CE, Wilkes MC, Edens M, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 2004;114(9):1308–1316.

    CAS  PubMed  Google Scholar 

  35. Wang S, Wilkes MC, Leof EB, Hirschberg R. Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J 2005;19(1):1–11.

    Article  PubMed  Google Scholar 

  36. Massagué J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 2003;17:2993–2997.

    Article  PubMed  Google Scholar 

  37. Kolb M, Bonniaud P, Galt T, et al. Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of fibrosis-prone and fibrosis-resistant mouse strains. Am J Resp Cell Mol Biol 2003;27:141–150.

    Google Scholar 

  38. Bonniaud P, Martin G, Margetts PJ, et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Resp Cell Mol Biol 2004; 31:510–516.

    Article  CAS  Google Scholar 

  39. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Sun J, Buckley S, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol 2004;288:L683–L691.

    Google Scholar 

  41. Giri SN. Novel pharmacological approaches to manage interstitial lung fibrosis in the twenty-first century. Ann Rev Pharmacol Tox 2003;43:73–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Warburton, D., Shi, W., Kolb, M., Gauldie, J. (2008). Transforming Growth Factor-β Peptide Signaling in Pulmonary Development, Bronchopulmonary Dysplasia, Fibrosis, and Emphysema. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics